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Abstract We give a recursive formula for an expansion of a solution of a general nonau-
tonomous polynomial differential equation. The formula is given on the algebraic level with
the use of a shuffle product. This approach minimizes the number of integrations on each
order of expansion. Using combinatorics of trees, we estimate the radius of convergence of
the expansion.
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1 Introduction

Consider a nonautonomous polynomial differential equation, known also as a generalized
Abel differential equation:

ẋ(t) = u0(t)+ u1(t)x(t)+ · · · + ui(t)x
i(t)+ · · · + un(t)x

n(t),

x(0) = x0, (1.1)

with a solution x : [0, T ] → R on a small segment of the reals. In this class of differential
equation, we have the following: for n = 1, the linear equation with a well-known formula
for the general solution; for n = 2, the Riccati equation well known both for theoretical [3,
7, 17, 18] and practical (see [4] and references therein at the beginning of Section 4) reasons;
for n = 3, the Abel differential equation of the first kind studied theoretically [15] and for
practical reasons ([12, 14, 20] and references in [6, 15]); and for n > 3, the generalized
Abel differential equations [1, 2]. Assuming Xi = xi ∂

∂x
, for i = 0, . . . , n, are differential
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vector fields on R, one can, following Fliess [9] (see also [10, 13], and [11] with references
therein), expand the solution of the equation in terms of iterated integrals

∫ t

0

∫ tk

0
· · ·

∫ t2

0
uik (tk) · · ·ui1(t1) dt1 . . . dtk−1dtk

and iterated differential operators Xi1 · · ·Xik acting on the identity function h(x) = x and
evaluated at the zero point. In this approach, one does not use a specific form of the vec-
tor fields, i.e., the fact that they are of polynomial type. In this article, we show another
approach to expanding a solution of the above equation in terms of iterated integrals with
the use of an important feature of Chen’s iterated integral mapping, namely, that it is a shuf-
fle algebra homomorphism (see the comment after formula (2.4)). In fact, with the use of
Chen’s mapping (2.4), we will be able to consider a purely algebraic problem instead of
an analytic one. More precisely, assuming that the solution of Eq. (1.1) can be expanded in
terms of iterated integrals, we show that an algebraic equation must be satisfied in the space
of nonommutative series on n+1 letters. It will be easy to show the existence of the solution
of the algebraic equation by a recursive formula of its homogeneous parts. Chen’s mapping
gives us the expansion of the solution of the initial problem as we state in Theorem 1. This
is done in Section 2. Then, in Section 3, by counting elements of a class of trees in two dif-
ferent ways, we show convergence of the defined expansion of x(t) for small times—this is
stated in Theorem 2 (in Section 2).

As an application of this general approach, we consider, in Section 4, the cases of the
linear equation (i.e., n = 1), the Riccati equation (n = 2), and the one where there are only
two nonvanishing summands. In the first case, we reestablish a well-known formula for
the general solution, and in the second case, we deduce convergence of the series defining
coordinates of the second kind connected with a1-type involutive distribution [16].

Finally, in Section 5, we compare the Chen-Fliess approach with the one given in this arti-
cle. It occurs that in the latter case, the number of integrals to compute grows significantly
slower with the order of approximation than that in the first case.

2 Existence and Convergence of an Expansion

Let n ∈ N,1 T > 0, and let u0, . . . , un : [0, T ] → R be measurable and bounded (by a
constant M ∈ R) functions. Consider a nonautonomous polynomial differential equation

ẋ(t) = u0(t)+
(
n

1

)
u1(t)x(t)+ · · · +

(
n

i

)
ui(t)x

i(t)+ · · · + un(t)x
n(t),

x(0) = 0. (2.1)

Two comments are in order. Firstly, the Newton symbols occurring in the above formula
are for convenience reasons—without these constants, it would be harder to estimate the
radius of convergence of a defined series. Secondly, we assume that the initial value equals
zero. This is without loss of generality in a sense that with the linear change of variables

1Throughout the article, we assume N = {0, 1, 2, 3, . . .}.
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x → x − x0, we can transform the equation with the initial value equals x0 to another
equation with different ui’s.

Integrating both sides of the equation, we get an integral equation:

x(t) =
∫ t

0
u0(s)+

(
n

1

)
u1(s)x(s)+ · · · + un(s)x

n(s) ds. (2.2)

By Caratheory’s theorem for a small ε > 0, there exists an absolutely continuous solution
x̂ : [0, ε] → R of the initial Eq. (2.1) in a sense that x̂ satisfies the integral Eq. (2.2) for
t ∈ [0, ε]. We want to express the solution x̂ by means of iterated integrals of products of
ui’s. In order to do this, we introduce some algebraic tools.

To each function ui , we assign a formal variable ai , which we call a letter. The set
of all letters A = {a0, . . . , an} is called an alphabet. Juxtapositioning letters, we can
obtain words of an arbitrary length k ∈ N; the set of such words is denoted by A∗

k =
{b1 · · · bk|b1, . . . , bk ∈ A}. For k = 0, the set A∗

0 = {1} contains only one—empty—word.
The set of all words is denoted by A∗ = ⋃∞

k=0 A∗
k . The juxtaposition gives rise to an asso-

ciative, noncommutative product on the set of words A∗×A∗ � (v,w) → v ·w = vw ∈ A∗
called the concatenation product; then the set A∗ with the concatenation product and the
neutral element 1 ∈ A∗ is a free monoid generated by A. Taking R-linear combination of
words and bilinearly extending the concatenation product, we get the R-algebras R〈A〉 of
noncommutative polynomials on A and R〈〈A〉〉 of noncommutative series on A. In both
algebras, we can consider the bilinear product 		 : R〈〈A〉〉 ⊗ R〈〈A〉〉 → R〈〈A〉〉—the
shuffle product—defined recursively for words by 1		w = w 		 1 = w for any w ∈ A∗,
and

(vb)		 (wc) = (v 		 (wc)) · b + ((vb)		w) · c (2.3)

for all b, c ∈ A, and v,w ∈ A∗. It is easy to see that the shuffle product is commutative; thus,
with 1 as the neutral element, it gives rise to an additional commutative algebra structure
on R〈A〉 and R〈〈A〉〉. We will use both concatenation and shuffle products in our consider-
ations. It is important to indicate the priority of the shuffle product over the concatenation
product in all formulas of this article, so that v 		w · a always means (v 		w) · a.

On R〈〈A〉〉, we introduce a natural scalar product (·|·) : R〈〈A〉〉 × R〈〈A〉〉 → R, which
for elements v,w ∈ A∗ × A∗ is given by

(v|w) =
{

1 for v = w

0 for v �= w
.

For S ∈ R〈〈A〉〉, let Sk ∈ R〈A〉 be the k-degree homogenous part of S, i.e.,

Sk =
∑
v∈A∗

k

(S|v) v.

Clearly, S = ∑∞
k=0 Sk .

Define the linear homomorphism ϒt : R〈A〉 → R by ϒt(1) = 1, and

A∗
k � v = ai1 · · · aik �→ ϒt(v) :=

∫ t

0
uik (tk)

∫ tk

0
· · ·

∫ t2

0
ui1(t1) dt1 . . . dtk−1dtk.

Equivalently, the homomorphism can be defined recursively by

ϒt(vai) :=
∫ t

0
ϒs(v) ui(s) ds (2.4)

for any v ∈ A∗ and ai ∈ A. Since ui’s are bounded, the definition is correct for all t ≥
0. One can check that ϒt is in fact a shuffle algebra homomorphism, i.e., ϒt(v 		w) =



406 Gabriel Pietrzkowski

ϒt(v)ϒt (w) (see [8, 19]) which is a crucial feature in what follows. For a general series
S ∈ R〈〈A〉〉, the homomorphism ϒt is obviously not well defined since ϒt(S) can be
divergent. We restrict the definition of ϒt to series S ∈ R〈〈A〉〉 and times t ≥ 0 for which
the series

∞∑
k=0

ϒt(Sk)

is convergent.
Coming back to the initial problem, assume that there exists a series Ŝ ∈ R〈〈A〉〉 such

that the solution x̂ of Eq. (2.1) satisfies x̂(t) = ϒt(Ŝ) for t ∈ [0, ε] (in particular ϒt(Ŝ)

is convergent). Using the recursive definition of ϒt (2.4) and the fact that ϒt is a shuffle
algebra homomorphism, we get from Eq. (2.2) that

ϒt(Ŝ) = ϒt(a0 + n1 Ŝ · a1 + n2 Ŝ 		 Ŝ · a2 + . . .+ Ŝ		 n · an),

where we abbreviate ni =
(
n

i

)
, and Ŝ		 n is defined recursively in a natural way, i.e.,

Ŝ		 0 = 1 and Ŝ		 n = Ŝ 		 Ŝ		 (n−1). Now, the point is that we can forget, for a moment,
about the homomorphism and consider only the algebraic equation

Ŝ = a0 + n1 Ŝ · a1 + n2 Ŝ 		 Ŝ · a2 + . . .+ Ŝ		n · an. (2.5)

Proposition 2.1 There exists the unique solution Ŝ ∈ R〈〈A〉〉 of the algebraic Eq. (2.5).

Proof The equation under consideration must be satisfied for each homogeneous part, so
we can split it into the following series of equations:

Ŝ0 = 0, Ŝ1 = a0,

Ŝ2 = n1 Ŝ1 · a1, Ŝ3 = n1 Ŝ2 · a1 + n2 Ŝ1 		 Ŝ1 · a2,

and for arbitrary k ∈ N

Ŝk+1 =
n∑

i=1

(
n

i

) ∑
l∈M(i)

Ŝl1 		 · · · 		 Ŝli · ai, (2.6)

where the second sum is taken over multi-indices l = (l1, . . . , li) in

M(i) = {(l1, . . . , li ) ∈ N
i |l1, . . . , li ≥ 1, l1 + · · · + li = k}.

We see that the homogeneous parts of the series Ŝ are defined recursively; therefore, the
series is defined uniquely.

Observe that from the recursive definition of ϒt and a property ϒt(v 		w) =
ϒt(v)ϒt (w) we get

x̂k+1(t) =
n∑

i=1

(
n

i

) ∑
l∈M(i)

∫ t

0
x̂l1(s) · · · x̂li (s) ui(s) ds, (2.7)

where we use an abbreviation x̂k(t) = ϒt(Ŝk). By this definition, x̂(t) = ∑∞
k=0 x̂k(t).

Moreover, any permutation of (l1, . . . , li) gives the same expression under the integral. For
l ∈ M(i) denote by R(l), the number of such permutations, i.e.,

R(l) = #{σ ∈ �i |l1 = lσ (1), . . . , li = lσ (i)}.
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Then

x̂k+1(t) =
n∑

i=1

(
n

i

) ∑
l∈M≤(i)

R(l)
∫ t

0
x̂l1(s) · · · x̂li (s) ui(s) ds, (2.8)

where the second sum is taken over

M≤(i) = {(l1, . . . , li) ∈ N
i |1 ≤ l1 ≤ l2 ≤ · · · ≤ li , l1 + · · · + li = k}.

Let us state it in the following theorem.

Theorem 1 Let x̂1(t) =
∫ t

0 u0(s) ds and recursively for k ≥ 1, x̂k+1(t) is given by Eq. (2.7)
or (2.8). Then x̂(t) = ∑∞

k=1 x̂k(t) is a formal solution of the differential Eq. (2.1).

Remark 2.2 It is worth noticing that for a fixed k ≥ 1, the number of integrals in formula
(2.8) is the cardinality of

∑n
i=1 M≤(i). This is less than the cardinality of

∑∞
i=1 M≤(i),

which is the number of partitions of k. The first ten of these numbers are 1, 2, 3, 5, 7, 11,
15, 22, 30, and 42. It means that the number of integrals that we have to perform to compute
x̂k+1 grows quite slowly. In Section 5, we show that this growth is much slower than the
growth of the number of nonzero components in the Chen-Fliess expansion.

There remains the problem under what assumption the solution for the algebraic equation
is in the domain of the homomorphism ϒt : R〈〈A〉〉 ⊃ D(ϒt) → R, i.e., when

∑
k ϒ

t (Ŝk)

is convergent. In order to solve it, we need to compute the number of words (with multi-
plicities) in each homogeneous part of Ŝ. So for S ∈ R〈A〉, let us introduce the following
definition:

#S =
∑
v∈A∗

|(S|v)|.

Proposition 2.3 If Ŝk is the k-degree homogeneous part of the solution Ŝ of the algebraic
Eq. (2.5), then for k ≥ 1, #Ŝk = ((n−1)(k−1)+1) ·((n−1)(k−2)+1) · · · n (in particular
#Ŝ1 = 1) and #Ŝ0 = 0.

In particular, for n = 0, #Ŝ1 = 1 and #Ŝk = 0 otherwise; for n = 1, #Ŝk = 1; for n = 2,
#Ŝk = k!; for n = 3, #Ŝk = (2k − 1)!!; for n = 4, #Ŝk = (3k − 2)!!!; and so on.

The proposition will be proved in Section 3.
Now, we state the theorem about convergence of the expansion.

Theorem 2 Let n ∈ N and assume u0, . . . , un : [0, T ] → R are measurable functions
such that |ui| ≤ M for an M > 0. Let Ŝ ∈ R〈〈A〉〉 be the unique solution of the algebraic
Eq. (2.5). Then the series

∑
k x̂k(t) = ∑

k ϒ
t (Ŝk) is absolutely convergent for 0 ≤ t <

min{T , 1/(M(n− 1))} if n ≥ 2, 0 ≤ t ≤ T if n = 0, 1, and x̂(t) = ϒt(Ŝ) is the solution of
the differential Eq. (2.1) on the same segment.

Proof For v ∈ A∗
k , the iterated integral ϒt(v) is in fact taken over a k-dimensional sim-

plex of k-dimensional measure tk/k!. Since ui’s are bounded by M , we have |ϒt(v)| ≤
(Mt)k/k!. Therefore,

|ϒt(Ŝk)| ≤ #Ŝk
(Mt)k

k! = ((n− 1)(k − 1)+ 1) · ((n− 1)(k − 2)+ 1) · · · n
k! (Mt)k.
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Since #Ŝk+1/#Ŝk = (n−1)k+1
k+1 −−−→

k→∞ n − 1, the series
∑

k ϒ
t (Ŝk) is convergent for t <

1/(M(n− 1)) if n ≥ 2, and t < T if n = 1. For n = 0, the statement is obvious.

3 Counting Trees

In this section, we prove Proposition 2.3. In order to do this, we consider certain classes
of trees. It occurs that the number of trees in these particular classes equals #Ŝk on the one
hand and ((n− 1)(k − 1)+ 1) · ((n− 1)(k − 2)+ 1) · · · n on the other hand.

For k, n ∈ N let T n
k denote the set of planar, rooted, full n-ary and increasingly labeled

trees on k vertices. Recall that a tree is rooted if there exists a distinguished vertex called
the root; is full n-ary if each vertex has exactly none or n children; is on k vertices if the
number of vertices with n children (parent vertices) is equal k; and is increasingly labeled if
the parent vertices are labeled by natural numbers from 1 to k, and the labels increase along
each branch starting at the root (in particular, the root is labeled by “1”). A leaf of a tree is
a nonparent vertex, i.e., a vertex without children. It is important to note that the number of
leafs in each tree in T n

k is constant and equals (n− 1)k + 1. Indeed, using induction on k,
we see that for k = 0, the only tree in T n

0 has 0 children, so the root is the only leaf; each
tree T n

k can be obtained from a tree t ∈ T n
k−1 by adding n leafs to a certain leaf of t, so the

number of leafs increases by (n− 1).
Now, we count the cardinality of T n

k in two different ways.

Lemma 3.1 The cardinality of T n
k equals #T n

k = ((n− 1)(k− 1)+ 1) · ((n− 1)(k− 2)+
1) · · · n for k ≥ 1 and T n

0 = 1.

Proof The case n = 0 is trivial. Fix n ∈ N s.t. n ≥ 1. We proceed by induction
on k ∈ N. For k = 0, there is only one tree, so the statement is correct. Assume
#T n

k = ((n− 1)(k − 1)+ 1) · ((n− 1)(k − 2)+ 1) · · · n. Each tree in T n
k+1 comes from the

unique tree t in T n
k by adding label “k+ 1” and k vertices to a leaf of t. Since the number of

leafs of t is equal (n− 1)k + 1, we obtain the result.

Lemma 3.2 For k ∈ N the cardinality of T n
k+1 equals

#T n
k+1 =

∑
l∈M0(n)

k!
l1! · · · ln! #T n

l1
· · · #T n

ln
,

where the sum is taken over multi-indices l = (l1, . . . , ln) in

M0(n) = {(l1, . . . , ln) ∈ N
n|l1 + · · · + ln = k}.

Proof First of all, observe that for k ∈ N, each tree in T n
k+1 is uniquely given by n trees

t1 ∈ T n
l1
, . . . , tn ∈ T n

ln
such that l1 + · · · + ln = k, and a partition of the set {2, . . . , k + 1}

into n disjoint sets I1, . . . , In of the cardinality #Ii = li for i = 1, . . . , n (we do not assume
Ii �= ∅), i.e.,

T n
k+1 ∼

⊔
l∈M0(n)

T n
l1
× · · · × T n

ln
× I (l),

where I (l) is the set of all partitions of the set {2, . . . , k + 1} into n disjoint sets I1, . . . , In
s.t. #Ii = li for i = 1, . . . , n. Indeed, the root of a given tree t ∈ T n

k+1 has n child vertices
v1, . . . , vn. Each vi is the root of a certain maximal subtree t̃i of t. We assume that t̃i has li
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parent vertices, which are labeled by some numbers 2 ≤ a1
i < · · · < a

li
i ≤ k+1. Obviously,

l1 + · · · + ln = k. Changing the label “aji ” into a label “j ,” we obtain a tree ti ∈ T n
li

.

Defining Ii =
{
a1
i , . . . , a

li
i

}
for i = 1, . . . , n, we have a partition of {2, . . . , k + 1} into n

disjoint sets, i.e., {2, . . . , k + 1} = I1 ∪ · · · ∪ In. It is clear how to invert this procedure in
order to get its uniqueness.

Using the above correspondence, it is easy to establish the formula in the lemma since
there are k!

l1!···ln! possible partitions of the set {2, . . . , k + 1} into n disjoint parts I1, . . . , In

such that #Ii = li ∈ N, i.e., #I (l) = k!
l1!···ln! .

We are now ready to prove Proposition 2.3.

Proof of Proposition 2.3 First of all, observe that for i ∈ N, l1, . . . , li ∈ N, and words
v1 ∈ A∗

l1
, . . . , vi ∈ A∗

li
, the number of words in the shuffle product v1 		 · · · 		 vi equals

#(v1 		 · · · 		 vi) = (l1 + · · · + li)!
l1! · · · li ! .

Using this fact, homogeneity of polynomials Ŝl , and the recursive formula (2.6), we get

#Ŝk+1 =
n∑

i=1

(
n

i

) ∑
l∈M(i)

#
(
Ŝl1 		 · · · 		 Ŝli

)

=
n∑

i=1

(
n

i

) ∑
l∈M(i)

(l1 + · · · + li)!
l1! · · · li ! · #Ŝl1 · · · #Ŝli (3.1)

where M(i) contains multi-indices (l1, . . . , li ) ∈ N
i such that l1 + · · · + li = k and, what

is important, l1, . . . , li ≥ 1. In order to get rid of the first sum, we introduce the following
notation:

Nk =
{

1 for k = 0
#Ŝk for k �= 0

and allow l1, . . . , li to be equal 0. Then, we rewrite Eq. (3.1) as

Nk+1 =
∑

l∈M0(n)

(l1 + · · · + ln)!
l1! · · · ln! · Nl1 · · ·Nln, (3.2)

where M0(n) = { (l1, . . . , ln) ∈ N
n | l1 + · · · + ln = k }. Indeed, if l1, . . . , ln ∈ N and only

i of them, say l̂1, . . . , l̂i , are not equal 0, then

(l1 + · · · + ln)!
l1! · · · ln! ·Nl1 · · ·Nln = (l̂1 + · · · + l̂i )!

l̂1! · · · l̂i !
·N

l̂1
· · ·N

l̂i
.

Clearly, there are

(
n

i

)
different multi-indices (l1, . . . , ln) satisfying this condition, and this

is the reason for the Newton symbol to disappear in formula (3.2).
Finally, we see that by Lemma 3.2, the recursive formula (3.2) for the numbers Nk over-

laps with the one for the cardinality of trees #T n
k . Since the series coincide for k = 0, i.e.,

N0 = #T n
0 = 1, we conclude using Lemma 3.1 that

#Ŝk = Nk = ((n− 1)(k − 1)+ 1) · ((n− 1)(k − 2)+ 1) · · · n
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for k ≥ 1. The fact that #Ŝ0 = 0 is trivial.

Remark 3.3 The above proof can be simplified for n = 0, 1 when #Ŝk ≤ 1, but also for
n = 2. In this case, the recursive formula (2.6) gives

#Ŝk+1 = 2 #Ŝk +
k−1∑
j=1

(
k

j

)
#Ŝj #Ŝk−j .

Assuming the inductive hypothesis #Ŝl = l! for l ≤ k, we obtain

#Ŝk+1 = 2 k! +
k−1∑
j=1

(
k

j

)
j !(k − j)! = 2 k! + (k − 1) k! = (k + 1)! .

4 Examples

In this section, we discuss the three simplest cases when n = 0, 1, 2, and the case where
only u0 and un are not vanishing. We will need one additional intuitive notation, namely for
S ∈ R〈〈A〉〉 such that (S|1) = 0, we define the shuffle exponent

exp		 (S) =
∞∑
k=0

S		 k

k! ,

where we recall that S		 0 = 1 and S		 k = S 		 S		 (k−1).
If n = 0, then the Eq. (2.1) is ẋ(t) = u0(t), x(0) = 0, and obviously, a solution is

x̂(t) = ϒt(Ŝ), where Ŝ = Ŝ1 = a0 is homogeneous of degree 1.
Let us pass to the case n = 1 when Eq. (2.1) is a linear equation ẋ(t) = u0(t)+u1(t)x(t),

x(0) = 0, which can be solved by a variation of parameter. Let us see how it can be done
using the series Ŝ. Using recursive formula (2.6),

Ŝ0 = 0, Ŝ1 = a0, Ŝk+1 = Ŝk · a1,

we get Ŝ = a0 ·
(
1 + a1 + a2

1 + a3
1 + · · · ). If we use formula ak1 = a		 k

1 /k!, we get

Ŝ = a0 · exp		 (a11). (4.1)

This expression looks nice, but there is a problem since a0 factor is on the left-hand side,
and therefore the expression will not simplify if we apply ϒt to it. In order to obtain the
solution in a common form, we prove the following lemma.

Lemma 4.1 For a0, a1 ∈ A it follows that

∞∑
k=0

a0a
k
1 =

∞∑
k,l=0

(−1)l ak1		
(
al1a0

)
.

Proof Observe first that for k, l ∈ N

ak1 		
(
al1a0

)
= al1a0a

k
1 +

(
l + 1

1

)
al+1

1 a0a
k−1
1 + · · · +

(
l + k

k

)
al+k

1 a0. (4.2)
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Indeed, for k = 0, the formula is correct. Using the inductive hypothesis for each m ≤ k

and the defining formula for shuffle product (2.3), we get

ak+1
1 		

(
al1a0

)
=

(
ak1 		

(
al1a0

))
a1 +

(
ak+1

1 		 al1

)
a0

= al1a0a
k+1
1 +

(
l + 1

1

)
al+1

1 a0a
k
1 + · · · +

(
l + k
k

)
al+k

1 a0a1 +
(
ak+1

1 		 al1

)
a0.

Since ak+1
1 		 al1 =

(
l + k + 1
k + 1

)
al+k+1

1 , we obtain formula (4.2).

Using the above proved formula, we see that

∞∑
k,l=0

(−1)l ak1 		
(
al1a0

)
=

∞∑
k,l=0

k∑
m=0

(−1)l
(
l +m

m

)
al+m

1 a0a
k−m
1

=
∞∑

k′,l′=0

⎡
⎣ l′∑
m=0

(−1)l
′−m

(
l′
m

)⎤
⎦ al

′
1 a0a

k′
1 ,

where in the last line, we change a method of summation by putting k′ = k − m and
l′ = l +m. Since the expression in the squared brackets equals 0l

′
, the sum over l′ reduces

to the one summand with l′ = 0, and therefore

∞∑
k,l=0

(−1)l ak1 		
(
al1a0

)
=

∞∑
k′=0

a0a
k′
1 .

This ends the proof.

From the lemma, it follows that

Ŝ =
∞∑
k=0

a0a
k
1 =

∞∑
k,l=0

(−1)l ak1 		
(
al1a0

)
=

∞∑
k=0

a		 k
1

k! 		
( ∞∑
k=0

(−a1)
		 l

l! · a0

)

= exp		 (a1)		 (exp		 (−a1) · a0).

Since ϒt : R〈〈A〉〉 → R is a shuffle-algebra homomorphism, it follows that
ϒt(exp		 (S)) = exp(ϒt (S)) for all series S such that (S|1) = 0, and therefore

x̂(t) = ϒt(Ŝ) = exp

(∫ t

0
u1(s) ds

) ∫ t

0
exp

(
−

∫ s

0
u1(τ) dτ

)
u0(s) ds,

which is the standard formula.
For n = 2, the equation under consideration is

ẋ(t) = u0(t)+ 2u1(t)x(t)+ u2(t)x
2(t), x(0) = 0, (4.3)

that is a general Riccati equation. In this case, the series Ŝ is the unique solution of

Ŝ = a0 + 2 Ŝ · a1 + Ŝ 		 Ŝ · a2, (4.4)

and therefore Ŝ = ∑
k Ŝk , where Ŝk are given by the recurrence

Ŝ0 = 0, Ŝ1 = a0, Ŝ2 = 2 Ŝ1 · a1, Ŝk+1 = 2 Ŝk · a1 +
k−1∑
l=1

Ŝl 		 Ŝk−l · a2. (4.5)
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Let us mention that the Riccati equation is a Lie-Scheffers system of the type a1 (see [3, 7]
and [17, 18]). More precisely, if we take vector fields

X0(x) = ∂

∂x
, X1(x) = 2x

∂

∂x
, X2(x) = x2 ∂

∂x

on R, then they satisfy the following commutation relations:

[X0,X1] = 2X0, [X0,X2] = X1, [X1,X2] = 2X2.

It means the vector fields span a simple Lie algebra of the type a1 (isomorphic to sl(2,R)),
and thus (4.3)—equivalent to ẋ(t) = ∑

ui(t)Xi—is a Lie-Scheffers system of this type.
The solution in terms of iterated integrals of ui’s for such a system was given in [16]. Let
us recall the main theorems of this article.

Theorem 3 (Theorem 1 in [16]) Let Xa,Xb,Xc ∈ �(M) be smooth tangent vector fields
on a manifold M satisfying [Xa,Xb] = 2Xa, [Xa,Xc] = −Xb, [Xb,Xc] = 2Xc. Let
ua, ub, uc : [0, T ] → R be fixed measurable functions. Then (locally), the solution x :
[0, T ] → M of the differential equation

ẋ(t) = uc(t)Xc + ub(t)Xb + ua(t)Xa, x(0) = x0 ∈ M

is of the form

x(t) = exp (	c(t)Xc) exp (	b(t)Xb) exp (	a(t)Xa) (x0). (4.6)

Here, 	a,	b,	c : [0, T ] → R are given by 	d(t) := ϒt(Sd) (for d = a, b, c), where

Sa = a · exp		 (2Sa1), Sb = Sa1 , Sc = exp		 (2Sa1) · c, (4.7)

and Sa1 ∈ R〈〈A〉〉 is the unique solution of the algebraic equation

Sa1 = b− a · exp		 (2Sa1) · c.
In particular, we have

b − a · Sc = Sb = b− Sa · c.

Theorem 4 (Theorem 2 in [16]) For fixed measurable functions ua, ub, uc : [0, T ] → R

the function 	a : [0, T ] → R, defined in Theorem 3 by 	a(t) = ϒt(a · exp		 (2Sa1)), is
(locally) the solution of the Riccati equation:

	̇a(t) = ua(t)+ 2ub(t) 	a(t)− uc(t)	
2
a(t), 	a(0) = 0.

Observe that taking Xa = X0, Xb = X1, Xc = −X2 (and therefore c = −a2), and
ua = u0, ub = u1, uc = u2, and 	a(t) = x(t), the system (4.3) can be put into the context
of the above theorems in the following way. From Theorem 4, we conclude that the solution
of (4.3) is x(t) = ϒt(Ŝ), where

Ŝ = a0 · exp		 (2Sa1),
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and Sa1 ∈ R〈〈A〉〉 is, by Theorem 3, the unique solution of the algebraic equation

Sa1 = a1 + a0 · exp		 (2Sa1) · a2. (4.8)

Additionally, from the last line in Theorem 3, we conclude that

Sa1 = a1 + Ŝ · a2. (4.9)

In the discussed article, there was also given a recursive formula for Sa1 , but observe that
in fact the algebraic Eq. (4.4) for Ŝ is simpler than the Eq. (4.8) for Sa1 . In consequence, it
is reasonable to invert this statement saying that the series Sa1 is given by (4.9), where Ŝ is
the solution of Eq. (4.4). Now, using Theorem 2, we get the following corollary about the
a1-type Lie-Scheffers system considered in Theorem 3.

Proposition 4.2 In the context of Theorem 3, if |ud | ≤ M for an M > 0 (d = a, b, c), then
the solution (4.6) exists for 0 ≤ t < min {T , 1/M}.

Proof By Theorem 1, the function ϒt(Ŝ) is well defined for 0 ≤ t < min {T ,1/M}. The
above observations (in particular formula (4.9)) implies that ϒt(Sa1) is also well defined
in this interval. Finally, by formula (4.7), each function 	d(t) := ϒt(Sd) (d = a, b, c) is
defined for 0 ≤ t < min {T , 1/M}, too.

Let us observe that in each of the discussed cases, the solution is of the form Ŝ = a0 ·
exp		 (L), where L ∈ R〈〈A〉〉 such that (L|1) = 0, and the series L in case n reduces to
L in case n − 1 if taking un ≡ 0. Indeed, L = 0 for n = 0, L = a1 for n = 1, and
L = Sa1 for n = 2 reduces, by Eq. (4.8), to a1 for u2 ≡ 0. This observation suggests a
question: if the same holds for all n ∈ N? Since the Riccati equation is essentially the only
differential equation on a real line which is connected with the action of a group (namely the
special linear group SL(2)) [4, 5], one could anticipate that a generalization is impossible.
Nevertheless, the problem is open.

Another example we are going to consider is the one where there are only two nonvan-

ishing summands, i.e., ẋ(t) =
(

n

m

)
u(t)xm(t)+un(t)x

n(t), x(0) = 0, and 0 ≤ m < n are

fixed. The case m �= 0 has the trivial solution x(t) ≡ 0, so in fact we consider

ẋ(t) = u0(t)+ un(t)x
n(t), x(0) = 0 (4.10)

with n ≥ 1 fixed.

Proposition 4.3 Let u0, un : [0, T ] → R be measurable, bounded functions. Then the
solution of (4.10) is x(t) = ∑∞

k=0 xk(t), where xk(t) are recursively given by x0(t) =∫ t

0 u0(s) ds, and

xk(t) =
∑

l∈N(k)

n!
l1! · · · lk !

∫ t

0
(x0(s))

l1 · · · (xk−1(s))
lk un(s) ds,

whereN(k) = {
(l1, . . . , lk) ∈ N

k | n = l1 + · · · + lk, k − 1 = l2 + 2l3 + · · · + (k − 1)lk
}
.
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Let us write the first few components of the expansion given in the above proposition.

x0(t) = ϒt(a0) =
∫ t

0
u0(s) ds ,

x1(t) =
∫ t

0
(x0(s))

n un(s) ds ,

x2(t) = n

∫ t

0
(x0(s))

n−1x1(s) un(s) ds ,

x3(t) =
(
n

2

) ∫ t

0
(x0(s))

n−2(x1(s))
2 un(s) ds + n

∫ t

0
(x0(s))

n−1x2(s) un(s) ds ,

x4(t) =
(
n

3

) ∫ t

0
(x0(s))

n−3(x1(s))
3 un(s) ds

+ n(n− 1)
∫ t

0
(x0(s))

n−2x2(s)x1(s) un(s) ds + n

∫ t

0
(x0(s))

n−1x3(s) un(s) ds .

Proof The algebraic Eq. (2.5) associated with the differential Eq. (4.10) is

Ŝ = a0 + Ŝ		n · an. (4.11)

Let us first show that the only nonvanishing homogeneous parts of Ŝ are Ŝkn+1, where
k ∈ N. We prove it by the induction on k. The k-th hypothesis is that Ŝkn+l = 0 for all
l = 2, . . . , n. For k = 0, the hypothesis is clearly correct. Assume that it is correct for
k < K, and let us prove that ŜKn+2 = · · · = ŜKn+n = 0. Using (4.11) and the induction
hypothesis, we see that

ŜKn+l =
∑

(p,m)∈Ñ
C(p,m) · Ŝ		p1

1 		 · · · 		 Ŝ
		pK
(K−1)n+1 		 Ŝ

		m2
Kn+2 		 · · · 		 Ŝ

		ml−1
Kn+l−1 · an,

where the sum is taken over all (p,m) = (p1, . . . , pK,m2, . . . , ml−1) ∈ Ñ ⊂ N
K+l−2,

Ñ = {n = p1 + · · · + pK +m2 + · · · +ml−1,

Kn + l − 1 = p1 + · · · + pK((K − 1)n+ 1)

+m2(Kn+ 2)+ · · · +ml−1(Kn+ l − 1)},
and C(p,m) = n!

p!m! , p! = p1! · · ·pK !, m! = m2! · · ·ml−1!. If m2 + · · · + ml−1 ≥ 1, then

from the second equality defining Ñ , we have

l − 1 = p1 + p2(n+ 1)+ · · · + pK((K − 1)n+ 1)

+ 2m2 + · · · + (l − 1)ml−1 + (m2 + · · · +ml−1 − 1)Kn,

which is not less than n (by the first equality defining Ñ ), a contradiction. If m2 + · · · +
ml−1 = 0, then p1 + · · · + pK = n and therefore

l − 1 = n(1 + p2 + 2p3 + · · · + (K − 1)pK −K).

But n does not divide l − 1 ∈ {1, . . . , n− 1}. This implies Ñ = ∅ and Ŝkn+l = 0 for
l = 2, . . . , n. We conclude that the solution of (4.11) is of the form Ŝ = ∑∞

k=0 Ŝkn+1.

Now, similarly as above, we see from (4.11) that

ŜKn+1 =
∑

l∈N(k)

n!
l1! · · · lk ! · Ŝ

		 l1
1 		 Ŝ

		 l2
n+1 		 · · · 		 Ŝ

		 lk
(k−1)n+1 · an,
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where the sum is taken over

N(k) =
{
(l1, . . . , lk) ∈ N

k | n = l1 + · · · + lk, kn = l1 + l2(n+ 1)+ · · · + lk((k − 1)n+ 1)
}
.

Using the first equation defining N(k), we simplify the second equation defining N(k) as
follows:

kn = l1 + · · · + lk + n(l2 + 2l3 + · · · + (k − 1)lk)

= n(1 + l2 + 2l3 + · · · + (k − 1)lk).

Therefore,

N(k) =
{
(l1, . . . , lk) ∈ N

k | n = l1 + · · · + lk, k − 1 = l2 + 2l3 + · · · + (k − 1)lk
}
.

Denoting xk(t) = ϒt(Ŝkn+1) and using the homomorphic property of ϒt , we obtain the
hypothesis of the proposition.

5 Comparison with the Chen-Fliess Approach

In this section, we compare the number of nonzero iterated integrals in two approaches: the
one given in this article and the Chen-Fliess one. Recall that in the latter approach [9], we
assume that we have a differential equation:

ẋ(t) = u0(t)X0(x(t))+ u1(t)X1(x(t))+ · · · + un(t) Xn(x(t)),

x(0) = 0,

where Xi(x) = xi ∂
∂x

, for i = 0, . . . , n, are differential vector fields on R. The solution is
given by

x(t) =
∑
v∈A∗

ϒt(v)Xv(x)(0), (5.1)

where for v = ai1 · · · aik ∈ A∗ we define Xv(x)(0) := Xi1 · · ·Xik (x)(0) as a composition
of vector fields acting on the function h(x) = x and evaluated at the initial value x0 = 0.
Since Xi(x)(0) �= 0 only for i = 0, the sum can be significantly reduced. Our aim is to

eliminate all unnecessary summands. Since the second derivative ∂2

∂x2 x = 0, we need to
compute Xv(x)(0) modulo the second and higher derivatives.

Lemma 5.1 For k ≥ 2 and v = ai1 · · · aik ∈ A∗
k , we have

Xv = ik(ik+ ik−1−1)(ik+ ik−1+ ik−2−2) · · · (ik+· · ·+ i2−k+2)xi1+···+ik−k+1 ∂

∂x
mod

∂2

∂x2
.

Proof We use the induction on k. The case k = 2 is clear. Assume w = ai2 · · · aik+1 ∈ A∗
k

and v = ai1w ∈ A∗
k+1. By the induction hypothesis Xw = Ixα ∂

∂x
mod ∂2

∂x2 ,where I =
ik+1(ik+1 + ik − 1) · · · (ik+1 + · · · + i3 − k + 2), α = i2 + · · · + ik+1 − k + 1, and thus

Xv = xi1+α−1Iα ∂
∂x

mod ∂2

∂x2 . This ends the proof.

Using this lemma, we conclude that for v = ai1 · · · aik ∈ A∗
k , Xv(x)(0) �= 0 only if

i1 + · · · + ik = k − 1, and therefore (5.1) simplifies to

x(t) =
∞∑
k=1

∑
i∈M0(k)

ϒt (ai)ik(ik + ik−1 − 1) · · · (ik + · · · + i2 − k + 2),
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where ai := ai1 · · · aik , and the second sum is taken over all multi-indices i = (i1, . . . , ik)

in the set M0(k) ⊂ ({0, . . . , n})k given by a one equality and k − 1 inequalities:

ik + · · · + i1 − k + 1 = 0, ik + · · · + i2 − k + 2 ≥ 0,
...

ik + ik−1 − 1 ≥ 0,
ik ≥ 0.

On the k-th step of approximation, there are #M0(k) nontrivial integrals to compute.
If we assume n = ∞, one can compute that these are Catalan numbers, i.e., #M0(k) =

1
k+1

(
2k
k

)
. The first ten of these numbers are 1, 2, 5, 14, 42, 132, 429, 1,430, and 4,862.

We see that this growth is much faster than the growth 1, 2, 3, 5, 7, 11, 15, 22, 30, and 42 of
integrals needed to compute the k-th step of the expansion in our approach, as we mentioned
in Remark 2.2.

6 Concluding Remarks

In the article, we formulated a scheme for expanding a solution of a general nonautonomous
polynomial differential equation. The time-dependent homogeneous parts of the expansion
were expressed in terms of iterated integrals. The formula for each of this part was given
recursively by Eq. (2.6). The advantage of our approach is that it is made on algebraic
level. We use the shuffle product which is an algebraic analog of multiplication of iterated
integrals. Therefore, the algebraic formula can be easily transformed into the analytic one
giving the expansion of the solution of the initial problem, as we stated in Theorem 1.

Finally, there is some work to be done. One way of development is to write an explicit
formula for the algebraic series Ŝ preferably with the use of a shuffle product. It would
also be important to find a deeper algebraic structure of this solution. Another way is to
rewrite the scheme for systems of nonautonomous polynomial differential equations and
estimate the radius of convergence in this case. This is important, for example, to integrate
higher-order Lie-Sheffers systems.
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7. Cariñena JF, de Lucas J, Ramos A. A geometric approach to integrability conditions for Riccati
equations. Electron J Differ Equ 2007. (122) 14pp (electronic).

8. Chen K-T. Algebraic paths. J Algebra. 1968;10:8–36.
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