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Abstract

Relating chemical features to bioactivities is critical in molecular design and is used extensively in the lead discovery
and optimization process. A variety of techniques from statistics, data mining and machine learning have been
applied to this process. In this study, we utilize a collection of methods, called associative classification mining (ACM),
which are popular in the data mining community, but so far have not been applied widely in cheminformatics.
More specifically, classification based on predictive association rules (CPAR), classification based on multiple
association rules (CMAR) and classification based on association rules (CBA) are employed on three datasets using
various descriptor sets. Experimental evaluations on anti-tuberculosis (antiTB), mutagenicity and hERG (the human
Ether-a-go-go-Related Gene) blocker datasets show that these three methods are computationally scalable and
appropriate for high speed mining. Additionally, they provide comparable accuracy and efficiency to the commonly
used Bayesian and support vector machines (SVM) methods, and produce highly interpretable models.
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Background
Classification is an essential part of data mining, and it
involves predicting a categorical (discrete, unordered)
label upon a set of attributes/variables. In cheminfor-
matics, attributes usually are molecular descriptors
such as structural fingerprints or physiochemical proper-
ties while the label represents bioactivity (for example,
active/inactive class). Classification methods such as
Decision forest [1], Bayesian classification [2-5], artificial
neural networks(ANN), support vector machines (SVM)
[6-8], k-nearest neighbor approach [9] and random for-
est [10] inter alia have been comprehensively used in
cheminformatics, especially in drug discovery, to predict
the activity of a compound based on its structural fea-
tures. Several studies in the data mining community
have shown that classification which is based on asso-
ciations rule mining or so called associative classifica-
tion mining (ACM) is able to build accurate classifiers
[11-13] and is comparable to traditional methods such
as decision trees, rule induction and probabilistic
approaches. ACM is a data mining framework that
employs association rule mining (ARM) methods to
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build classification systems, also known as associative
classifiers. Recently, there have been some applications
of ARM or ACM in the biological domain that are
focused on genotype-phenotype mapping [14], gene
expression data mining [15-17], protein-protein inter-
action (PPI) [18] or protein-DNA binding [19]. Genes
found to be associated with each other by ARM or ACM
can be helpful in building gene networks. Furthermore,
the effect of cellular environment, drugs or other physio-
logical conditions on gene expression can be uncovered
by ACM as well [15]. In the cheminformatics field, there
have been a few methods and typical applications using
frequent itemset mining [20-23]. These methods enu-
merate fragments or the sub-graphs of the structure by
applying sub-graph discovering algorithms on the topo-
logical structure of a molecule. Some [20] used an exist-
ing algorithm—frequent sub-graphs (FSG), while others
[21,24] developed their own methods. Besides being used
directly in associative classification, the mined frequent
sub-graphs can be used as features for other methods
such as SVM classifier [20]. However, to our best know-
ledge, compared with other fields, ACM has not been
well explored.
ACM integrates association rule mining and classifica-

tion. It utilizes a series of high quality class association
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rules (CARs) mined from the training dataset upon pre-
defined minimum support and confidence constraints to
build highly accurate classifiers [11]. Unlike most rule
induction approaches which derive rules from part of
the training library, ACM builds global classifiers based
on the entire training data set. In recent years, a number
of algorithms including classification based on associ-
ation rules (CBA) [11], classification based on multiple
association rules (CMAR) [12], classification based on
predictive association rules (CPAR) [25], multi-class,
multi-label associative classification (MMAC) [26], multi-
class classification based on association rules (MCAR)
[27], and generic association rules based classifier (GARC)
[28] have been proposed. They all involve two basic steps:
1) generate classifiers consisting of a set of CARs; and
2) predicate new data by means of the classifier. The first
step usually includes rule generation, rule ranking and
rule pruning, and the second step involves rule selection,
rule applying and classification. Figure 1 shows the frame-
work we use in our study.

Generation of classifiers
Let A be a set of m distinct attributes {A1, A2, . . ., Ai}
1≤i≤m and C be a list of n distinct classes Cj 1≤j≤n. The
attributes of A can be either continuous or categorical.
For instance, the continuous ones can be pKa, solubility,
or some quantum chemistry terms etc., and the categor-
ical ones can be existence or nonexistence of certain
Step 1: Generate descriptors

Step 2: Process descriptors

Step 3: Mine frequent itemsets

Step 4:  Discover rules

Step 5: Rank, prune and evaluate rules

Step 6: Predict

Figure 1 ACM framework.
features such as benzyl. The classes of C usually can be
active or inactive, inhibiting or non-inhibiting. A training
set T = (t1, t2, . . ., tn) is described as a set of transac-
tions. Each transaction ti is a combination of attribute
values plus a class. For our case, a transaction is a chem-
ical compound. For example, in Table 1, compound C1
is a transaction. A is a fingerprint set {Bit1, Bit2,. . ., Bit7}
and C is a list consisting of “active” and “inactive”.
Let s be a set of items with s� A [C. s is referred to as
an itemset. A ruleitem is an itemset which contains
class information with an implication form of X→C,
X � A. A possible ruleitem in Table 1 n=5 can be
{Bit1 = 1, Bit7 = 0}→ “Active” with support = 60% and
confidence = 100%.
Prior to rule generation, all frequent ruleitems are

discovered. A ruleitem is strong if and only if it satisfies
a minimum support θ (named minsup) threshold and
minimum confidence δ (named minconf) threshold. The
support of a ruleitem is the percentage of transactions
in T that containX [C (i.e., the union of sets X and C,
or say both X and C); the confidence of a ruleitem is
the percentage of transactions in T having X that also
contain C. Their probability definitions are support
(X→C) = P (X [C) and confidence (X→C) = P (C|X)
respectively. For the above example, the support = 3/5 =
60% and confidence = 60%/60% = 100%. If δ = 10% and
θ = 75%, then the example ruleitem is frequent and
strong. Each ruleitem passing the minconf threshold is
identified and a corresponding rule is generated. The
derived rule from the example “if a compound’s finger-
print has Bit1 set and Bit7 not set then it tends to be ac-
tive” provides intuitive interpretation of a relationship
between the biological activity and chemical features.
Apriori [29], frequent pattern growth (FP-growth) [30]

and Eclat [31] are the three most widely used basic algo-
rithms of frequent itemset mining, which have been
used for the first and major time consuming step.
For example, CBA employs a traditional breadth-first
method—Apriori [11], and CMAR utilizes the FP-
growth approach [12]. Other algorithms are also applied,
as an illustration, the modified first order inductive
learner (FOIL) is adopted by CPAR [25]. Once all fre-
quent rule items are discovered, they can be used for
classifier generation and prediction. The size of the rule
Table 1 A sample dataset with fingerprint as features

Compound Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Class

C1 1 1 0 0 1 0 0 Active

C2 0 0 1 0 0 1 0 Inactive

C3 1 1 0 1 0 0 1 Active

C4 1 0 1 1 0 0 0 Active

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Cn 0 0 1 0 1 1 1 Inactive



Table 2 The characteristics of the data sets used in this
paper

Data set hERG antiTB Mutagenicity

Source PKKB [32] Prathipati et al. [2] Jeroen et al. [35]

#Compounds 806 3,779 4,337

Diversity 0.90 0.90 0.93

Class blocker/
non-blocker

active/inactive mutagen/
non-mutagen

Note: The diversity of each dataset is the average distance of all molecules
and is calculated based on ECFP_6 by using Pipeline Pilot. The distance
is defined as (1- similarity) for every pair of molecules based on the
specified fingerprint.
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set is reduced in a process of pruning and evaluating
with removing redundant and non-predictive rules to
improve the efficiency and accuracy. The popular prun-
ing techniques include chi-square testing, database
coverage, rule redundancy, conflicting rules and pessim-
istic error estimation etc [13]. Pruning can be applied
when extracting frequent ruleitems, generating rules
(chi-square testing), or building classifiers (database
coverage). Some pruning techniques such as database
coverage and rule redundancy tend to produce small
rule sets while others incline to generate relatively bigger
classifiers. In practical usage, there is a trade-off between
the size of classifiers and accuracies. After a classifier is
built, it can be applied for next two steps: rule ranking
and prediction.

Prediction
Firstly, rules in the classifier are ranked by support, con-
fidence and cardinality. In the event of a tie, most meth-
ods assign orders randomly, but Thabtah et al. argued
that the class distribution frequency of the rule should
be considered under this situation [13]. The prediction
is based on either a single rule which matches the new
data and has the highest precedence, or multiple rules
that are all applicable to the new data. Different predic-
tion methods are categorized as: maximum likelihood-
based [11,27], score-based [12] and Laplace-based [25].
For some cases, the resulted classifier is more appeal-

ing than a “black box” such as ANN, SVM or Bayesian.
Although most ACM algorithms have been tested
against some standard data sets from UCI data collec-
tion; however, the application of these methods and in-
terpretation of the generated ACM classifiers in terms of
chemical features and bioactivity are not available.
In this paper we present data supporting the viewpoint

that ACM can be used for modeling chemical datasets
while preserving some appealing features from other
methods.

Experimental
Datasets

(1) The hERG dataset is downloaded from
pharmacoKinetics Knowledge Base (PKKB) [32].
The dataset contains 806 molecules with hERG
activities. 495 compounds are from Li’s dataset [33]
and 66 from WOMBAT-PK [34] database; the other
245 compounds are collected by PKKB from
publications. Compounds are classified into blockers
(IC50 less than or equal to 40μm) and non-blockers
(IC50 greater than 40μm).

(2) The antituberculosis (antiTB) dataset is obtained
from Prathipati’s paper [2]. According to this paper,
the dataset contains a large number of curated and
diverse chemical compounds which are appropriate
for modeling. In this study, all 3,779 compounds are
used. The compounds are classified into active and
inactive groups using the same criterion as used in
the paper— minimum inhibitory concentration
(MIC) less than 5μM.

(3) The mutangenicity dataset contains 4,337
compounds with Ames test data and 2-D structures.
The dataset is constructed from the available Ames
test data by using the following criteria: a) standard
Ames test data of Salmonella Typhimurium strains
required for regulatory evaluation of drug approval;
b) Ames test performed with standard plate
method or preincubation method, either with or
without a metabolic activation mixture. Compounds
which contain at least one positive Ames test
result are classified as mutagen, otherwise as
non-mutagen [35].

These three datasets are characterized by their diver-
sities ranging from 0.90-0.93 and the ratio of the number
of compounds is hERG:antiTB:Mutagenicity=1:4.7:5.4
(Table 2). The diversity ensures multiple patterns, and
the different sizes of the dataset can be used to investi-
gate the relationship between performance and size.
Molecular Descriptors
In all experiments, the MDL public keys and PubChem’s
CACTVS [36] are used for model development since
they tend to yield high quality models [10,37,38]. Both
fingerprints belong to structural fingerprints which
encode a bit string based on the topological structure.
The MDL public keys is generated by Pipeline Pilot [39];
the PubChem chemical fingerprint is produced by
using an in-house program based on the Chemistry
Development Kit (CDK) [40]. In addition to the above
fingerprints, properties such as ADMET properties,
physiochemical properties and simple counts of molecu-
lar features (Table 3) are included for model building
as well.



Table 3 Property descriptors used in the modeling

ADMET ADMET_BBB_Level,ADMET_Absorption_Level,ADMET_CYP2D6,ADMET_PPB_Level

Physiochemical ALogP,Molecular_Solubility,Molecular_SurfaceArea,Molecular_PolarSurfaceArea,Molecular_FractionalPolarSurfaceArea,
Molecular_SASA,Molecular_PolarSASA,Molecular_FractionalPolarSASA,Molecular_SAVol,ChemAxon_LogP,ChemAxon_
Polarizability,ChemAxon_Refractivity,ChemAxon_TPSA,FormalCharge

Simple counts Num_Atoms,Num_Bonds,Num_Hydrogens,Num_NegativeAtoms,Num_RingBonds,Num_RotatableBonds,Num_
BridgeBonds,Num_Rings,Num_RingAssemblies,Num_Chains,Num_ChainAssemblies,Molecular_Weight,Num_H_
Acceptors,Num_H_Donors,ChemAxon_HBA,ChemAxon_HBD

Note: All property descriptors are computed by using Pipeline Pilot. The name and meaning of property descriptors can be found in Pipeline Pilot help
documents. In most cases, the meaning of a name can be determined from the name itself. For example, ADMET_BBB_LEVEL means ranking of the LogBB values
by using Accelrys blood–brain barrier penetration model: 0 is very high; 1 is high; 2 is medium; 3 is low and 4 is undefined, namely, molecule is outside of the
confidence area of the regression model used to calculate LogBB.

Table 4 Summary of used ACM methods

Method Summary

CBA Classification based on association rules [11,45] first
discovers all rules by using Apriori approach, and then
prunes rules by database coverage technique.

CPAR Classification based on predictive association rules [25]
uses a greedy approach—a weighted version of FOIL-gain
to identify features and discover rules. A PNArray data
structure is utilized to reduce storage space and
computation time [13].

CMAR Classification based on multiple association rules [12]
employs FP-growth method to discover rules. FP-growth
builds a FP-tree based on the dataset using less storage
space and improves the efficiency of retrieving rules.
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Properties
Both Naïve Bayesian (Bayesian) and ACM prefer cat-
egorical attributes since the conditional probability for
Bayesian can be described using a smaller table and the
number of itemsets for ACM can be significantly
reduced. Meanwhile, converting continuous attributes
into categorical attributes also helps treat all the attri-
butes and the class identically. The quantitative/numeric
attributes such as AlogP, molecular weight, number
of H-acceptor, H-donor and rotation bonds are discre-
tized into levels and the levels are mapped into categor-
ical values. To demonstrate, for AlogP, we set 1 for
0≤AlogP≤3.5, 2 for 3.5<AlogP≤7 and 3 for 7<AlogP.
For every data set, the entropy based methods are
utilized for discretizing all the attributes, which has
been done by Rapid miner 5.1 [41]. The process is per-
formed by using the “Discretize by Entropy” operator
in RapidMiner with default settings. Previous studies
have shown that the performance of Bayesian algorithm
can be significantly improved if entropy-based discre-
tization is adopted [42,43]. As a result, all the continu-
ous attributes are converted into categorical attributes
for mining.

Fingerprints
Both MDL public keys and PubChem fingerprints are bit
strings of fixed length with size of 166 and 881 respect-
ively. There is a one-to-one mapping between the bits
and molecule features ideal for our mining and model
interpretation. Each bit can be set to 1 or 0 representing
the existence or nonexistence of a predefined chemical
feature. The bit string can be mined directly by the soft-
ware package used in this research.

Classification
All the computations are carried out on a PC Q6600
2.4GHz with 6G memory running on the 64-bit Win-
dows 7 operating system. Results of the Bayesian and
SVM are used as references. The computation and
modeling of Bayesian and SVM are performed by using
RapidMiner with default settings. As to speed, Bayesian
is the fastest one; ACM is faster than SVM in most cases.
For example, the computation time for mutagenicity
dataset are 5 seconds, 20.5 minutes, 1.5 minutes, 5.7 min-
utes and 6.3 minutes for Bayesian, SVM, CPAR (there is
another implementation which only takes 12 seconds),
CMAR and CBA respectively.

Methods
Associative classification
The implementation of CBA, CPAR and CMAR (Table 4)
from Coenen F [44]. are used in this study. We added
functions such as outputting classifiers, calculating F1
scores and a graphical user interface (GUI). Parameters
δ, min_gain, α and k are set to 0.55, 0.7, 2/3 and 5 re-
spectively for CPAR. For CBA and CMAR computation,
MinSup and MinConf are set as 1% and 50%. CBA v2.1
from Liu et al. [45] is used for rule formatting and fea-
ture analysis.

Model Assessment and Evaluation
For all data sets, the classification performance is
assessed by using 10-fold cross validation (CV). This
method provides more reliable assessment of classifiers
which generalizes well to new data. The accuracy of
the classification can be determined by many existing
evaluation methods such as error-rate, recall-precision,
any label and label-weight etc. In this paper, we use
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F-score (F1 score or F-measure) to measure the over-
all performance.

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

ð1Þ

Precision ¼ true positive
true positiveþ false positive

ð2Þ

recall ¼ true positive
true positiveþ false negative

ð3Þ

To further study the robustness of the generated mod-
els, Y-randomization is applied to the antiTB dataset as
an alternative validation method. Paola [46] recom-
mended that Y-randomization and CV should be carried
out in parallel to test the significance of the derived
models. In this method, the bioactivity vector is randomly
shuffled and a new model is generated based on the
original feature matrix. The process is repeated five
times and the resultant models are compared with the
original one.

Results and discussion
Discretization
Figure 2 shows that all the properties of antiTB are dis-
cretized into levels from 2 (binary) to 6. For each
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Figure 2 Discretization results of the antiTB datasets.
property, the number of levels indicates how many splits
are required to maximize the information gain. The type
of properties, the number of compounds, the diversity of
the dataset and the distribution of classes affect the
discretization result. For instance, given the same prop-
erty, the number of chains is split into different intervals
proportionally according to the dataset. The entropy-
based discretization process automatically removes the
attribute with only one level. In fact, those attributes are
not discretized since the entropy criterion is not met.
Hence, although the same attributes are used for each
dataset, the final attributes used for modeling are differ-
ent. As an example, Num_AromaticBonds only exists
in the mutagenicity and hERG datasets, while ADME-
T_Absorption_Level only exists in the antiTB and muta-
genicity datasets.

Effects of fingerprint size and encoding
As shown in Table 5, the fingerprint size and encoding
scheme have a great impact on the effectiveness of the
model. In our experiment, a larger fingerprint does not
always afford a higher accuracy for all the approaches.
The performance of fingerprints depends on the dataset
and the methods used. To illustrate, for the mutagenicity
dataset, the accuracy of MDL is higher than that of
PubChem no matter what method is used. However, for
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Table 5 F-score of all the data sets using different descriptors or fingerprints

Data set Descriptors Classification Model

SVM Bayesian CPAR CBA CMAR

AntiTB MDL 61.82±2.96 63.00±2.97 70.78±3.51 72.06±2.38 69.84±2.14

Properties 69.50±1.84 70.48±1.80 63.27±3.10 66.09±5.66 63.49±2.51

PubChem 71.08±1.72 68.93±2.23 74.15±1.75 63.62±2.35 67.25±1.52

Mutagenicity MDL 74.26±2.87 69.07±3.49 77.37±5.25 77.75±4.89 75.48±5.11

Properties 70.04±3.99 68.82±6.13 66.75±2.74 75.87±3.58 74.57±5.44

PubChem 72.67±3.80 66.41±3.66 75.77±4.16 76.13±3.91 71.91±5.38

hERG MDL 62.62±6.73 70.08±9.64 72.75±12.26 69.20±6.84 73.69±9.67

Properties 80.82±7.22 75.73±13.35 72.78±10.39 79.65±6.37 80.73±8.18

PubChem 60.13±9.98 73.18±11.89 77.72±9.70 74.77±8.28 78.03±9.79

Table 6 Accuracy of Y-randomization on antiTB_ MDL

Model CPAR CBA CMAR

original 70.78±3.51 72.06±2.38 69.84±2.14

1 44.25±19.38 43.08±3.97 44.03±4.68

2 40.35±19.54 49.04±2.92 51.00±2.81

3 39.27±11.29 48.98±3.94 45.77±3.61

4 57.83±8.73 50.66±2.37 48.24±3.84

5 57.85±6.11 52.62±3.11 51.05±5.45
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the hERG dataset, the accuracy of PubChem is relatively
higher when modeled by ACM; for the antiTB dataset,
PubChem perform better for the SVM and Bayesian
approaches. During the optimization of MDL keys,
Durant et al. got similar results by comparing finger-
prints with different sizes [47].

Comparison of different approaches
Five models are built for each combination of dataset
and feature type (e.g. for antiTB dataset when using
MDL, antiTB_MDL will be used to represent one
combination). In total, there are nine combinations of
datasets and feature types which generate forty-five
models. Table 5 shows that the overall F-score of ACM
is comparable to or better than that of Bayesian and
SVM. The highest F-score in each combination is
shown in bold. Among the total nine combinations,
only two are achieved by SVM and Bayesian which is
70.48±1.80 for the antiTB_MDL combination (Bayesian)
and 80.80±7.22 for the hERG_properties (SVM). A sim-
ple ranking method can be used to compare CPAR, CBA
and CMAR without considering the complexity of the
classifier. For any scenario, the three approaches are
assigned 1, 2 and 3 according to the accuracy with 1 for
the most accurate. For example, for antiTB_MDL, CPAR
is 2, CBA is 1 and CMAR is 3. The final rank is the
average of all cases. The result is 2.11, 1.78 and 2.11 for
CPAR, CBA and CMAR respectively, which shows
the order of the accuracy is CBA > CPAR = CMAR in
this study.

Y-randomization
Table 6 shows the robustness of the models by the Y-
randomization method. All randomized models perform
worse than the original ones (bold) in terms of accuracy.
The randomized rules generated also have low classifica-
tion abilities on the original dataset. For example, a rule
with confidence 98.82% in the randomized dataset has a
confidence value of only 53% in the original dataset.
This proves that models for the original dataset cannot
be generated from the randomized datasets and also
indicates that the good performance of the original mod-
els is not achieved by chance correlation or by structural
redundancy of the datasets.

ACM classifiers and their chemical significance
27 ACM models are built in total in our study. For the
classifier and significance analysis, CBA models for the
antiTB dataset are chosen to demonstrate the analyzing
strategies and their chemical significances. The same
strategies can be applied to any other models and similar
results can be obtained.

Single feature analysis
Some classifiers have around twenty rules and others
may have several hundreds. The number of generated
rules varies depending on several factors: the size of the
dataset, features, algorithms etc. The results show that
CMAR produces the biggest classifiers in most cases.
Parameters can be tuned to reduce the size of the classi-
fier but the accuracy may be lowered correspondingly.
Another important character of the classifiers is the
length of the rules, namely, the size of the ruleitem. In
our study, the item size of CPAR ranges from one
to seven. Although to reduce the total number of item-
sets, the maximum length of CBA and CMAR is set to
four, the length of the generated rules is mostly two
or three. Longer rules sometimes can provide us more
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information about the compounds since they contain
more structural fragments.
To analyze the importance of each feature to the activ-

ity, both the confidence and support are taken into ac-
count for each feature in each rule. A number R is
assigned to each feature in the rule.

R ¼ Round
sign existenceð Þ � Support þ Confidenceð Þ

2
� 100

� �

ð4Þ

If a feature is existing, then sign = 1; otherwise
sign = −1. The rank of this feature is the sum of R. With
antiTB dataset as an example, Additional file 1: Table S1
shows the rank of each feature for active and inactive
compounds respectively. Of particular interest are the
features (yellow features in Additional file 1: Table S1)
that exist only in active compounds and those only
found in inactive compounds (red). For green features,
their contributions to the bioactivity depend on other
features that are in association with them. The MDL fea-
ture space is reduced from 166 to 101 for the antiTB
dataset. The same analysis can be carried out for the
PubChem fingerprint. To be noticed, the feature space
for PubChem is remarkably reduced from 881 to 146.
Although MDL and Pubchem use substantially different
encoding schemes, the mined features are related, such
as MDL 110 with PubChem 366, 117, 123 and 95, MDL
75 with PubChem 392 and MDL 22 with PubChem 116
(Additional file 1: Table S2 and S3). Among the top ten
features, multiple features (Additional file 1: Table S4)
are linked to each other.
The property models can be analyzed in the same

fashion. As mentioned above, properties are discret-
ized into different levels. The physiochemical properties
(Figure 3) suggest that the activity is closely related to
AlogP, polar surface area and solvent accessible surface
area since 0.985<AlogP 1<4.446, ChemAxon_TPSA 0 <
46.17, Molecular_PolarSASA 0< 74.521 and Molecular_
PolarSurfaceArea 0< 47.92. Ronald’s model demon-
strated that the best AlogP is from −2.165 to 1.373 [49]
which overlaps a lot with our results. However, his
model favors a relatively bigger PSA ranging from
55.121 to 94.036. A bigger PSA value sometimes will
inhibit the intestinal absorption of an orally admini-
strated drug.

Association rule analysis
The single feature analysis provides a lookup table
(Additional file 1: Tables S1, S2, S3, and S4 and Figure 3)
for general references of “good” or “bad” features. How-
ever, the information is not as complete as what the
rules can provide. The discovered rules in this study rep-
resent a number of non-random and interesting
relationships that can help rational molecular design and
can ultimately be helpful for drug discovery. Depending
on the implementations, the classifier may use up to k
rules to determine the class of a compound where k may
range from one to seven. The interpretation of the rules
is straightforward given the meaning of each bit in the
fingerprint or the names of the properties. For example
the rule 1 in Table 7 states that if a compound contains
substructure NCO (Bit 110) and A!O!A (Bit 126) then it
is active. There are 23.10% percent of the compounds in
the dataset that meet this requirement and among them
75.14% percent are active compounds. Rule 1–4 and
their matched molecule examples are provided in
Additional file 1: Table S5. Based on the meaning of
each bit and SMARTS pattern, NCO is interpreted as N,
C and O connect to each other by any bond type, and A!
O!A as O connects to any atoms with non-ring bond.
Compared with the top features mined by ECFP finger-
print [2], the G14 contains both NCO and A!O!A. In
addition, rule 3 indicates that NCO and *~*(~*)(~*)~*
which means any atom connects to 4 atoms with any
bond type are also “good” features. This also matches the
top features of G2, G3, G5, G6, G8, G9, and G10 in the
same paper. Both rule analysis and single feature analysis
imply NCO is a very important feature which is good for
“active” and bad for “inactive”. Interestingly, a CoMFA
study by Rahul [50] shows that the NCO group plays an
important role in the pharmacophore model too.
The property rules utilize a set of property levels to

achieve relatively higher classification accuracy. Rule 5
employs ALogP with Num_RingBonds and non CYP2D6
inhibitor together to identify active compounds. Our
previous single feature analysis discovered that an
optimum ALogP was important for activity. The specific
mechanism behinds the association of CYP2D6 level and
antiTB activity is not clear. Several popular antiTB drugs
such as isoniazid and rifampicin, induce certain CYP
activity. A possible explanation of non CYP2D6 inhibitor
related to active antiTB activity might be that some
drugs are administrated as prodrug. Their active ingredi-
ents are metabolites depending on the CYP activity such
as the undergoing drug SQ109 [51]. Finally, the level
number of ring bonds can help researchers limit the
number and size of the rings at the same time.

Conclusions
ACM is a powerful tool for modeling as it not only
offers comparable accuracy but also interpretability. In
particular, the measures of descriptor importance can
provide guidance for molecule design. It does not need
prior feature selection or parameter tuning but preserves
the most appealing feature of Bayesian and Decision
Tress—the ability to handle a large number of descrip-
tors simultaneously. Compared with some tree-based
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Figure 3 Rank of the levels of the properties for the antiTB dataset.
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methods, models generated by ACM are relatively stable
and their accuracies are higher. Therefore, the interpret-
ability of the model is more reliable—an obvious advan-
tage in contrast with “black-box” methods. The mined
association rules represent the possible relationships
between the structure and bioactivity. More functional
rules can be found by using different features or criteria.
Among the three methods studied, CBA has relative
higher accuracy than CPAR and CMAR, and CMAR
generates the biggest classifiers. Additionally, the classi-
fier of CPAR has the longest rules.
Table 7 Selected association rules for the antiTB dataset

Association rules Support

MDL

1 [#7]~[#6]~[#8] AND *!@[#8]!@* → cla

2 Not [#7]~*~*~[#8] AND not [#7]!:*:* →

3 [#7]~[#6]~[#8] AND *~*(~*)(~*)~* →

4 [#7]~*~[CH2]~* AND [#8]~[#6]~[#8]

Property

5 ALogP[0.985 - 4.446] AND Num_Ring
ADMET_CYP2D6[=0 ] → class = activ

6 Num_Hydrogens[18–50] AND Molec
AND Molecular_SASA[690.864 - 1058

7 Molecular_FractionalPolarSASA[0.140
Solubility[−12.036 - -7.198] AND Che

8 Num_Bonds[<30] AND ChemAxon_T
FractionalPolarSASA[<0.140] → class
Single feature analysis provides a fast way to access the
“good” or “bad” features for antiTB compounds. The list
of fingerprint bits preferentially presented in active or
inactive compounds can be used as a guide for screening
and optimizing. Depending on the attributes and the
methods of discretization, both general and specific
interpretations can be made from the ACM classifiers by
combining chemical or biological knowledge. In each
case the generated model indicates that a very strong
relationship between the structural features and bioactiv-
ities exists in the studied datasets.
Confidence

ss = active 23.10% 75.14%

class = inactive 21.38% 75. 50%

class = active 18.95% 81.98%

→ class = active 18.37% 76.80%

Bonds[>19] AND
e

9.55% 74.64%

ular_Solubility[−12.036 - -7.198]
.920] → class = inactive

9.03% 78.31%

- 0.312] AND Molecular_
mAxon_HBD[>3] → class = inactive

9.00% 91.84%

PSA[<46.170] AND Molecular_
= active

9.00% 81.57%
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All ACM methods used here are called traditional
ACM methods because they do not distinguish the dif-
ference of significance of features. For some cases, fea-
tures are not equally important. For example, in our
study, even though we know AlogP, ADMET_BBB_Level
or Molecular_SASA are more important than others,
traditional ACM is not able to incorporate this informa-
tion during mining. Our next step will incorporate
weight information of the features into ACM—weighted
ACM, which can generate more correlated and import-
ant patterns [52-54]. Recently, knowledge from semantic
ontologies is used to understand or interpret the mean-
ing of the patterns produced by ACM [55]. Additionally,
it is integrated into an existing rule reduction process to
build concise, high quality and easily interpretable rule
set [56]. At present, most of the ontology-driven mining
in the biomedical domain uses the UMLS [57] or GO
[58] ontology, but now several chemical information
ontologies such as ChEBI [59] and CHEMINF [60] are
available too. Our future work will try to improve
current models by incorporating those ontologies con-
straints during the rule generation process. We envision
that there will be more applications of ACM in the
chemical domain.

Additional file

Additional file 1: Table S1. MDL and PubChem feature rank in active
and inactive compounds for antiTB. Note: This table is based on the
antiTB dataset. If a feature exists (e.g. bit137=1), then sign = 1, otherwise
(bit 137=0) sign = −1. Rank in Active means the rank of a feature in
active compounds and Rank in Inactive for a feature in inactive
compounds. The rank value is computed by equation 1. For Bit 137, it
means both bit137=1 and bit137=0 are discovered in the rules for
inactives. The rank for bit137=1 and bit137=0 for inactives is 44 and 83
respectively. Yellow features only exist in active compounds; red only in
inactive compounds; green in both types. Table S2: Important MDL
features for the antiTB dataset. Note: Each bit corresponds to a SMARTS
pattern [48] which consists of two fundamental types of symbols: atoms
and bonds. “*” means any atom, “A” an aliphatic atom, “~” any bond and
“:” aromatic bond. So Bit 89, [#8]~*~*~*~[#8], means “two oxygen atoms
connected by three unspecified atoms with any type of bonds”.
Table S3: Important PubChem features for the antiTB dataset. Table S4:
Related features among top 10 of MDL and PubChem fingerprints. Note:
All visualized SMARTS patterns are generated by using smartsviewer from
http://smartsview.zbh.uni-hamburg.de/. The color scheme uses the
popular CPK coloring with green for fluorine, red for oxygen, black for
carbon, yellow for sulfur and blue for nitrogen. Table S5: The matched
molecules for rule 1–4 in Additional file 1: Table S3. Note: a. red shape is
*!@[#8]!@* and green shape [#7]~[#6]~[#8] b. molecule does not contain
the two substructures c. red shape is *~*(~*)(~*)~* and green shape is
[#7]~[#6]~[#8] d. red shape is [#7]~*~[CH2]~* and green shape
is [#8]~[#6]~[#8].
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