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1 Introduction

The field of particle physics is at a most interesting cross-roads, in which the fantastic
discovery of a light Higgs particle has not been accompanied up to now by any sign of new
exotic resonances. If the situation persists, either the so-called electroweak hierarchy prob-
lem should stop being considered a problem, with the subsequent revolution and abandon
of the historically successful paradigm that fine-tunings call for physical explanations -recall
for instance the road to the prediction and discovery of the charm particle, or a questioning
of widespread expectations about the nature of physics at the TeV is called for.

Indeed, the experimental lack of resonances other than the Higgs particle casts serious
questions on the most popular beyond the Standard Model (BSM) scenarios devised to
confront the electroweak hierarchy problem, such as low-energy supersymmetry. While
there is still much space for the latter to appear in data to come, it is becoming increasingly
pertinent to explore an alternative solution: the possibility that the lightness of the Higgs is
due to its being a pseudo-Goldstone boson of some strongly interacting physics, whose scale
would be higher than the electroweak one. After all, all previously known pseudoscalar
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particles are understood as Goldstone or pseudo-Goldstone bosons, as for instance the pion
and the other scalar mesons, or the longitudinal components of the W and Z gauge bosons.

A light Higgs as a pseudo-Goldstone boson was proposed already in the 80’s [1, 2].
The initial models assumed a strong dynamics corresponding to global symmetry groups
such as SU(5) with a characteristic scale Λs. One of the Goldstone bosons generated upon
spontaneous breakdown of that symmetry was identified with the Higgs particle h, with
a Goldstone boson scale f such that Λs ≤ 4πf . The non-zero Higgs mass would result
instead from an explicit breaking of the global symmetry at a lower scale, which breaks
the electroweak symmetry and generates dynamically a potential for the Higgs particle [3].
The electroweak scale v, defined from the W gauge boson mass mW = gv/2, does not need
to coincide neither with the vacuum expectation value (vev) of the Higgs particle, nor with
f , although a relation links them together. In these hybrid linear/non-linear constructions,
a linear regime is recovered in the limit in which Λs — and thus f — goes to infinity.

The most successful modern variants of the same idea include SO(5) as strong
group [4, 5], with the nice new feature that the Standard Model (SM) electroweak in-
teractions themselves may suffice as agents of the explicit breaking. This avenue is being
intensively explored, albeit significant fine-tunings in the fermionic sector [6] plague the
models considered up to now.

A model-independent way to approach the low-energy impact of a pseudo-Goldstone
nature of the Higgs particle is to use the effective Lagrangian for a non-linear realization of
electroweak symmetry breaking (EWSB), as it befits the subjacent strong dynamics. While
decades ago that effective Lagrangian was determined for the case of a heavy Higgs (that
is, a Higgs absent from the low-energy spectrum), only in recent years the formulation has
been extended to include a light Higgs particle h [7–13]. On the scalar sector, the effective
Lagrangian is necessarily a hybrid construction: while the longitudinal components of W±

and Z are well described by an expansion in derivatives, as it corresponds to Goldstone
bosons, the insertions of h are generic polynomials.

Effective Lagrangians for BSM physics within a linear realization of EWSB have been
extensively studied. They include the scalar h as part of an SU(2)L doublet. The major
differences of the non-linear realization with respect to linear ones are: i) the substitution
of the typical functional h dependence in powers of (v + h), corresponding to the SM
scalar doublet by a generic functional dependence on h/f ; ii) an operator basis which in
all generality differs from that in linear realizations.

This last point was recently clarified [14]. If the pseudo-Goldstone boson h is embedded
in the high-energy strong dynamics as an electroweak doublet, the number of independent
operators coincides with that in linear expansions, as does the relative weight of gauge
couplings for fixed number of external h legs. If instead h was born as a Goldstone boson
but it was not embedded in the strong dynamics as an electroweak doublet (e.g. if it is a
SM singlet), the total number of operators is still as in the linear case but the operators
are different: the relative weight of phenomenological gauge couplings, for a fixed number
of external h legs, differs from that in the SM and in linear expansions. The best analysis
tool then is the general non-linear effective Lagrangian, supplemented by model-dependent
relations. Finally, h may not be a pseudo-Goldstone boson but a generic SM scalar singlet:
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e.g. a SM “impostor”, a dilaton or any dark sector scalar singlet; the appropriate tool
then is that of the non-linear effective Lagrangian with a light h and completely arbitrary
coefficients. Note that this Lagrangian can in fact describe all cases mentioned, including
the SM one, by setting constraints on its parameters appropriate to each case, and we will
thus analyze it here in full generality.

It is important to stress that the choice of the leading order (LO) Lagrangian, for the
hybrid (non-linear) expansion is to a large extent arbitrary. Once the LO Lagrangian is
specified, counting rules may be explored in order to “guess” what couplings may appear
at next to leading order (NLO), as it is done for instance in refs. [15, 16]. Naturally,
the counting rule depends on the choice of LO Lagrangian. Nevertheless, the one-loop
computation which will be explored here avoids precisely the need to define or discuss any
rule: the renormalization procedure will show beyond any doubt what the counterterms
required at NLO for that LO Lagrangian are, which is the main motivation for our work.

The one loop renormalization has been extensively pursued in the literature for the
linear effective Lagrangian (see e.g. refs. [17–24]), and up to some extent for the non-linear
one [25–32]. The latter exploration was restricted to on-shell analysis for phenomenological
purposes, while the goal of this manuscript requires an off-shell treatment.

Given the complexity of the off-shell renormalization of the complete LO electroweak
chiral Lagrangian involving all SM fields, it is a meaningful and important first step to
consider a subsector of the Lagrangian. Although fermions and gauge bosons may play
an important role in the physical impact of the NLO complete Lagrangian, we will focus
here on the scalar sector of the non-linear theory (i.e. longitudinal components of the W
and Z bosons plus h), and we will show that, in this case, the renormalization procedure
requires all possible invariant scalar terms up to four derivatives. We implement here the
complete off-shell renormalization procedure for the scalar sector, by considering the one-
loop corrections to the LO scalar Lagrangian, and furthermore taking into account the
finite Higgs mass. The off-shell procedure will allow:

• To guarantee that all counterterms required for consistency are identified, and that
the corresponding basis of chirally invariant scalar operators is thus complete. It
will follow that some operators often disregarded previously are mandatory when
analyzing the bosonic sector by itself.

• To shed light on the expected size of the counterterm coefficients, in relation with cur-
rent controversies on the application of “naive dimensional analysis” (NDA) [15, 33]
for light h.

• To identify the renormalization group equations (RGE) for the bosonic sector of the
chiral Lagrangian.

A complete one-loop off-shell renormalization of the electroweak chiral Lagrangian with
a decoupled Higgs particle was performed in the seminal papers in ref. [34] (see also ref. [35]
and references therein). Using the non-linear sigma model and a perturbative analysis,
apparently chiral non-invariant divergences (NIDs) were shown to appear as counterterms
of four-point functions for the “pion” fields, in other words, for the longitudinal components
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of the W and Z bosons. Physical consistency was guaranteed as those NIDs were shown
to vanish on-shell and thus did not contribute to physical amplitudes. They were an
artifact resulting from performing the computation in terms of a truncated expansion in
the number of “pion” fields [36] for a non-linear theory, a procedure which inherently breaks
chiral invariance in the intermediate steps, while not in the final result. There is thus no
need to add counterterms to cancel the NIDs, but it is convenient to do so in order to check
explicitly the consistency of the renormalization procedure. Possible ways to deal with NIDs
are a redefinition of the pion fields, leading to their reabsorption as identified in ref. [34],
a modification of the usual background field method [37], or a different quantization of
the theory which yields non-standard Feynman rules [38]. In the present work, additional
new NIDs in three and four-point functions involving the Higgs field will be shown to be
present, and their reabsorption explored. Furthermore, a general parametrization of the
pseudo-Goldstone boson matrix will be formulated, defining a parameter η which reduces
to the various usual pion parametrizations for different values of η, and the non-physical
character of all NIDs will be analyzed.

The resulting RGE restricted to the bosonic sector may eventually illuminate future
experimental searches when comparing data to be obtained at different energy scales. The
structure of the paper can be easily inferred from the table of Contents.

2 The Lagrangian

We will adopt the formulation in refs. [4, 8, 9, 11, 12] to describe in all generality a light
scalar boson h in the context of a generic non-linear realization of EWSB. The Lagrangian
describes h as a SM singlet scalar whose couplings do not need to match those of an SU(2)
doublet. The focus of the present analysis will be set on the physics of the longitudinal
components of the gauge bosons (denoted below as “pions” π) and of the h scalar, and
only these degrees of freedom will be explicited below. The corresponding Lagrangian can
be decomposed as

L = L0 + L2 + L4 , (2.1)

where the Li subindex indicates number of derivatives:

L0 =− V (h) , (2.2)

L2 = 1
2∂µh∂

µh FH(h)− v2

4 Tr[VµVµ] FC(h) , (2.3)

L4 =
∑
i

ciPi . (2.4)

We assume L0 + L2 as the leading order Lagrangian, that is, all possible scalar terms
up to two derivatives. In eq. (2.3) we have omitted the two-derivative custodial breaking
operator, because the size of its coefficient is phenomenologically very strongly constrained.
In consequence, and as neither gauge nor Yukawa interactions are considered in this work,
no custodial-breaking countertem will be required by the renormalization procedure to be
present among the four-derivative operators in L4. Our analysis is thus restricted to the
custodial-preserving sector.
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The Pi operators in eq. (2.4) are shown explicitly in table 1, with ci being arbitrary
constant coefficients; in the SM limit only aC and bC would survive, with aC = bC = 1.
V (h) in eq. (2.2) denotes a general potential for the h field, for which only up to terms
quartic in h will be made explicit, with arbitrary coefficients µi and λ,

V ≡ µ3
1 h+ 1

2m
2
hh

2 + µ3
3! h

3 + λ

4!h
4 . (2.5)

It will be assumed that the h field is the physical one, with 〈h〉 = 0: the first term in V (h)
is provisionally kept in order to cancel the tadpole amplitude at one loop; we will clarify
this point in section 3.1.

Note that we have computed only up to quadratic terms in the functions Fi(h). h3

and h4 terms in FC(h) and FH(h), as well as h5 and h6 in V (h) also contribute to the
renormalization of the relevant parameters at one-loop. Nevertheless, it is easy to see that
they only generate contributions to the counterterms associated to the h and h2 terms
in FC(h) and FH(h) and terms h3 and h4 in V (h), respectively. Therefore, they can be
absorbed by the coefficients of those counterterms and thus disregarded. Besides, these
contributions are expected to be small. FH,C(h) will be thus parametrized as [8]

FH,C(h) ≡ 1 + 2aH,Ch/v + bH,Ch
2/v2 , (2.6)

while for all Pi(h) operators in table 1 the corresponding functions will be defined as1

ciFi(h) ≡ ci + 2aih/v + bih
2/v2 . (2.7)

Note that in these parametrizations the natural dependence on h/f expected from the
underlying models has been traded by h/v: the relative ξ ≡ v/f < 1 normalization is
thus implicitly reabsorbed in the definition of the constant coefficients, which are then
expected to be small parameters, justifying the truncated expansion. The case of FC(h)
is special in that the v2 dependence in front of the corresponding term in the Lagrangian
implies a well known fine-tuning to obtain the correct MW mass, with aC = bC = 1 in the
SM limit. Furthermore, while present data set strong constraints on departures from SM
expectations for the latter, aH and bH could still be large. Note as well that v/f is not by
itself a physical observable from the point of view of the low-energy effective Lagrangian.

A further comment on FH(h) may be useful: through a redefinition of the h field [39]
it would be possible to absorb it completely. Nevertheless, this redefinition would affect
all other couplings in which h participates and induce for instance corrections on fermionic
couplings which are weighted by SM Yukawa couplings; it is thus pertinent not to dis-
regard FH(h) here, as otherwise consistency would require to include in the analysis the
corresponding Fi(h) fermionic and gauge functions. If a complete basis including all SM
fields is considered assigning individual arbitrary functions Fi(h) to all operators, it would
then be possible to redefine away completely one Fi(h) without loss of generality: it is up

1The notation differs slightly from that in ref. [12]: for simplicity, redundant parameters have been
eliminated via the replacements ∂µFi(h) → ∂µhFi(h), ∂µFi(h)∂νF ′

i(h) → ∂µh∂νhFi(h), and �Fi(h) →
�hFi(h).
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to the practitioner to decide which set of independent operators he/she may prefer, and
to redefine away one of the functions, for instance FH(h). For the time being, we keep
explicit FH(h) all through, for the sake of generality.2

In eqs. (2.3) and (2.4) Vµ ≡ (DµU) U†, with U(x) being the customary dimensionless
unitary matrix describing the longitudinal degrees of freedom of the three electroweak
gauge bosons, which transforms under the accidental SU(2)L×SU(2)R global symmetry of
the SM scalar sector as

U(x)→ LU(x)R† , (2.8)

where L, R denote the corresponding SU(2)L,R transformations. Upon EWSB this sym-
metry is spontaneously broken to the vector subgroup. Vµ is thus a vector chiral field
belonging to the adjoint of the global SU(2)L symmetry. The covariant derivative can be
taken in what follows as given by its pure kinetic term Dµ = ∂µ, since the transverse gauge
field components will not play a role in this paper.

We analyze next the freedom in defining the U matrix and work with a general
parametrization truncated up to some order in π/v. On-shell quantities must be inde-
pendent of the choice of parametrization for the U matrix [36], while it will be shown
below that all NIDs depend instead on the specific parametrization chosen. The NIDs in
which the h particle participates will turn out to offer a larger freedom to be redefined
away than the pure pionic ones.

2.1 The Lagrangian in a general U parametrization

The nonlinear σ model can be written as [36]

LNL = 1
2DµπD

µπ = v2

4 Tr[∂µU∂µU†] = 1
2Gij(π

2)∂µπi∂µπj , (2.9)

where Dµ is a derivative “covariant” under the non-linear chiral symmetry, U has been
defined in eq. (2.8) and π = (π1, π2, π3) represents the pion vector. In geometric language,
Gij(π2) can be interpreted as the metric of a 3-sphere in which the pions live, and the
freedom of parametrization is just a coordinate transformation (see ref. [34] and references
therein). Indeed, Weinberg has shown [36] that different linear realizations of the chiral
symmetry would lead to different metrics, which turn out to correspond to different U
parametrizations; they are all equivalent with respect to the dynamics of the pion fields
as the non-linear transformation induced on them is unique, and they are connected via
redefinitions of the pion fields. In order to illustrate this correspondence explicitly, let us
define general X and Y functions as follows:

U ≡ X(z) + iτ · π
v

Y (z), z = π2/v2 , (2.10)

2Note that FH(h) is not expected to be generated from the most popular composite Higgs models, as
the latter break explicitly the chiral symmetry only via a potential for h externally generated, while FH(h)
would require derivative sources of explicit breaking of the chiral symmetry. A similar comment could be
applied to P∆H .
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where τ denotes the Pauli matrices, and v is the characteristic scale of the π Goldstone
bosons. X(z) and Y (z) are related via the unitarity condition UU† = 1,

X(z) =
√

1− zY (z)2 . (2.11)

The Gij metric can now be rewritten as

Gij(π2) = Y (z)2δij + 4
(
X ′(z)2 + zY ′(z)2 + Y (z)Y ′(z)

) πiπj
v2 , (2.12)

where the primes indicate derivatives with respect the the z variable, and Y (0) = ±1 is
required for canonically normalized pion kinetic terms.

The Lagrangian in eq. (2.9) is invariant under the transformation Y → −Y , or equiv-
alently π → −π. It is easy to relate X and Y to the functions in Weinberg’s analysis of
chiral symmetry.3 A Taylor expansion of U up to order π2N+2 bears N free parameters.
A priori the present analysis requires to consider in L2 terms up to O(π6), as the latter
may contribute to 4-point functions joining two of its pion legs into a loop. Nevertheless,
the latter results in null contributions for massless pions, and in practice it will suffice to
consider inside U up to terms cubic on the pion fields. We thus define a single parameter
η which encodes all the parametrization dependence,

Y (z) ≡ 1 + η z +O(z2) , (2.13)

resulting in

U = 1− π2

2v2 −
(
η + 1

8

)
π4

v4 + i(πτ )
v

(
1 + η

π2

v2

)
+ . . . (2.14)

Specific values of η can be shown to correspond to different parametrizations up to terms
with four pions, for instance:

• η = 0 yields the square root parametrization: U =
√

1− π2/v2 + i(πτ )/v ,

• η = −1/6 yields the exponential one: U = exp(iπ · τ/v) .

The L2 Lagrangian can now be written in terms of pion fields. Using the Fi(h) expan-
sions in eqs. (2.6) and (2.7) it results

L2 =1
2∂µh∂

µh

(
1 + 2aH

h

v
+ bH

h2

v2

)
(2.15)

+
{

1
2∂µπ∂

µπ + (π∂µπ)2

2v2 + η

[
π2(∂µπ)2

v2 + 2(π∂µπ)2

v2

]}(
1 + 2aC

h

v
+ bC

h2

v2

)
,

where terms containing more than four fields are to be disregarded. The operators required
by the renormalization procedure to be present in L4 as counterterms will be shown below
to correspond to those on the left-hand side of table 1, which were already known to
constitute an independent and complete set of bosonic four-derivative operators [11, 12].
The expansion up to four fields of the terms in L4 — eq. (2.4) — is shown on the right
column of table 1.

3The f(π2) function defined in ref. [36] is related to X and Y simply by f(x) = X(x)/Y (x).
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L4 operators Expansion in π fields

c6P6 c6 [Tr(VµV µ)]2 F6(h) 4c6
v4 (∂µπ∂µπ)2

c7P7 c7Tr(VµV µ) 1
v�hF7(h) −2c7

v3 �h(∂νπ∂νπ)− 4a7

v4 (h�h)(∂νπ∂νπ)

c8P8 c8Tr(VµVν) 1
v2 ∂

µh∂νhF8(h) −2 c8
v4 (∂µh∂νh)(∂µπ∂νπ)

c9P9 c9Tr[(DµV µ)2]F9(h) −2c9
v4

[
v2(�π�π) + 2ηπ2(�π)2 + (1 + 4η) (π�π)2

+8η(π∂µπ)(∂µπ�π) + (2 + 4η) (∂µπ)2(π�π)
]

−4a9

v3 h(�π�π)− 2b9
v4 h

2(�π�π)

c10P10 c10Tr(VνDµV µ) 1
v∂

νhF10(h) −2c10

v3 ∂νh(∂νπ�π) + −4a10

v4 h∂νh(∂νπ�π)

c11P11 c11 [Tr(VµVν)]2 F11(h) 4c11

v4 (∂µπ∂νπ)2

c20P20 c20Tr(VµV µ) 1
v2 ∂νh∂

νhF20(h) −2c20

v4 (∂µh∂µh)(∂νπ∂νπ)

c�HP�H
c�H
v2 (�h�h)F�H(h) c�H

v2 (�h�h) + 2a�H
v3 h (�h�h) + b�H

v4 h2 (�h�h)

c∆HP∆H
c∆H
v3 (∂µh∂µh)�hF∆H(h) c∆H

v3 (∂µh∂µh)�h+ 2a∆H

v4 (∂µh∂µh)h�h

cDHPDH
cDH
v4 (∂µh∂µh)2 FDH(h) cDH

v4 (∂µh∂µh)2

Table 1. The two columns on the left show the operators required to be in L4, eq. (2.4), by
the renormalization procedure. The right hand side gives the corresponding explicit expansion in
terms of pion and h fields (up to four fields), following the U expansion in eq. (2.8) and the Fi(h)
parametrization in eq. (2.7).

Counterterm Lagrangian. It is straightforward to obtain the counterterm Lagrangian
via the usual procedure of writing the bare parameters and field wave functions in terms
of the renormalized ones (details in appendix A),

δL0 + δL2 =1
2∂µh∂

µh

(
δh + 2δaH

h

v
+ δbH

h2

v2

)
− 1

2δm
2
hh

2 − δµ3
1h−

δµ3
3! h

3 − δλ

4! h
4

+ 1
2∂µπ∂

µπ

(
δπ + 2δaC

h

v
+ δbC

h2

v2

)

+
(
δπ −

δv2

v2

)
1

2v2

(
(π∂µπ)(π∂µπ) + 2η

(
π2(∂µπ)2 + 2(π∂µπ)2

))
. (2.16)
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δL4 is simply given by L4 with the replacement ci, ai, bi → δci, δai, δbi, apart from operator
P9, for which

δ(c9P9)→− 2δc9
v4

[
(1 + 4η)(π�π)2 + 2(1 + 2η)(π�π)(∂µπ)2

+ 2ηπ2(�π)2 + η(�π∂µπ)(π∂µπ)
]

− 2
v2�π�π

[(
δc9 −

δv2

v2

)
+ 2δa9h

v
+ δb9h

2

v2

]
.

Among the Lagrangian parameters above, v plays the special role of being the character-
istic scale of the Goldstone bosons (that is, of the longitudinal degrees of freedom of the
electroweak bosons), analogous to the pion decay constant in QCD. It turns out that the
counterterm coefficient δv2 = 0 as shown below. We have left explicit the δv2 dependence
all through the paper, though, in case it may be interesting to apply our results to some
scenario which includes sources of explicit chiral symmetry breaking in a context different
than the SM one; it also serves as a check-point of our computations.

3 Renormalization of off-shell Green functions

We present in this section the results for the renormalization of the 1- 2-, 3-, and 4-point
functions involving h and/or π in a general U parametrization, specified by the η parameter
in eq. (2.14). Dimensional regularization is a convenient regularization scheme as it avoids
quadratic divergences, some of which would appear to be chiral noninvariant, leading to
further technical complications [38, 40]. Dimensional regularization is thus used below, as
well as minimal subtraction scheme as renormalization procedure. The notation

∆ε = + 1
16π2

2
ε

will be adopted, while FeynRules, FeynArts, and FormCalc [41–45] will be used to compute
one-loop amplitudes. Diagrams with closed pion loops give zero contribution for the case
of massless pions under study, and any reference to them will be omitted below.

Table 2 provides and overview of which L4 operator coefficients contribute to ampli-
tudes involving pions and/or h, up to 4-point vertices. It also serves as an advance over
the results: all operators in (2.4) will be shown to be required by the renormalization
procedure. Furthermore we have checked that they are all independent, and they can be
thus chosen as a non-redundant scalar set to be embedded in a complete Lagrangian which
should include fermions as well. Only when neglecting all fermion masses, the equations of
motion (EOM) would allow to reduce the number of scalar operators singled out above, as
some of them would become redundant in that limit. In all generality, no such reduction
is appropriate unless those operators are traded by fermionic ones.

It is only when considering all possible couplings and all SM fields, that is, when aiming
to analyze the complete electroweak non-linear effective Lagrangian, that the practitioner
will have to repeat the “EOM check” to make a sound choice of what operators to keep
in the complete basis involving all SM fields, in order to avoid redundancies. Only in that
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Amplitudes
2h 3h 4h 2π 2πh 2π2h 4π

P6 c6
P7 c7 a7
P8 c8
P9 c9 a9 b9 c9
P10 c10 a10
P11 c11
P20 c20
P�H c�H a�H b�H
P∆H c∆H a∆H
PDH cDH

Table 2. Illustration of which operators in L4 (see eq. (2.4) and table 1) contribute to 2-, 3-, and
4-point amplitudes involving pions and/or h fields. The specific operator coefficients contributing
to each amplitude are indicated, following the ciFi expansion in eq. (2.7).

Figure 1. Diagram contributing to the Higgs 1-point function.

perspective it would be correct to trade some of the counterterms obtained here by fermionic
or other couplings via the application of EOM, in the absence of further assumptions. For
comparison with previous literature on the scalar sector, see section 5.

3.1 1-point functions

Because of chiral symmetry pions always come in even numbers in any vertex, unlike Higgs
particles, thus tadpole contributions may be generated only for the latter. At tree-level it
would suffice to set µ1 = 0 in V (h) (eq. (2.2)) in order to insure 〈h〉 = 0. At one-loop,
a tadpole term is induced from the triple Higgs couplings µ3 and aH , though, via the
Feynman diagram in figure 1. The counterterm required to cancel this contribution reads

δµ3
1 = m2

h

(
µ3
2 − aH

m2
h

v

)
∆ε , (3.1)

and has no impact on the rest of the Lagrangian.

3.2 2-point functions

Consider mass and wave function renormalization for the pion and h fields. Because of
chiral symmetry no pion mass will be induced by loop corrections at any order, unlike for
the h field, whose mass is not protected by that symmetry. The diagrams contributing to
the pion self-energy are shown in figure 2. The divergent part of the amplitudes, Πij

div(p2)∆ε,
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Figure 2. Diagrams contributing to the π self-energy.

and the counterterm structure are given by

Πij
div(p2) =

[
p2
(
a2
C − bC

) m2
h

v2 + p4a
2
C

v2

]
δij , (3.2)

Πij
ctr(p2) =

[
p2δπ − p4 4

v2

(
δc9 −

δv2

v2

)]
δij . (3.3)

In an off-shell renormalization scheme, it is necessary to match all the momenta structure
of the divergent amplitude with that of the counterterms, which leads to the following
determination

δπ =−
(
a2
C − bC

) m2
h

v2 ∆ε ,

δc9 −
δv2

v2 =a2
C

4 ∆ε .

(3.4)

It follows that the π wave function renormalization has no divergent part whenever a2
C = bC ,

which happens for instance in the case of the SM (aC = bC = 1). Note as well that the
absence of a constant term in eq. (3.2) translates into massless pions at 1-loop level, as
mandated by chiral symmetry at any loop order. Furthermore, the p4 term stems from
the h− π coupling aC , which is an entire new feature compared to the nonlinear σ model
renormalization. This term demands the presence of a �π�π counterterm in the L4
Lagrangian, as expected by naive dimensional analysis.

Turning to the Higgs particle, the diagrams contributing to its self-energy are shown
in figure 3, with the divergent part and the required counterterm structure given by

Πdiv(p2) = p4
(
3a2

C + a2
H

)
2v2 + p2

(
−µ3
v
aH + m2

h

(
5a2

H − bH
)

v2

)

+
(

1
2µ

2
3 + 1

2m
2
h

(
λ− 8µ3

v
aH

)
+ m4

h

(
6a2

H − bH
)

v2

)
, (3.5)

Πctr(p2) = p4 2δc�H
v2 + p2δh − δm2

h . (3.6)
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Figure 3. Diagrams contributing to the Higgs self-energy.

It follows that the required counterterms are given by

δh =
[
µ3
v
aH + m2

h

(
bH − 5a2

H

)
v2

]
∆ε,

δm2
h =

[
1
2µ

2
3 + 1

2m
2
h

(
λ− 8µ3

v
aH

)
+ m4

h

(
6a2

H − bH
)

v2

]
∆ε,

δc�H =− 1
4
(
3a2

C + a2
H

)
∆ε.

(3.7)

This result implies that a non-vanishing aC (as in the SM limit) and/or aH leads to a
p4 term in the counterterm Lagrangian, requiring a �h�h term in L4. In this scheme,
a Higgs wave function renormalization is operative only in deviations from the SM with
non-vanishing aH and/or bH .

3.3 3-point functions

The computational details for the 3- and 4-point functions will not be explicitly shown as
they are not particularly illuminating.4 Vertices with an odd number of legs necessarily
involve at least one Higgs particle.

hhh. Let us consider first the hhh amplitude at one loop. The relevant diagrams to be
computed are displayed in figure 4. As h behaves as a generic singlet, the vertices involving
uniquely external h legs which appear in the Lagrangian eq. (2.1) will span all possible
momentum structures that can result from one-loop amplitudes. Hence any divergence
emerging on amplitudes involving only external h particles will be easily absorbable. The
specific results for the counterterms emerging from L0 and L2 can be found in appendix A.

ππh. The diagrams for ππh amplitudes are shown in figure 5. The one-loop divergences
are studied in detail in appendix A; for instance, it turns out that neither δaC nor δa9
are induced in the SM limit. Chiral symmetry restricts the possible structures spanned by
the pure π and h − π operators. Because of this, it turns out that part of the divergent
amplitude induced by the last diagram in figure 5 cannot be cast as a function of the L2
and L4 operators, that is, it cannot be reabsorbed by chiral-invariant counterterms, and

4See appendix A for details and ref. [46] for an exhaustive description.

– 12 –



J
H
E
P
0
3
(
2
0
1
5
)
0
4
3

Figure 4. Diagrams contributing to the hh → h amplitude, not including diagrams obtained by
crossing.

Figure 5. Diagrams contributing to the ππ → h scattering amplitude, not including diagrams
obtained by crossing.

furthermore its coefficient depends on the pion parametrization used: an apparent non
chiral-invariant divergence has been identified. NIDs are an artifact of the apparent break-
ing of chiral symmetry when the one-loop analysis is treated in perturbation theory [36]
and have no physical impact as they vanish for on-shell amplitudes. While long ago NIDs
had been isolated in perturbative analysis of four-pion vertices in the non-linear sigma
model [34], the result obtained here is a new type of NIDs: a three-point function involving
the Higgs particle, corresponding to the chiral non-invariant operator

ONID
1 = −aC

(3
2 + 5η

) ∆ε

v3 π�π�h . (3.8)

This coupling cannot be reabsorbed as part of a chiral invariant counterterm, but its
contribution to on-shell amplitudes indeed vanishes. It is interesting to note that while
the renormalization conditions of all physical parameters turn out to be independent of the
choice of U parametrization, as they should, NIDs exhibit instead an explicit η dependence,
as illustrated by eq. (3.8). This pattern will be also present in the renormalization of 4-point
functions, developed next.
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3.4 4-point functions

The analysis of this set of correlation functions turns out to be tantalizing when comparing
the results for mixed π − h vertices with those for pure pionic ones.5

ππhh. The computation of the ππ → hh one-loop amplitude shows that the renormal-
ization procedure requires the presence of all possible chiral invariant hhππ counterterms
in the Lagrangian, in the most general case.

Furthermore, we have identified new NIDs in hhππ amplitudes:

ONID
2 = +(2a2

C − bC)
(3

2 + 5η
) ∆ε

v4 π�π h�h ,

ONID
3 = +(a2

C − bC)
(3

2 + 5η
) ∆ε

v4 π�π ∂µh∂
µh ,

ONID
4 = −2a2

C

(3
2 + 5η

) ∆ε

v4 π∂µπ ∂
µh�h .

(3.9)

While these NIDs differ from that for the three-point function in eq. (3.8) in their countert-
erm structure, they all share an intriguing fact: to be proportional to the factor (3/2+5η).
Therefore a proper choice of parametrization, i.e. η = −3/10, removes all mixed h − π

NIDs. That value of η is of no special significance as fas as we know, and in fact there is
no choice of parametrization that can avoid all noninvariant divergences, as proved next.

ππππ. Consider now ππ → ππ amplitudes. Only two counterterms are necessary to
reabsorb chiral-invariant divergences, namely δc6 and δc11. In this case, we find no other
NIDs than those already present in the nonlinear σ model [34], which stemmed from the
insertion in the loop of the four-pion vertex (whose coupling depends on η). Our analysis
shows that the four-π NIDs read:

ONID
5 = +

(
9η2 + 5η + 3

4

) ∆ε

v4 (π�π)2,

ONID
6 = +

[
1 + 4η +

(1
2 + η

)
a2
C

] ∆ε

v4 (π�π)(∂µπ∂µπ),

ONID
7 = +2η2 ∆ε

v4 π
2(�π)2,

ONID
8 = +2η

(
a2
C − 1

) ∆ε

v4 (�π∂µπ)(π∂µπ).

(3.10)

As expected, the parametrization freedom — the dependence on the η parameter — appears
only in NIDs, and never on chiral-invariant counterterms, as the latter describe physical
processes. Furthermore, the contribution of all NIDs to on-shell amplitudes vanishes as
expected.6 Finally, the consideration of the ensemble of three and four-point NIDs in
eqs. (3.8), (3.9) and (3.10) shows immediately that no parametrization can remove all

5It provides in addition nice checks of the computations; for instance we checked explicitly in the present
context that the consistency of the renormalization results for four-point functions requires δ2

v = 0.
6This is not always seen when taken individually. For instance, the contribution of ONID

4 to the hhππ
amplitude is cancelled by that of ONID

1 , which corrects the hππ vertex.
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NIDs: it is possible to eliminate those involving h,7 but no value of η would remove all
pure pionic ones.

hhhh. The renormalization procedure for hh → hh amplitudes is straightforward. It
results in contributions to δa∆H , δcDH , and δbH . Interestingly, appendix B illustrates that
large coefficients are present in some terms of the RGE for bH and λ; this might a priori
translate into measurable effects when comparing data at different scales, if ever deviations
from the SM predictions are detected, see section 4.

There is a particularity of the off-shell renormalization scheme which deserves to be
pointed out. A closer look at the counterterms reveals that, in the SM case, that is

aC = bC = 1, aH = bH = 0, µ3 = 3m
2
h

v
and λ = 3m

2
h

v2 , (3.11)

several BSM operator coefficients do not vanish. Although at first this might look coun-
terintuitive, when calculating physical amplitudes the contribution of these non-vanishing
operator coefficients all combine in such a way that the overall BSM contribution indeed
cancels. The same pattern propagates to the renormalization group equations discussed in
section 4.

3.5 Dealing with the apparent non-invariant divergences

For the nonlinear σ model the issue of NIDs was analyzed long ago [34, 37, 40, 47–49]). In
that case, it was finally proven that a nonlinear redefinition of the pion field which includes
space-time derivatives could reabsorb them [34]. This method reveals a deeper rationale in
understanding the issue, as Lagrangians related by a field redefinition are equivalent, even
when it involves derivatives [50–53]. Consequently, if via a pion field redefinition8

π → π f(π, h, ∂µπ, ∂µh, . . . ) ,

with f(0) = 1, the Lagrangian is shifted

L → L′ = L+ δL ,

from the equivalence between L and L′ it follows that δL must be unphysical. Thus, if
an appropriate pion field redefinition is found which is able to absorb all NIDs, it auto-
matically implies that NIDs do not contribute to the S-matrix, and therefore that chiral
symmetry remains unbroken. In other words, the non-invariant operators can be identified
with quantities in the functional generator that vanish upon performing the path integral.

Let us consider the following pion redefinition, in which we propose new terms not
considered previously and which contain the h field:

πi →πi

(
1 + α1

2v4π�π + α2
2v4∂µπ∂

µπ + β

2v3�h+ γ̃1
2v4h�h+ γ2

2v4∂µh∂
µh

)
+ α3

2v4�πi(ππ) + α4
2v4∂µπi(π∂

µπ).
(3.12)

7This may be linked to the larger freedom of redefinition for fields not subject to chiral invariance.
8Notice that this field redefinition is by no means unique. A redefinition of the Higgs field involving the

pion fields and derivatives could also be done together with the one proposed here, but this does not add
anything relevant for this discussion.
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The application of this redefinition to L4 is immaterial, as it would only induce couplings
of higher order. As all terms in the shift contain two derivatives, when applied to L2
contributions to L4 and NID operator coefficients do follow. Indeed, the action of eq. (3.12)
on L2 reduces to that on the term

1
4Tr(∂µU∂µU)FC(h) , (3.13)

which produces the additional contribution to NID vertices given by

∆LNID =− π�π
(
α1
v4 π�π + α2

v4 ∂µπ∂
µπ + β

v3�h+ γ1
v4h�h+ γ2

v4∂µh∂
µh

)
− α3
v4 (�π�π)(ππ)− α4

v4 (�π∂µπ)(π∂µπ)− 2aCβ
v4 π∂µπ∂

µh�h+ . . . (3.14)

where γ1 = 2aCβ + γ̃1, and where the dots indicate other operators with either six deriva-
tives or that have more than four fields and are beyond the scope of this paper. Comparing
the terms in ∆LNID with the NID operators found, eqs. (3.8), (3.9) and (3.10), it follows
that by choosing

α1 =
(

9η2 + 5η + 3
4

)
∆ε,

α2 =
[
1 + 4η +

(1
2 + η

)
a2
C

]
∆ε,

α3 = 2η2∆ε,

α4 = 2η
(
a2
C − 1

)
∆ε,

β = −
(3

2 + 5η
)
aC∆ε,

γ1 =
(3

2 + 5η
)(

2a2
C − bC

)
∆ε,

γ2 =
(3

2 + 5η
)(

a2
C − bC

)
∆ε.

all 1-loop NIDs are removed away.
A few comments are in order. Because of chiral symmetry, the pure pionic or mixed

pion-h operators do not encode all possible momentum structures, even after pion field
redefinitions. Hence, the appearance of divergent structures that can be absorbed by δL0,
δL2, δL4 and ∆LNID is a manifestation of chiral invariance and of the field redefinition
equivalence discussed above. We have shown consistently that NIDs appearing in the one-
loop renormalization of the electroweak chiral Lagrangian do not contribute to on-shell
quantities. In fact, a closer examination has revealed that the apparent chiral non-invariant
divergences emerge from loop diagrams which have at least one four-pion vertex in it, and
this is why all of them depend on η. We have also shown that the presence of a light Higgs
boson modifies the coefficients of the unphysical counterterms made out purely of pions,
but not their structure, neither -of course- breaks chiral symmetry.

The field redefinitions implemented above to reabsorb the scalar NIDs may indeed be
equivalent to the application of the pion EOM [54], and contribute to other type of NIDs:
for instance those involving simultaneously pions and fermions, not yet explored. Their
exact computation is not called for when exploring the scalar sector and the set of purely
scalar counterterms required at one loop by the theory, which is what is clarified here.

4 Renormalization Group Equations

It is straightforward to derive the RGE from the δci divergent contributions determined in
the previous section. The complete RGE set can be found in appendix B. As illustration,
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the evolution of those Lagrangian coefficients which do not vanish in the SM limit is
given by:

16π2 d

d lnµaC =1
2aC

[
aH

µ3
v

+
(
3bC − 5a2

H + bH
) m2

h

v2

]
+ a2

C

(
µ3
2v − 2aH

m2
h

v2

)
− 3

2a
3
C

m2
h

v2

− 1
2v bCµ3 + 2aHbC

m2
h

v2 , (4.1)

16π2 d

d lnµbC =bC

[
2aC

µ3
v

+ 5aH
µ3
v
− λ

2 −
(
5a2

C + 8aHaC + 17a2
H − 3bH

) m2
h

v2

]
+ b2C

m2
h

v2

+ 1
2

(
−4aC

µ3
v
− 8aH

µ3
v

+ λ

)
a2
C + 2

(
2a2

C + 4aHaC + 6a2
H − bH

)
a2
C

m2
h

v2

16π2 d

d lnµm
2
h =− 1

2µ
2
3 +

(
5aH

µ3
v
− λ

2

)
m2
h +

(
2bH − 11a2

H

) m4
h

v2 , (4.2)

16π2 d

d lnµµ3 =1
2µ3

[(
−a2

C + bC − 87a2
H + 15bH

) m2
h

v2 − 3λ
]

+ 15
2vµ

2
3aH

+ 6aHλ
m2
h

v
+ 6

(
8a3

H − 3aHbH
) m4

h

v3 , (4.3)

16π2 d

d lnµλ =λ
[
26aH

µ3
v

+
(
14bH − 82a2

H

) m2
h

v2

]
− 3

2λ
2 + 12

(
bH − 6a2

H

) µ2
3
v2 (4.4)

+ 48aH
(
8a2

H − 3bH
)
µ3
m2
h

v3 − 6
(
80a4

H − 48bHa2
H + 3b2H

) m4
h

v4 . (4.5)

These and the rest of the RGE in appendix B show as well that the running of the param-
eters aC , bC , aH , bH , and v2 is only induced by the couplings entering the Higgs potential,
eq. (2.5).

Note that in the RGE for the Higgs quartic self-coupling λ, eq. (4.5), some terms are
weighted by numerical factors of O(100). This suggests that if a BSM theory results in
small couplings for aH and bH , those terms could still induce measurable phenomenological
consequences. Nevertheless, physical amplitudes will depend on a large combination of
parameters, which might yield cancellations or enhancements as pointed out earlier, and
only a more thorough study can lead to firm conclusions. Such large coefficients turn out
to be also present in the evolution of some BSM couplings, such as the four-Higgs coupling
bH for which

16π2 d

d lnµbH = bH

[
20aH

µ3
v
− 3

2λ+
(
−a2

C + bC − 87a2
H

) m2
h

v2

]

− 42µ3
v
a3
H + 13

2 λa
2
H +

(
7b2H + 120a4

H

) m2
h

v2 . (4.6)

On general grounds aH is expected to be small, and for instance the a4
H dependence in

eq. (4.6) is not expected to be relevant in spite of the numerical prefactor. On the other side,
present data set basically no bound on the couplings involving three or more external Higgs
particles, and thus the future putative impact of this evolution should not be dismissed yet.
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5 Comparison with the literature

Previous works on the one-loop renormalization of the scalar sector of the non-linear La-
grangian with a light Higgs have used either the square root parametrization (η = 0 in our
parametrization) or the exponential one (η = −1/6), producing very interesting results,
and have

• concentrated on on-shell analyses,

• disregarded the impact of FH(h),

• disregarded fermionic operators; in practice this means to neglect all fermion masses.

This last point is not uncorrelated with the fact that the basis of independent four-derivative
operators determined here has a larger number of elements than previous works about
the scalar sector. Those extra bosonic operators have been shown here to be required
by the counterterm procedure. It is possible to demonstrate, though, that they can be
traded via EOM by other type of operators including gauge corrections and Yukawa-like
operators. In a complete basis of all possible operators it is up to the practitioner to decide
which set is kept, as long as it is complete and independent. When restricting instead to a
given subsector, the complete and consistent treatment requires to consider all independent
operators of the kind selected (anyway the renormalization procedure will indicate their
need), or to state explicitly any extra assumptions to eliminate them. Some further specific
comments:

Ref. [28] considers, under the first two itemized conditions above plus disregarding
the impact of V (h) (and in particular neglecting the Higgs mass), the scattering processes
hh → hh, ππ → hh and ππ → ππ. With the off-shell treatment, five additional operators
result in this case with respect to those obtained in that reference (assuming the rest of
their assumptions), P7, P9, P10, P�H and P∆H in table 1. Note that all these operators
contain either �h or �π inside; they may thus be implicitly traded by fermionic operators
via EOM, and can only be disregarded if all fermion masses are neglected. Assuming this
extra condition, we could reproduce their results using the EOMs. For instance, the RGEs
derived here for c6, c8, c20, aC and bC differ from the corresponding ones in that reference:
an off-shell renormalization analysis entails the larger number of operators mentioned. In
any case, we stress again that the results of both approaches coincide when calculating
physical amplitudes. Another contrast appears in the running of aC , bC , aH , bH , as well
as the mass, the triple, and the quartic coupling of the Higgs, for which the running is
induced by the Higgs potential parameters, disregarded in that reference.

In ref. [29] the on-shell scattering process W+
LW

−
L → ZLZL is considered (the L sub-

script refers to the longitudinal modes of the gauge bosons), disregarding FH(h) but in-
cluding the impact of V (h). Our off-shell treatment results in this case in one additional
pure-pion operator -assuming the rest of their assumptions- with respect to those in that
reference: P9. This extra operator contains �π in all its terms and it does not enter
into physical amplitudes when all fermion masses are disregarded. In this case our results
reduce to theirs.
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6 Conclusions

We have considered the one-loop off-shell renormalization of the effective non-linear La-
grangian in the presence of a light (Higgs) scalar particle, taking into account the finite
Higgs mass and its potential. We have concentrated on its scalar sector: goldstone bosons
(that is, the longitudinal components of the SM gauge bosons) and the light scalar h,
choosing a leading order Lagrangian containing all possible scalar interactions up to two
derivatives. No power counting has been assumed neither derived, as the renormalization
procedure suffices to reveal the NLO Lagrangian.

Analyzing the custodial-preserving sector, we have determined the four-derivative
counterterms required by the one-loop renormalization procedure, by considering the full
set of 1-, 2-, 3- and 4-point functions involving pions and/or h. The off-shell treatment has
allowed to determine all required counterterms, confirming for the sector analyzed that the
generic low-energy effective non-linear Lagrangian with a light Higgs particle developed
in refs. [11, 12] is complete: all four-derivative operators of that basis and nothing else is
induced by the renormalization. Those operators are linearly independent and form thus
a complete basis when that sector is taken by itself. It is shown that a larger number
of operators than previously considered are then needed. They are independent and non
redundant: the use of EOM would require to substitute some of them by other fermionic
and/or gauge operators, maintaining the same total number of operators. As we do not
analyze here the complete basis made out of all possible SM fields, we chose to maximize
the number of independent operators in the scalar sector.

As a useful analysis tool, we have also proposed here a general parametrization for the
Goldstone boson matrix, which at the order considered here depends on only one parameter
η, and reduces to the popular parametrizations (square root, exponential etc.) for different
values of η. All counterterms induced by the renormalization procedure are then easily
seen to be parametrization independent, as it befits physical couplings.

Furthermore, new chiral non-invariant counterterms involving the Higgs particle and
pions have been found in our perturbative analysis. These findings extend to the realm
of the Higgs particle the apparent non chiral-invariant divergences identified decades ago
for the non-linear sigma model [34]. Those apparent violations of chiral symmetry are an
artifact of perturbative approaches, they vanish on-shell, and their origin had been tracked
down to the insertion of the four-pion vertex in loops. In this paper, new non-invariant
divergences are shown to appear in triple hππ counterterms and in hhππ ones, and shown
to have the same origin. Interestingly: i) all apparently non-invariant divergences depend
explicitly on η, consistent with their non-physical nature; ii) there is a value of the η

parameter for which the non-invariant divergences involving the Higgs vanish, though,
while no η value can cancel the ensemble of non-invariant divergences and in particular the
pure pion ones.

Moreover, we have determined a pion-field redefinition which includes space-time
derivatives and reabsorbs automatically all apparently chiral non-invariant counterterms.
This field redefinition leaves invariant the S-matrix and thus the result shows automatically
that chiral symmetry remains unbroken.
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For the physical counterterms induced, we observe a complete agreement with the naive
dimensional analysis [15, 33] in the h−π sector of the chiral Lagrangian. Finally, the RGEs
for the scalar sector of the general non-linear effective Lagrangian for a Higgs particle have
been also derived in this work. The complete set of equations can be found in appendix B.
Factors of O(100) appear accompanying certain operator coefficients in the RGEs, and
those terms may thus be specially relevant when comparing future Higgs and gauge boson
data obtained at different energies. On more general grounds, although present data are
completely consistent with the SM predictions, going for precision in constraining small
parameters may be the best way to tackle BSM physics and we should not be deterred by
the task: the dream of today may be the discovery of tomorrow and the background of the
future.
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A The counterterms

Details about the computation of the counterterms and the renormalization of the chiral
Lagrangian are given in this appendix, including the derivation of the RGEs.

The bare parameters (denoted by b) written in terms of the renormalized ones and the
counterterms for the L2 and L4 Lagrangians are given by

hb =
√
Zhh, δh ≡ Zh − 1,

πb =
√
Zππ, δπ ≡ Zπ − 1,

v2
b = Zπ(v2 + δv2)µ−ε,

(m2
h)b = 1

Zh
(m2

h + δm2
h),

(µ3
1)b = 1

Z
1/2
h

(
µ3

1 + δµ3
1

)
µ3ε/2,

µb3 = 1
Z

3/2
h

(µ3 + δµ3)µε/2,

λb = 1
Z2
h

(λ+ δλ)µε,

abC = 1
Z

1/2
π Z

1/2
h

(
aC + δaC + aC

2
δv2

v2

)
,

bbC = 1
Zh

(
bC + δbC + bC

δv2

v2

)
,

abH = Z
1/2
π

Z
3/2
h

(
aH + δaH + aH

2
δv2

v2

)
,

bbH = Zπ
Z2
h

(
bH + δbH + bH

δv2

v2

)
,

(A.1)
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where

Xb
i =

(
Xi + δXi + 2Xi

δv2

v2

)
µ−ε, Xi = c6, c9, c11,

Xb
i = Z

1/2
π

Z
1/2
h

(
Xi + δXi + 3

2Xi
δv2

v2

)
µ−ε, Xi = c7, a9, c10,

Xb
i = Zπ

Zh

(
Xi + δXi + 2Xi

δv2

v2

)
µ−ε, Xi = a7, c8, b9, a10, c20,

Xb
i = Zπ

Zh

(
Xi + δXi +Xi

δv2

v2

)
µ−ε, Xi = c�H ,

Xb
i = Z

3/2
π

Z
3/2
h

(
Xi + δXi + 3

2Xi
δv2

v2

)
µ−ε, Xi = a�H , c∆H ,

Xb
i = Z2

π

Z2
h

(
Xi + δXi + 2Xi

δv2

v2

)
µ−ε, Xi = b�H , a∆H , cDH .

(A.2)

The counterterms required to absorb the divergences of the hhh 3-point function are

δa�H =1
2

(
−3aCbC

2 − aHbH
2 + 3a3

C + a3
H

)
∆ε,

δc∆H =1
2
(
−3aCbC + 3a3

C − a3
H

)
∆ε,

δaH =
[

1
2

(
−9µ3

v
a2
H + λaH + 2µ3

v
bH

)
+ aH

(
15a2

H − 7bH
) m2

h

v2

]
∆ε,

δµ3 =
[3

2µ3

(
λ− 4µ3

v
aH

)
+ 6

(
6µ3a

2
H − λvaH − µ3bH

) m2
h

v2

+ 6aH
(
3bH − 8a2

H

) m4
h

v3

]
∆ε,

(A.3)

while those for ππ → h read

δaC = 1
2
(
a2
C − bC

) [
2(aC + 2aH)m

2
h

v2 −
µ3
v

]
∆ε,

δc7 = 1
4
(
−aHbC + a2

CaH − a3
C − 2aC

)
∆ε,

δa9 = −1
8aC

(
aCaH + a2

C − bC
)

∆ε,

δc10 = 1
2aC

(
−aCaH + a2

C + bC
)

∆ε.

(A.4)

In the case of the ππ → hh amplitudes, the relevant diagrams are displayed in figure 6,
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Figure 6. Diagrams contributing to the ππ → hh amplitude, not including diagrams obtained by
crossing.

and the counterterms correspond to

δbC =1
2
(
a2
C − bC

) [
(4aC + 8aH) µ3

v
− λ

− 2
(
8aCaH + 4a2

C + 12a2
H − bC − 2bH

) m2
h

v2

]
∆ε,

δa7 =1
8
[
a2
C

(
−4a2

H − 3bC + bH + 4
)

+ 2aCaHbC + bC
(
4a2

H − bH − 2
)

+ 4a4
C

]
∆ε ,

δc8 =1
3
[
a2
C

(
a2
H + bC

)
− 2aCaHbC − a3

CaH + a4
C + b2C

]
∆ε ,

δb9 =1
4
[
−a2

C

(
−4a2

H + 5bC + bH
)
− 4aCaHbC + 4a3

CaH + 4a4
C + b2C

]
∆ε ,

δa10 =1
4
[
a2
C

(
4a2

H + bC − bH
)
− 4aCaHbC − 4a4

C + b2C

]
∆ε ,

δc20 = 1
12
[
a2
C

(
2a2

H − bC + 6
)

+ 2aCaHbC

− bC
(
3a2

H + bC + 6
)
− 2a3

CaH + 2a4
C

]
∆ε .

(A.5)

For ππ → ππ amplitudes, the relevant diagrams are displayed in figure 7, and the required
counterterms are given by

δc6 = 1
48
[
a2
C (6bC − 8)− 2a4

C − 3b2C − 2
]

∆ε,

δc11 = − 1
12
(
a2
C − 1

)2
∆ε.

(A.6)

Finally, the relevant diagrams for hh → hh amplitudes are shown in figure 8, and the
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Figure 7. Diagrams contributing to the ππ → ππ amplitude, not including diagrams obtained by
crossing.

Figure 8. Diagrams contributing to the hh→ hh amplitude, not including diagrams obtained by
crossing.

renormalization conditions read

δbH =
[1

2

(
µ3
v

(
−40aHbH + 84a3

H

)
− 13λa2

H + 3λbH
)

+
(
87a2

HbH − 120a4
H − 7b2H

) m2
h

v2

]
∆ε,

δb�H =1
4
[
−3
(
4a4

H + b2C

)
+ 30a2

CbC + 10a2
HbH − 36a4

C − b2H
]

∆ε,

δa∆H =− 3
4
(
−7a2

CbC + a2
HbH + 6a4

C − 2a4
H + b2C

)
∆ε,
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δcDH =
[
− 3

4
(
a2
C − bC

)
2 − a4

H

4

]
∆ε,

δλ =
{ 3

2v2

[
8µ2

3

(
6a2

H − bH
)
− 16λµ3vaH + λ2v2

]
− 12

(
−12µ3aHbH + 32µ3a

3
H − 6λva2

H + λvbH
) m2

h

v3

+ 6
(
−48a2

HbH + 80a4
H + 3b2H

) m4
h

v4

}
∆ε.

(A.7)

B The Renormalization Group Equations

This appendix provides the expressions for the RGE of all couplings discussed above, at
the order considered in this paper:

16π2 d

d lnµaC =aC

[(
5a2

H − 3bC − bH
) m2

h

v2 − aH
µ3
v

]

+ a2
C

(
4aH

m2
h

v2 −
µ3
v

)
+ 3a3

C

m2
h

v2 + bC
µ3
v
− 4aHbC

m2
h

v2 , (B.1)

16π2 d

d lnµbC =bC

[
2
(
5a2

C + 8aCaH + 17a2
H − 3bH

) m2
h

v2 + λ− 2(2aC + 5aH)µ3
v

]

− 2b2C
m2
h

v2 + a2
C

(
−λ+ 4aC

µ3
v

+ 8aH
µ3
v

)
− 4a2

C

(
2a2

C + 4aCaH + 6a2
H − bH

) m2
h

v2 , (B.2)

16π2 d

d lnµaH =aH

[
λ−

(
a2
C − bC + 17bH

) m2
h

v2

]
− 12a2

H

µ3
v

+ 45a3
H

m2
h

v2 + 2bH
µ3
v
, (B.3)

16π2 d

d lnµbH =bH

[
2
(
−a2

C + 97a2
H + bC

) m2
h

v2 − 44aH
µ3
v

+ 3λ
]
− 18b2H

m2
h

v2

+ a2
H

(
−13λ+ 84aH

µ3
v

)
− 240a4

H

m2
h

v2 , (B.4)

16π2 d

d lnµm
2
h =m2

h

(
λ− 10aH

µ3
v

)
+
(
22a2

H − 4bH
) m4

h

v2 + µ2
3 , (B.5)

16π2 d

d lnµµ3 =µ3

[(
87a2

H − 15bH
) m2

h

v2 + 3λ
]
− 15aH

µ2
3
v

− 12λaH
m2
h

v
−
(
96a3

H − 36aHbH
) m4

h

v3 , (B.6)

16π2 d

d lnµλ =λ
[
4
(
41a2

H − 7bH
) m2

h

v2 − 52aH
µ3
v

]
+ 3λ2 + 24

(
6a2

H − bH
) µ2

3
v2

− 96aH
(
8a2

H − 3bH
) µ3m

2
h

v3 + 12
(
80a4

H − 48a2
HbH + 3b2H

) m4
h

v4 , (B.7)

16π2 d

d lnµv
2 =− 2

(
a2
C − bC

)
m2
h , (B.8)
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16π2 d

d lnµc6 =− 1
24
[
2 + 2a4

C + 3b2C − a2
C (−8 + 6bC)

]
, (B.9)

16π2 d

d lnµc7 =− c7

[(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + aH
µ3
v

]

+ 1
2
(
−2aC − a3

C + a2
CaH − aHbC

)
, (B.10)

16π2 d

d lnµa7 =− a7

[
2
(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + 2aH
µ3
v

]

+1
4
[
4a4

C + 2aCaHbC + bC
(
−2 + 4a2

H − bH
)

+ a2
C

(
4− 4a2

H − 3bC + bH
) ]

, (B.11)

16π2 d

d lnµc8 =− c8

[
2
(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + 2aH
µ3
v

]

+ 2
3
[
a4
C − a3

CaH − 2aCaHbC + b2C + a2
C

(
a2
H + bC

)]
, (B.12)

16π2 d

d lnµc9 =a2
C

2 , (B.13)

16π2 d

d lnµa9 =− a9

[(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + aH
µ3
v

]

− 1
2aC

(
a2
C + aCaH − bC

)
, (B.14)

16π2 d

d lnµb9 =− b9

[
2
(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + 2aH
µ3
v

]

+ 1
2
[
4a4

C + 4a3
CaH − 4aCaHbC + b2C + a2

C

(
4a2

H − 5bC − bH
)]
, (B.15)

16π2 d

d lnµc10 =− c10

[(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + aH
µ3
v

]
+ aC

(
a2
C − aCaH + bC

)
,

(B.16)

16π2 d

d lnµa10 =− a10

[
2
(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + 2aH
µ3
v

]

+ 1
2
(
−4a4

C − 4aCaHbC + b2C + a2
C

(
4a2

H + bC − bH
))

, (B.17)

16π2 d

d lnµc11 =− 1
6
(
a2
C − 1

)2
, (B.18)

16π2 d

d lnµc20 =− c20

[
2
(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + 2aH
µ3
v

]
(B.19)

+1
6
[
2a4

C − 2a3
CaH + a2

C

(
6 + 2a2

H − bC
)

+ 2aCaHbC − bC
(
6 + 3a2

H + bC
) ]

,

16π2 d

d lnµc�H =− c�H

[
2
(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + 2aH
µ3
v

]
+ 1

2
(
−3a2

C − a2
H

)
,

(B.20)
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16π2 d

d lnµa�H =− a�H

[
3
(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + 3aH
µ3
v

]

+ 3a3
C + a3

H −
3aCbC

2 − aHbH
2 , (B.21)

16π2 d

d lnµb�H =− b�H

[
4
(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + 4aH
µ3
v

]

− 18a4
C − 6a4

H + 15a2
CbC −

3b2C
2 + 5a2

HbH −
b2H
2 , (B.22)

16π2 d

d lnµc∆H =− c∆H

[
3
(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + 3aH
µ3
v

]
+ 3a3

C − a3
H − 3aCbC ,

(B.23)

16π2 d

d lnµa∆H =− a∆H

[
4
(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + 4aH
µ3
v

]

− 3
2
(
6a4

C − 2a4
H − 7a2

CbC + b2C + a2
HbH

)
, (B.24)

16π2 d

d lnµcDH =− cDH

[
4
(
a2
C − 5a2

H − bC + bH
) m2

h

v2 + 4aH
µ3
v

]

− 1
2

[
a4
H + 3

(
a2
C − bC

)2
]
. (B.25)
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[50] M. Ostrogradsky, Mémoire sur les équations différentielles relatives an probléme des
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