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Abstract

the heterogeneity of variability and low replication.

Background: Mass spectrometry (MS) data are often generated from various biological or chemical experiments and
there may exist outlying observations, which are extreme due to technical reasons. The determination of outlying
observations is important in the analysis of replicated MS data because elaborate pre-processing is essential for
successful analysis with reliable results and manual outlier detection as one of pre-processing steps is
time-consuming. The heterogeneity of variability and low replication are often obstacles to successful analysis,
including outlier detection. Existing approaches, which assume constant variability, can generate many false positives
(outliers) and/or false negatives (non-outliers). Thus, a more powerful and accurate approach is needed to account for

Findings: We proposed an outlier detection algorithm using projection and quantile regression in MS data from
multiple experiments. The performance of the algorithm and program was demonstrated by using both simulated
and real-life data. The projection approach with linear, nonlinear, or nonparametric quantile regression was
appropriate in heterogeneous high-throughput data with low replication.

Conclusion: Various quantile regression approaches combined with projection were proposed for detecting outliers.
The choice among linear, nonlinear, and nonparametric regressions is dependent on the degree of heterogeneity of
the data. The proposed approach was illustrated with MS data with two or more replicates.

Findings

Background

Mass spectrometry (MS) data are often generated from
various biological or chemical experiments. Such vast data
is usually analyzed automatically in a computer process
consisting of pre-processing, significance test, classifica-
tion, and clustering. Elaborate pre-processing is essential
for successful analysis with reliable results. One pre-
processing step is required to detect outliers, which which
are extreme due to technical reasons. The plausible outly-
ing observations detected can be examined carefully, and
then corrected or eliminated if necessary. However, as the
manual examination of all observations for outlier detec-
tion is time-consuming, plausible outlying observations
must be detected automatically.
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Identification of statistical outliers is the subject of some
controversy in statistics[1]. Several outlier detection algo-
rithms have been proposed for univariate data, including
Grubbs’ test [2] and Dixon’s Q test [3]. These tests were
designed to analyze data under the normality assump-
tion, so that they may produce unreliable outcomes in the
case of few replicates. Furthermore, they are not appli-
cable for duplicated samples. Another naive approach to
detect outliers statistically constructs lower and upper
fences of differences between two samples, Q; — 1.5IQR
and Q3 + 1.5IQR, where Q; is the lower 25% quantile, Q3
is the upper 25% quantile, and /IQR = Q3 — Q. They are
claimed to be outliers if they are smaller than the lower
fence or larger than the upper fence. However, this may
generate a spurious result because variability is heteroge-
neous in high-throughput data even generated from MS
experiments.

Figure 1 shows the log-scale scatter plot of the tech-
nically duplicated samples under the same biological
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Figure 1 Scatter plot of duplicate samples. File: Scatter.pdf -
Scatter plot of duplicate samples after log2 transformation from mass
spectrometry proteomics data.

condition from a MS experiment. The variability differs
according to the intensity levels in the plot, so that the
naive outlier detection method, ignoring the heterogene-
ity of variability, may often miss true outliers at high
levels and select false outliers at low levels. If a number
of technical replicates for each peptide under the same
biological condition can be obtained in MS experiments,
the examination of outliers can be conducted for each
peptide. However, a small number of replicates is usually
conducted for MS experiments due to the high cost of
experiments and the limited supply of biological samples.

Cho et al. [4] proposed a more elaborate approach for
detecting outliers with low false positive and negative
rates in MS data to solve the problem when the number
of technical replicates is two. The algorithm was devel-
oped by utilizing quantile regression for duplicate MS
experiments. The R package (called OutlierD) that was
also developed can only be used for duplicate experi-
ments. Therefore, we here propose a new outlier detec-
tion algorithm for multiple high-throughput experiments,
particularly those with few, but more than two replicates.

Classical Approaches

Suppose that there are n replicated samples and p peptides
in MS data. Then let x;; be the ith replicated sample from
experiments under the same biological or experimental
condition, wherei =1,...,nandj = 1,...,p. For conve-
nience, let y;; = log, (x;). Typically, # is small and p is very
large in high-throughput data, i.e., p >> n.In addition, let
Y < ¥@j < -+ < Yy be ordered samples for peptide
j» where y(1); = mini<;<, y; and yu); = maxi<j<p yjj, the
smallest and the largest observations, respectively.
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Outliers are often detected by the classical approaches
such as Dixon’s Range Test and Grubbs test. Dixon’s Range
Test, also known as Dixon’s Q-test [3], utilizes order
statistics as follows.

_ o —ray) i = Yn-1y)
) Omy — yay)

The denominator is the difference between the largest and
smallest observations and the numerator is the difference
between the smallest two values or the largest two values.
If the test statistic Q; is smaller than the critical value
given by Rorabacher [5], peptide j is flagged as an outlier. If
n = 2, the statistic is always 1; thus, this test is applicable
forn > 3.

Grubbs’ test [2,6] also utilizes order statistics and its test
statistic is defined as follows.

Yoyj — V)
S

(1)

Ty= 227 and Ty = M,

j 5j

(2)

where y.; is the sample mean and s; the standard deviation
for peptide j. The denominator is the standard deviation
and the numerator is the difference between the small-
est (or largest) value and the sample mean. If T}; or T7;
is smaller than the critical value, peptide j is flagged as an
outlier. If # = 2, the statistic is always 1/+/2; thus, this test
is also applicable for n > 3.

Proposed Methods

In duplicated experiments (n = 2), two observed values,
x1j and xy; for each j, should be theoretically identical, but
are not identical in practice due to their variability. Even
though they are not identical, they should not differ sub-
stantially. The tolerance of the difference between the two
observed values from the same condition is not constant
because their variability is heterogeneous. The variability
of high-throughput data depends on intensity levels.

Cho et al. [4] proposed the construction of lower and
upper fences using quantile regression in an MA plot
with M and A values in vertical and horizontal axes,
respectively, where A, is the difference between replicated
samples for j and A; is the average, i.e., M; = y1; — y2; =
log, (x1j/x2j) and A; = (yy; + ¥2))/2 = (1/2) log, (x1%2))
to detect the outliers accounting for the heterogeneity of
variability.

In multiple experiments (n > 2), it is natural to inves-
tigate outliers based on all observed values in a high-
dimensional space. An outlier will be a very large distance
from the center of the distribution of a peptide. The cut-
offs of distances for classification of outliers depend on
the degree of variability from the center. The degree of
variability is dependent on intensity levels and the cen-
ter can be defined as the 45° line from the origin. More
flexibly, the center can be obtained by principal compo-
nent analysis (PCA), as seen in Figure 2. The first principal
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Figure 2 Outlier detection using projection quantile regression.
File: MA.pdf - Outlier detection using projection quantile regression
for mass spectrometry data. The dotted lines represent Q3 (A) and the
solid lines represent upper fences classifying outliers and non-outliers.

component (PC) becomes the center of each intensity
level, i.e., a new axis for intensity levels. The experiments
are replicated under the same biological and technical
condition; hence, most variation can be explained by the
first PC. It implies that it is enough to use the first PC
practically. An outlier will have a large distance from its
projection. Following the notations for applying quantile
regression, we can define the distance of peptide j to the
projection as M; and the length of the projection on the
new axis as A;. Then the first and third quantiles can
be obtained by applying quantile regression on an MA
plot with M and A in the vertical and horizontal axes,
repectively; hence, the upper and lower fences can be
constructed to classify the outliers.

Describing this projection approach in more detail, we
first subtract the sample mean of each sample from each
observation to shift the sample mean to the origin because
the PC go through the sample means. The first PC vector
v can be found on the new sample space from yj,...,y5
and the projection of each peptide on the vector v can be
obtained. Then, we can calculate the length of the projec-
tion, |y;"’v| /~/V'v, and the length of the difference between
a vector of peptide j and the projection, |yj« — (y;"’v/v’ v)v|.
The length of the projection is multiplied by the sign of
y]f"/ v to distinguish the positive and negative directions.
The signed length of the project and the length of the dif-
ference are defined as A; and M; of peptide j, respectively.
Outlying peptides will have unduly large M values. Judg-
ing whether it is undue or not depends on A; because the
variability of M values is heterogeneous. Like OutlierD,
we obtain first and third quantiles, Q; and Qs, depend-
ing on intensity levels, and then construct the upper and
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lower fences to classify outliers from normal observations.
Quantile regression [7] is utilized on an MA plot to obtain
the first and third quantile estimates, Q;(A) and Qs3(A),
respectively, depending on the intensity levels A. The
g-quantile /inear quantile regression with {(4;,M)),j =
1,...,p} is used to find the parameters minimizing

> alMy—g(Ai00,60) +
{j:M;>g(A};60,01)}

> (- @IM; - g(Aji60,60)] 3)
{j:Mj<g(Aj;60,61)}

where 0 < g < 1, and g(4;;00,61) = 6o + 014;.
Using Equation (3), the 0.25 and 0.75 quantile estimates,
Q1(A) and Qs3(A), are calculated depending on the lev-
els A. Then, the lower and upper fences are constructed:
Q1(A) — kIQR(A) and Q3(A) + kIQR(A), where IQR(A) =
Q3(A) — Q1(A) and k is a tuning parameter. We set k to
1.5 as the default value in our algorithm and software pro-
gram because the value is practically often used. A larger k
value selects fewer peptides, while a smaller k selects more
outliers. The value can be adjusted empirically according
to the magnitude of the variation of the data.

We can obtain more flexible quantile estimates by non-
linear and nonparametric quantile regression approaches
[8]. For nonlinear quantile regression, the asymptotic
function [9] can be employed:

g(Aj; 01,6,03) = 01{1 — exp[ — exp(62) x (A; — 053)] },

where 0; is the asymptote, 0 is the log rate, and 03 is
the value of A at which the response becomes zero. In
addition, Self-starting, Frank, Asymptotic with Offset and
Copula functions can be employed. For nonparametric
quantile regression, we utilize smoothing spline with the
total variation regularization for univariate data to our
algorithm [10]. A smoothing parameter plays a role in
adjusting the degree of smoothness. We set it to 1 as the
default, but it can be changed by users. The algorithm
using projection can be summarized as follows.

Proposed Algorithm

1. Shift the sample means (¥, ...
,...,0), ie, y;."j =y —yi-

2. Find the first PC vector v using PCA on the space of
ViV

3. Obtain the projection of a vector y;‘ = 1‘}, e fij)
of each peptide j onv, wherej =1,...,p.

4. Compute the signed length of the projection
Aj = sign(y;k’v)ly;"v|/m and the length of the
difference between a vector of peptide j and the

,¥n) to the origin
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Figure 3 Relationship between mean and variance for simulated data. File: Var.pdf - Constant, linear, nonlinear, and nonparametric
relationship between p and o to generate the simulated data.

projection M; = |yj* — (y;‘/v/v’ v)v|, where 7. Declare peptide j as an outlier if it is located above
j=12,...,p the upper fence or under the lower fence.
5. Obtain the first and third quantile values Q;(A) and
Q3(A), on an MA plot using a quantile regression This projection approach utilizes all the replicates
approach. Then calculate IQR(A) = Q3(4) — Q1(A).  simultaneously, and a high-dimensional problem reduces
6. Construct the lower and upper fences, to two-dimensional one that can easily be solved. Shifts
LB(A) = Q1(A) - kIQR(A) and UB(A) = Q3(A) + from biased experiments can be ignored due to the use of

kIQR(A), where k is a tuning parameter. PCA.
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Table 1 Sensitivities, specificities, and accuracies of the quantile and projection quantile methods for the simulated data
from duplicated experiments

Simulated Under

n Method Constant Linear Nonlinear Nonparametric
Quantile
Constant (85.0,99.5, 98.8) (84.7,93.1,92.6) (94.3,87.6,87.9) (94.3,87.7,88.0)
Linear (85.0,99.5, 98.8) (83.7,99.3,98.5) (87.7,94.7,94.4) (87.3,94.7,94.3)
Nonlinear (85.0,99.5,98.8) (83.3,99.3,98.5) (87.7,94.8,94.5) (86.9,94.9,94.5)
Nonparametric (79.0,99.2,98.2) (81.6,99.1,98.2) (84.8,99.0, 98.3) (84.8,99.0,98.3)
2 Projection Quantile
Constant (88.9,99.1,98.6) (69.7,97.0,95.7) (78.6,94.1,934) (78.8,94.1,93.3)
Linear (88.8,99.1,98.5) (86.5,98.9,98.3) (88.5,96.1,95.7) (88.2,96.1,95.7)
Nonlinear (88.8,99.1,98.5) (86.5,98.9,98.3) (88.3,98.0,97.6) (87.9,98.0,97.4)
Nonparametric (83.2,98.7,97.9) (84.4,98.7,98.0) (86.6,98.6, 98.0) (86.0,98.5,97.9)

Results and discussion

We conducted a simulation study to investigate the
performance of the proposed approaches. We also applied
it to real-life data with three replicates of liquid chro-
matography/tandem MS (LC-MS/MS) experiments.

Simulated data

Suppose that there are replicated samples with p =
1000 peptides. We considered two or more replicates, i.e.,
n > 2. Assimilating reality, we first drew the means y;
from U(5,35) and computed the variances (rjz with the
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Figure 4 Confidence intervals of the sensitivities, specificities, and accuracies for duplicate experiments. File: CI2.pdf - Mean plus or minus
one standard error of the sensitivities, specificities, and accuracies of the quantile and projection quantile methods for the simulated data from two

experiments (n = 2).
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Table 2 Sensitivities, specificities, and accuracies of the classical and projection quantile methods for the simulated data

from multiple experiments

n Method

Constant

Simulated Under

Linear

Nonlinear

Nonparametric

Classical
Dixon
Grubbs
Projection Quantile
3 Constant
Linear
Nonlinear
Nonparametric
Classical
Dixon
Grubbs
Projection Quantile
4 Constant
Linear
Nonlinear
Nonparametric
Classical
Dixon
Grubbs
Projection Quantile
5 Constant
Linear
Nonlinear
Nonparametric
Classical
Dixon
Grubbs
Projection Quantile
6 Constant
Linear
Nonlinear
Nonparametric
Classical
Dixon
Grubbs
Projection Quantile
7 Constant
Linear
Nonlinear

Nonparametric

(10.5,94.9,90.7)
(20.8,89.9, 86.5)

90.6,99.5,99.0
90.4,99.5,99.0
90.4,99.5,99.0

(
(
(
(85.3,99.2,985

)
)
)
)

(29.7,95.0,91.7)
(49.6,90.0, 88.0)

89.4,99.6,99.1
89.3,99.6,99.0
89.3,99.6,99.0

(
(
(
(84.8,99.3,98.6

)
)
)
)

(51.5,94.6,92.4)
(70.7,90.0, 89.0)

89.2,99.6,99.1
89.0,99.6,99.1
89.0,99.6,99.1

(
(
(
(84.1,994,98.6

)
)
)
)

(66.0,94.4,92.9)
(81.1,90.0, 89.6)

87.6,99.6,99.0
87.4,99.6,99.0
87.4,99.6,99.0

(
(
(
(82.8,99.3,985

)
)
)
)

(73.2,94.3,93.2)
(85.8,90.0, 89.8)

86.2,99.6,99.0
85.8,99.6,98.9
85.8,99.6,989

(
(
(
(80.8,99.3,984

)
)
)
)

(17.3,94.9,91.0)
(30.1,89.9,87.0)

56.0,98.5,96.4
84.0,99.3,98.5
84.0,99.3,985

(
(
(
(82.0,99.1,98.2

)
)
)
)

(44.1,95.0,92.4)
(61.1,90.0, 88.6)

46.4,99.1,96.5
86.8,99.5,98.8
86.8,99.5,98.8

(
(
(
(84.5,99.3,985

)
)
)
)

(63.0,94.6,93.0)
(77.0,90.0, 89.4)

40.0,99.5,96.5
87.3,99.5,98.9
87.3,995,989

(
(
(
(84.2,99.3,985

)
)
)
)

(73.3,94.4,93.3)
(82.9,90.0, 89.7)

1,996,964
85.9,99.5,98.8
85.9,995,98.8

(34
(
(
(83.4,99.3,985

)
)
)
)

(78.4,94.3,93.5)
(86.5,90.1,89.9)

30.2,99.8,96.3
85.6,99.5,98.8
85.6,994,98.7

(
(
(
(82.3,99.3,985

)
)
)
)

(18.5,94.9,91.1)
(344,899,87.2)

58.8,95.7,93.9
1,96.5,95.9
84.8,985,97.8

(
(85
(
(83.5,99.0,98.2

)
)
)
)

(54.9,94.9,92.9)
(71.2,90.0, 89.1)

44.3,97.2,94.6
86.3,97.0,96.5
87.5,99.2,986

(
(
(
(86.5,99.2,98.5

)
)
)
)

(73.0,94.6,93.5)
(82.3,90.0, 89.6)

35.9,97.9,94.8
85.5,97.5,96.9
87.2,99.3,98.7

(
(
(
(86.9,99.0,984

)
)
)
)

(79.6,94.4,93.6)
(86.1,90.0, 89.8)

29.7,98.2,94.8
82.5,97.9,97.1
85.7,99.3,98.1

(
(
(
(86.0,99.2,98.6

)
)
)
)

(83.5,94.3,93.7)
(88.2,90.1,90.0)

26.3,98.6,95.0
814,983,975
85.9,995,98.8

(
(
(
(86.2,99.2,98.6

)
)
)
)

(17.7,94.9,91.0)
(33.7,90.0,87.2)

57.9,95.7,93.8
84.8,96.6,96.0
83.5,984,97.7

(
(
(
(83.2,99.0,98.2

)
)
)
)

(54.5,94.9,92.9)
(70.2,89.9,89.0)

43.8,97.3,94.6
86.4,97.2,96.6
87.8,99.1,985

(
(
(
(85.9,99.1,984

)
)
)
)

(72.6,94.6,93.5)
(82.0,90.1,89.7)

35.0,97.9,94.8
84.6,97.6,96.9
86.2,99.2,98.6

(
(
(
(86.0,99.0,984

)
)
)
)

(79.9,94.5,93.8)
(86.0,90.2,90.0)

29.7,984,94.9
82.7,98.0,97.2
85.0,99.2,985

(
(
(
(85.8,99.1,985

)
)
)
)

(83.6,94.3,93.8)
(88.0,90.2,90.0)

1,986,95.0
804,983,974
84.7,99.3,98.6

(26
(
(
(85.8,99.2,985

)
)
)
)
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Table 2 Sensitivities, specificities, and accuracies of the classical and projection quantile methods for the simulated data

from multiple experiments (Continued)

Classical
Dixon (71.2,94.5,934)
Grubbs (89.1,90.0,90.0)
Projection Quantile
8 Constant (85.9,99.7,99.0)
Linear (85.7,99.6, 98.9)
Nonlin (85.7,99.6,98.9)
Nonparametric (80.2,99.4,98.4)

(76.7,94.5,93.6) (82.4,945,93.9) (82.7,94.5,93.9)
(87.7,90.0, 89.9) (89.2,90.0,90.0) (89.3,90.0,89.9)
(26.5,99.8,96.1) (23.2,98.0,94.2) (24.1,97.9,94.2)
(84.8,99.4,98.7) (77.1,98.1,97.0) (77.3,98.1,97.1)
(84.8,98.8,98.1) (84.4,99.4,98.7) (84.0,99.3,98.5)
(81.6,99.3,98.4) (85.7,99.2,98.5) (86.2,99.1,98.5)

following relationships between the mean p and variance

o2
Constant : oj=1
Linear : 0j = —(uj—5)/10+ 3
Nonlinear : oj = exp(2 — u;/10)

Nonparametric : oj = exp(2 — u;/10) + (2B; — 1)Z;

where B; ~ Bernoulli(1/2) and Z; ~ N(1/u;,0.01). The
relationships between the means and the variances are
shown in Figure 3. For 950 non-outliers (j = 1,...,950),
we assumed that Y; ~ N(u;, ajz) fori = 1,...,n. For
50 outliers (j = 951,...,1000), we assumed that Yj; ~
N(/Ll’., ajz) for one of the samples and Y;; ~ N(,uj,ajz) for
the other samples, where u; ~ U(5,35) and /Ll’ = i+
(2B;—1)U(1,2) for constant variance and u/’ = wj+(2Bj—
1)(120/u/)U(1,2) for other variances. Thus, an artificial
data set for each n was generated with 950 non-outliers
and 50 outliers. Then, the data were used to check the sen-
sitivities (the probabilities of detecting outliers correctly),
specificities (the probabilities of detecting non-outliers
correctly), and accuracies (the probabilities of detecting
outliers or non-outliers correctly) of the quantile and pro-
jection quantile approaches for » = 2 and the Dixon
test, Grubbs’s test, and projection quantile approaches for
n =3,...,8. Constant, linear, nonlinear, and nonparamet-
ric quantile regressions were accounted for the quantile
and projection quantile approaches. This procedure was
repeated 1000 times independently.

Table 1 presents the sensitivities, specificities, and accu-
racies of the quantile and projection quantile methods
for the simulated data from duplicated experiments (n =
2) and Figure 4 shows their confidence intervals. The
classical methods were not applied because they work
only for » > 2. Under the constant variance, all the
methods performed well. Under the linear, nonlinear,
and nonparametric variances, the quantile and projection
quantile methods with constant quantile regression per-
formed worse than those with the other quantile regres-
sion due to the heterogeneity of the variability, as shown
in Cho et al. [4]. When comparing the quantile and

projection quantile methods, the latter sometimes had
somewhat lower sensitivities than the former. However,
the quantile and projection quantile methods are mostly
comparable.

Table 2 presents the sensitivities, specificities, and accu-
racies of the classical and projection quantile methods
for the simulated data from three to eight experiments
(3 < m < 8) and Additional File 1 shows their confi-
dence intervals. The results are not shown for » > 9.
With multiple experiments, the projection quantile meth-
ods with constant, linear, nonlinear, and nonparametric
quantile regression performed like those with duplicated
experiments. When n = 3, the classical methods had very
low sensitivities, resulting in the lower accuracies. With
increasing n, the sensitivities of the classical methods
increased. When n = 7 or 8, Glubbs’ test was comparable
to the projection quantile methods with linear, nonlinear,
and nonparametric quantile regression. This implies that
the classical methods require a sufficiently large number
of replicates. In reality, experiments are often repeated
three or more times; thus, the projection quantile method
is practically very useful.

Real-life data

We here illustrate the projection quantile approach with
real-life data obtained from three replicates of LC/MS/MS
experiments with 922 peptides (# = 3 and p = 922). The
details of the experiments can be found in Min et al. [11]
and Cho et al. [4]. Here, the primary goal of the analysis is
to detect outliers automatically in the pre-processing step
prior to further analysis.

To use the projection approach, we first investigate how
much the first PC explains the variation in the data.
The first PC takes 96.9% of the variation and the sec-
ond and third PCs take 1.73% and 1.34%, respectively.
This supports that it is enough to use only the first PC.
The projection approach with constant, linear, nonlin-
ear, and nonparametric quantile regression selected 74,
69, 99, and 67, respectively. The 3-D scatter plot of the
data, shown in Figure 5, revealed the variability of the
data to be heterogeneous. Constant quantile regression
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Figure 5 3-D Scatter plot of LC/MS data with three replicates. File: Scatter3d.png - Scatter plot of LC/MS data with three replicates; The straight
line at the center is the first PC vector. C = Contant, L = Linear, NL = Nonlinear, NP = Nonparametric.

tended to select more peptides at low levels as outliers,
whereas the others selected more peptides at the higher

levels.

This implies that the projection approach assuming
a constant variance can generate many false positives

and/or false negatives and, therefore, that more flexible
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quantile regression is more appropriate than constant
quantile regression.

Conclusion

We propose an approach for detecting outliers automat-
ically in low replicated, high-throughput data generated
from MS experiments. Because of the practical problems
such as cost and time, LC/MS data is usually generated
by repeating the experiment three or four times under
the same technical or biological condition. Outliers can
be investigated within each peptide when there are many
replicates; however, within-peptide approaches such as
Dixon and Grubbs’ tests are crude in the case of few repli-
cates. A quantile regression approach on an MA plot was
proposed in Cho et al. [4] when there are only two repli-
cates. Thus, our proposed method can be used when there
are two or somewhat more replicates.

The projection approach using various quantile regres-
sions was examined for outlier detection. The projection
approach with linear, nonlinear, or nonparametric quan-
tile regression was more appropriate than the others in
heterogeneous high-throughput data. The choice among
linear, nonlinear, and nonparametric is dependent on the
degree of heterogeneity of the data. In addition, our soft-
ware program provides a number of options. A single
method may not be the best in any situation. There-
fore, the data can be applied empirically with various
options. Moreover, experimental confirmation is needed
after applying our automatic outlier detection. Never-
theless, it is useful because manual examination of all
observations is time-consuming without pre-screening.

Availability and Requirements
Project name: Outlier Detection for Mass Spectrometry
Project homepage: http://statlab.korea.ac.kr/OutlierDM/

Operating system(s): Windows, Unix-like systems
(Linux, Mac OS X)

Programming language: R (the version of R should be ;=
2.14.0)

License: GNU GPL version 2 or later

Additional material

Additional file 1: Confidence intervals of the sensitivities,
specificities, and accuracies for multiple experiments. File: CI3.pdf -
Mean plus or minus one standard error of the sensitivities, specificities, and
accuracies of the classical and projection quantile methods for the
simulated data from multiple experiments (3 < n < 8).
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