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Abstract

Background: Noradrenaline (NA) is known to limit neuroinflammation. However, the previously described induction
by NA of a chemokine involved in the progression of immune/inflammatory processes, such as chemokine (C-C motif)
ligand 2 (CCL2)/monocyte chemotactic protein-1 (MCP-1), apparently contradicts NA anti-inflammatory actions. In the
current study we analyzed NA regulation of astroglial chemokine (C-X3-C motif) ligand 1 (CX3CL1), also known as
fractalkine, another chemokine to which both neuroprotective and neurodegenerative actions have been attributed. In
addition, NA effects on other chemokines and pro-inflammatory mediators were also analyzed.

Methods: Primary astrocyte-enriched cultures were obtained from neonatal Wistar rats. These cells were incubated for
different time durations with combinations of NA and lipopolysaccharide (LPS). The expression and synthesis of different
proteins was measured by RT-PCR and enzyme-linked immunosorbent assay (ELISA) or enzyme immunoassays. Data were
analyzed by one-way analysis of variance (ANOVA), followed by Newman-Keuls multiple comparison tests.

Results: The data presented here show that in control conditions, NA induces the production of CX3CL1 in rat cultured
astrocytes, but in the presence of an inflammatory stimulus, such as LPS, NA has the opposite effect inhibiting CX3CL1
production. This inversion of NA effect was also observed for MCP-1. Based on the observation of this dual action, NA
regulation of different chemokines and pro-inflammatory cytokines was also analyzed, observing that in most cases NA
exerts an inhibitory effect in the presence of LPS. One characteristic exception was the induction of cyclooxygenase-2
(COX-2), where a summative effect was detected for both LPS and NA.

Conclusion: These data suggest that NA effects on astrocytes can adapt to the presence of an inflammatory agent
reducing the production of certain cytokines, while in basal conditions NA may have the opposite effect and help to
maintain moderate levels of these cytokines.
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Background

Noradrenaline (NA) is recognized as a key modulator in
the regulation of multiple central nervous system (CNS)
activities, such as mood changes [1], memory formation
[2], stress response [3] and cellular energy metabolism
[4], among others. However, in relation to the study of
mechanisms involved in the development of diseases
with a neurological component, the main attribute of
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NA is its ability to reduce the neuroinflammatory pro-
cesses associated to them [5]. The degeneration of the
main noradrenergic area in the brain, the locus
coeruleus, seems to be one of the stages preceding the
subsequent development of neuronal death observed in
Alzheimer’s disease [6]. In fact, diverse experimental set-
tings indicate that NA interactions with different types
of brain cells lead to the regulation of inflammatory
pathways and mediators [5].

Based on this, a sound hypothesis proposes that the
loss of NA constitutive levels can create a ‘permissive’
environment for the development of inflammation and
subsequent neurodegeneration [7].
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Among other roles, astrocytes are in charge of the sur-
veillance of the CNS status, providing alarm signals
when threat is detected and helping to maintain CNS
homeostasis [8]. Thus, we have focused our work on the
analysis of NA interaction with astrocytes, to help eluci-
date the means through which NA protects neurons
against different types of injuries.

We previously observed that NA, through the activa-
tion of P2-adrenergic receptors and the elevation of
cAMP, induces the production of the chemokine (C-C
motif) ligand 2 (CCL2)/monocyte chemotactic protein 1
(MCP-1) and protects neurons against excitotoxicity [9].
This fact, while contradictory with the well-known ac-
tions of CCL2 as a chemoattractant that facilitate the
progression of the immune and inflammatory responses
(which can have fatal consequences for nearby cells)
[10], is in agreement with several studies which describe
neuroprotective actions of CCL2 against multiple types
of injuries [11]. This observation led us to the analysis of
NA regulation of different chemokines on astrocytes.

As their name suggests, all chemokines can attract
those cells expressing the specific receptors. This ex-
plains their involvement in very disparate processes
where cell migration is present, such as cell adhesion/
trafficking [12], angiogenesis [13] or progenitor cell mi-
gration [14]. In addition, as mentioned, chemokines by
themselves may also cause some changes in cell func-
tioning by direct interaction with such cells. In fact, new
actions unrelated to the regulation of cell migration have
been recently discovered for chemokines, highlighting
the potential relevance of this family of proteins, particu-
larly in the field of neuroinflammation [11].

One of the chemokines that has proven to play a sig-
nificant role in the regulation of brain physiology is che-
mokine (C-X3-C motif) ligand 1 (CX3CL1), also known
as fractalkine or neurotactin. CX3CL1 is expressed by
neurons, astrocytes and microglia, and its specific recep-
tor CX3CR1 is also expressed by all these cell types [15].
However, since the main production of CX3CL1 is ob-
served in neurons and the receptor seems to be more
abundant in glial cells, it has been proposed that
CX3CL1 serves as an intermediary used by neurons to
communicate with glial cells. While several studies have
shown that CX3CL1 can modulate neuronal activity and
survival, others indicate that the restrain of CX3CL1 ac-
tivity can also prevent neuronal damage in certain path-
ologies [16-18]. This potential dual role of CX3CL1 has
been proposed to be dependent on the different stages
of certain neurodegenerative diseases where microglia
activation may be beneficial (by their ability to remove
apoptotic cells and toxic debris) or detrimental for neu-
rons (by the elimination of healthy cells) [19].

The present study describes the induction of CX3CL1
expression and synthesis by NA in astrocytes. The
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results obtained also indicate that in the presence of a
pro-inflammatory stimulus, such as lipopolysaccharide
(LPS) from gram-negative bacteria, which causes a large
production of CX3CL1 by astrocytes, NA has the oppos-
ite effect inhibiting CX3CL1 production. This observa-
tion led us to analyze if this also applies to CCL2 and
other related chemokines, as well as different pro-
inflammatory mediators. The data show that while each
one of the proteins evaluated has a different regulation
by NA, in most cases where NA induced their expres-
sion in control conditions, the presence of LPS switched
NA effect towards inhibition. This suggests that, in the
brain, NA may be responsible for the maintenance of
the constitutive levels of certain factors, while it can re-
press the overproduction in inflammatory situations.

Methods

Reagents

Fetal calf serum (<10 EU/ml) and Dulbecco’s modified
Eagle’s medium (DMEM) were obtained from Gibco Life
Technologies (Carlsbad, CA, USA). LPS from Esche-
richia coli 0111:B4 and NA for cell treatments, and glu-
tamine, penicillin and streptomycin for cell cultures,
were obtained from Sigma-Aldrich (St Louis, MO, USA).
TRIzol, Tag polymerase and cDNA synthesis reagents
were obtained from Invitrogen (Carlsbad, CA, USA).

Astrocyte cultures

All experimental protocols adhered to the guidelines
of the Animal Welfare Committee of the Universi-
dad Complutense of Madrid, Spain, and according to
European Union laws. Rat cortical astrocytes were
obtained as previously described [20]. Briefly, 1-day-old
Wistar rats (Harlan, Indianapolis, IN, USA) were used to
prepare primary mixed glial cultures. Microglia were de-
tached by gentle shaking after 11 to 13 days in culture.
Astrocytes were prepared by mild trypsinization of the
remaining cells, replated at 6 x 10> cells/ml, and consisted
of 95% astrocytes as determined by staining for glial fibril-
lary acidic protein (GFAP) and <5% microglial as deter-
mined by staining with the specific marker OX-42.

mRNA analysis

Total cytoplasmic RNA was prepared from cells using
TRIzol reagent and aliquots were converted to cDNA
using random hexamer primers. Quantitative changes in
mRNA levels were estimated by real-time PCR (qPCR)
using the following cycling conditions: 35 cycles of de-
naturation at 95°C for 10 seconds, annealing at 58 to 61°C
for 15 seconds, depending on the specific set of primers,
and extension at 72°C for 20 seconds. Reactions were car-
ried out in the presence of SYBR green (1:10,000 dilution
of stock solution from Molecular Probes, Eugene, OR,
USA) and in a 20 pl reaction in Rotor-Gene (Corbett
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Table 1 Primers used for RT-PCR

Gene Forward primer Reverse primer

name

CX3CLT  5-AATCCCAGTGACCTTGCTCATCCA  5-TGGACCCATTTCTCCTTTGGGTCA
CcCL2 5-TGCTGTCTCAGCCAGATGCAGTTA  5-TACAGCTTCTTTGGGACACCTGCT
CCL6 5"TGTTCCAGCAGGGCATCTTCTTCT — 5-GCCTCATTTGCATGGAGAGCCATT
CcCcLy 5-GGACCAATTCATCCACTTGCTGCT  5-TCTGATGGGCTTCAGCACAGACTT
CCL12  5-TGAGTCCTCCAGCTCTCATTCCAA  5-TGAACACTGAATCTGGTCCAGCCA
CXCL16  5-TGTCGCTGGAAGTTGCTACTGTGA  5-TCTTGGACTGCAACTGGAACCTGA
IL-18 5-ACCTGCTAGTGTGTGATGTTCCCA  5-AGGTGGAGAGCTTTCAGCTCACAT
TNFa 5CTGGCCAATGGCATGGATCTCAAA  5-AGCCTTGTCCCTTGAAGAGAACCT
IFNy 5-AAAGACAACCAGGCCATCAGCAAC  5-TCTGTGGGITGTTCACCTCGAACT
COX-2  5-GCATTCTTTGCCCAGCACTTCACT  5-TTTAAGTCCACTCCATGGCCCAGT
GAPDH  5-TGCACCACCAACTGCTTAGC 5-GGCATGGACTGTGGTCATGAG

CCL12 chemokine (C-C motif) ligand 12, CCL2 chemokine (C-C motif) ligand 2,
CCL6 chemokine (C-C motif) ligand 6, CCL7 chemokine (C-C motif) ligand 7,
COX-2 cyclooxygenase-2, CX3CL1 chemokine (C-X3-C motif) ligand 1, CXCL16
chemokine (C-X-C motif) ligand 16, GAPDH glyceraldehyde 3-phosphate
dehydrogenase, IFNy interferon gamma, IL-18 interleukin-1 beta, TNFa tumor
necrosis factor alpha.

Research, Mortlake, Australia). Primers for the genes of
interest were designed based on the rat sequences depos-
ited in GenBank (Table 1). Relative mRNA concentrations
were calculated from the take-off point of reactions using
included software, and glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH) levels used to normalize data.

CCL2, CX3CL1, CCL6 and TNFa measurement

Protein levels in the incubation medium were detected
using specific enzyme-linked immunosorbent assay
(ELISA), carried out according to the manufacturer’s in-
structions: R&D Systems Inc (Minneapolis, MN, USA)
for CX3CL1; BD Biosciences (San Jose, CA, USA) for
CCL2; CUSABIO (Wuhan, China) for chemokine (C-C
motif) ligand 6 (CCL6); and RayBiotech (Atlanta, GA,
USA) for tumor necrosis factor alpha (TNFa). Briefly,
the medium was collected from the astrocyte cultures
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and stored at —80°C until the day of the assay (avoiding
repeated freeze-thaw cycles). A standard curve was gen-
erated using the standards provided in the kits. The
assay detection limits were: 31.3 to 2,000 pg/ml for CCL2;
195 to 12,500 pg/ml for CX3CL1; 0.156 to 10 ng/m for
CCL6; and 25 to 20,000 pg/ml for TNFa.

PGE; measurement

Prostaglandin E, (PGE,) levels in the incubation medium
were measured using a specific enzyme immunoassay
(EIA), carried out according to the manufacturer’s in-
structions (Cayman Chemical, Ann Arbor, MI, USA).
Briefly, the medium was collected from the astrocyte
cultures and stored at —80°C until the day of the assay
(avoiding repeated freeze-thaw cycles). A standard curve
was generated using the rat PGE, standard provided in
the kit. The assay detection limit was 15 pg/ml.

Data analysis

All experiments were undertaken at least in triplicate.
Data were analyzed by one-way analysis of variance
(ANOVA), followed by Newman-Keuls multiple com-
parison tests. P values <0.05 were considered significant.

Results

NA induces CX3CL1 synthesis and release in astrocytes
An ELISA assay was used to evaluate the production of
CX3CL1 and its release from cultured astrocytes. Different
concentrations of NA (1 to 50 uM) were added to the cul-
ture medium and the cells were incubated for 6 or 24
hours. Six hours of treatment did not yield significant
changes in the concentration of CX3CL1. However, when
the incubation period was extended to 24 hours, NA treat-
ment caused an increase with significant differences with
respect to the 24-hour control group for concentrations
above 10 uM. The concentration of 50 uM did not cause a
production of CX3CL1 larger than that observed for 10
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Figure 1 NA induces CX3CL1 production by astrocytes. (A) Astrocytes were incubated with control media or NA (1, 10 or 50 uM) for 6 or 24
hours. CX3CL1 levels in the media were assessed by ELISA. ***P <0.001 versus 6-hour control; ®P <0.05 versus 24-hour control; ®P <0.01 versus
24-hour control. Data are means + SE of n = 12 replicates per group. (B) Astrocytes were incubated with control media or NA 10 uM for 1, 2, 6 or
24 hours. RNA was isolated and CX3CL1T mRNA levels determined by RT-PCR. Data are expressed as percentage of control values (set to 100%).
***P <0,001 versus control. Data are means + SE of n = 8 replicates per group. C, control; CX3CL1, chemokine (C-X3-C motif) ligand 1; ELISA,
enzyme-linked immunosorbent assay; NA, noradrenaline; RT-PCR, reverse transcription polymerase chain reaction; SE, standard error.
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Figure 2 In the presence of LPS NA inhibits CX3CL1 production by astrocytes. (A) Astrocytes were incubated with control media, LPS 0.1 and
1 pg/ml alone or in combination with NA 10 uM for 24 hours. CX3CL1 levels in the media were assessed by ELISA. ***P <0.001 versus contro
<0001 versus LPS 0.1 pg/ml; °P <0001 versus LPS 1 ug/ml. Data are means + SE of n = 12 replicates per group. (B) Astrocytes were incubated with
control media (white columns), LPS 0.1 ug/ml (black columns) or LPS and NA 10 uM (gray columns) for 1, 2, 6 or 24 hours. RNA was isolated and
CX3CL1 mRNA levels determined by RT-PCR. Data are expressed as percentage of control values (set to 100%). ***P <0001 versus control; ®®®P <0.001
versus LPS. Data are means + SE of n = 8 replicates per group. C, control; CX3CL1, chemokine (C-X3-C motif) ligand 1; ELISA, enzyme-linked
immunosorbent assay; LPS, lipopolysaccharide; NA, noradrenaline; RT-PCR, reverse transcription polymerase chain reaction; SE, standard error.
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UM, suggesting that the amount measured represents NA
maximal effect. Interestingly, the control values detected
after 24 hours were higher than those detected after 6
hours (Figure 1A), confirming that CX3CL1 is constitu-
tively released by astrocytes at considerable amounts.

Having found that 10 pM is the lowest concentration of
NA able to induce a significant induction of CX3CL1, we
treated astrocytes for 1 to 24 hours with this amount of NA
and used real-time RT-PCR (qRT-PCR) to assess mRNA
levels of CX3CL1. This allowed us to observe an elevation
that was maximal after 2 hours of incubation. Twenty-four
hours after the onset of this treatment, the mRNA levels
were lower than in the control group (Figure 1B).

NA inhibits CX3CL1 production in the presence of LPS

in astrocytes

In order to evaluate the magnitude of NA effect, astro-
cytes were treated with an inflammatory stimulus known

to induce CX3CL1 expression in the brain, such as LPS
[21]. The incubation with LPS 0.1 pg/ml for 24 hours
caused a greater than tenfold elevation of CX3CL1 levels
in the culture media as assessed by ELISA (Figure 2A).
This indicates that the elevation of CX3CL1 production
caused by NA is only minor in relation to the full poten-
tial of these cells.

Having previously found the ability of NA to induce
CX3CL1 by itself, we decided to analyze its possible inter-
action with LPS. We observed that it reduces the produc-
tion of CX3CL1 caused by LPS (Figure 2A) even when a
tenfold higher concentration of this endotoxin is used.

Parallel changes were found for CX3CL1 mRNA
where LPS caused a large increase that was maximal
after 6 hours of treatment and still remained elevated
after 24 hours, and NA inhibited LPS effect on CX3CL1
mRNA reducing it to control levels after 24 hours of co-
incubation (Figure 2B).
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Figure 3 NA inhibits CCL2 production by astrocytes in the presence of LPS. (A) Astrocytes were incubated with control media, LPS 0.1 and
1 ug/ml alone or in combination with NA 10 uM for 24 hours. CCL2 levels in the media were assessed by ELISA. ***P <0.001 versus control; ®P
<0.05 versus LPS 1 pg/ml; ®®P <0.01 versus LPS 0.1 pg/ml. Data are means + SE of n = 12 replicates per group. (B) Astrocytes were incubated
with control media (white columns), LPS 0.1 ug/ml (black columns) or LPS and NA 10 uM (gray columns) for 1, 2, 6 or 24 hours. RNA was isolated
and CCL2 mRNA levels determined by RT-PCR. Data are expressed as percentage of control values (set to 100%). ***P <0.001 versus control; o00p
<0.001 versus LPS. Data are means + SE of n = 8 replicates per group. C, control; CCL2, chemokine (C-C motif) ligand 2; ELISA, enzyme-linked
immunosorbent assay; LPS, lipopolysaccharide; NA, noradrenaline; RT-PCR, reverse transcription polymerase chain reaction; SE, standard error.
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NA inhibits CCL2 production in the presence of LPS in
astrocytes

Since NA presented this double effect for CX3CL1 expres-
sion, we tested if it would also have a similar effect for
CCL2, another chemokine we previously found that can
be induced by NA in astrocytes [9]. ELISA and qRT-PCR
studies allowed us to detect a similar pattern of regulation,
where LPS caused a large induction of CCL2 that was in
part prevented by the co-treatment with NA (Figure 3).

Alterations in NA regulation of different chemokines

While each chemokine has particular features that differ-
entiate it from the rest, they all have other features in
common, and the dual regulation by NA could be one of
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the characteristics that apply to all of them. Due to the
large number of chemokines known to date, a prelimin-
ary approach was made by analyzing mRNA regulation
in three chemokines with effects similar to those of
CCL2 and that share the C-C chemokine receptor type 2
(CCR2) with CCL2, such as CCL6/C10, chemokine (C-C
motif) ligand 7 (CCL7)/monocyte chemotactic protein-3
(MCP-3) and chemokine (C-C motif) ligand 12
(CCL12)/monocyte chemotactic protein-5 (MCP-5) [22].
Chemokine (C-X-C motif) ligand 16 (CXCL16)/small in-
ducible cytokine subfamily B member 16 (SCYB16) was
also studied because it has also been characterized as a
neuroprotective agent that modulates astroglial produc-
tion of CCL2 [23].
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Figure 4 NA effects on different chemokines. (A) Astrocytes were incubated with control media or NA 10 uM for 1, 2, 6 or 24 hours. RNA was
isolated and mRNA levels of CCL6, CCL7, CCL12 and CXCL16 were determined by RT-PCR. Data are expressed as percentage of control values
(set to 100%). *P <0.05 versus control; **P <0.01 versus control; ***P <0.001 versus control. Data are means + SE of n = 8 replicates per group. (B)
Astrocytes were incubated with control media (white columns), LPS 0.1 ug/ml (black columns) or LPS and NA 10 uM (gray columns) for 1, 2, 6 or
24 hours. RNA was isolated and mRNA levels of CCL6, CCL7, CCL12 and CXCL16 were determined by RT-PCR. Data are expressed as percentage
of control values (set to 100%). *P <0.05 versus control: **P <0.01 versus control; ***P <0.001 versus control; ®P <0.05 versus LPS; ®®P <0.01 versus
LPS; ®®®p <0.001 versus LPS. Data are means + SE of n = 8 replicates per group. C, control; CCL6, chemokine (C-C motif) ligand 6; CCL7,
chemokine (C-C motif) ligand 7; CCL12, chemokine (C-C motif) ligand 12; CXCL16, chemokine (C-X-C motif) ligand 16; LPS, lipopolysaccharide; NA,
noradrenaline; RT-PCR; reverse transcription polymerase chain reaction; SE, standard error.
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RT-PCR measurements showed that while 6 hours of
incubation with NA elevated CCL6 and CCL7 mRNA
concentrations, the opposite effect happened for the
other two chemokines analyzed (Figure 4A).

LPS caused an induction of CCL7 larger than the one
caused by NA. It also induced CCL12 and CXCL16. For
these three chemokines, NA showed an inhibitory effect
in the presence of LPS similar to the one observed for
CCL2 and CX3CL1 (Figure 4B).

In order to further analyze our results, ELISA studies
were performed for these four chemokines; however, de-
tectable amounts were only found for CCL6. LPS treat-
ment caused an increase in the accumulation of CCL6
that was prevented by NA, while no modifications were
caused by NA alone (Figure 5).

Dual effect of NA on pro-inflammatory mediators

According to our hypothesis, NA may participate in regu-
lating the levels of certain mediators used by brain cells to
communicate, maintaining constitutive production in
basal conditions. However, when an exaggerated produc-
tion of some of these mediators is induced as a result of
an injury, NA effect is reversed helping to maintain
homeostasis. Based on this, we analyzed NA effect on the
expression of some well-known pro-inflammatory media-
tors, namely, inflammatory cytokines. Due to the large
number of existing pro-inflammatory cytokines, a selec-
tion was made as in the case of the chemokines.
Interleukin-1 beta (IL-1B) and TNFa were selected, since
these cytokines are known to be produced by astrocytes,
and have toxic and trophic actions on neurons [24-26]. As
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Figure 5 In the presence of LPS NA inhibits CCL6 production
by astrocytes. Astrocytes were incubated with control media, NA
10 uM or LPS 0.1 pg/ml alone or in combination with NA 10 uM for
24 hours. CCL6 levels in the media were assessed by ELISA. ***p
<0.001 versus control; ®0p 0001 versus LPS. Data are means + SE
of n =12 replicates per group. C, control; CCL6, chemokine (C-C
motif) ligand 6; ELISA, enzyme-linked immunosorbent assay; LPS,
lipopolysaccharide; NA, noradrenaline; SE, standard error.
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shown in Figure 6, IL-13 mRNA levels were elevated as a
result of the incubation of astrocytes with NA, reaching
their maximal after 2 hours and decreasing afterwards to
control levels. On the other hand, TNFa expression was
reduced by NA. However, in the presence of LPS, NA ef-
fect was inhibitory for both cytokines (Figure 6B). This ef-
fect was also observed when measuring the concentration
of TNFa released to the culture medium (Figure 6C).

Together with chemokines and cytokines, certain en-
zymes are key regulators of the inflammatory response.
Nitric oxide synthase 2, inducible (NOS2) is known
to be inhibited by NA, contributing to the anti-
inflammatory and neuroprotective actions of NA [20,27].
Another enzyme which catalyzes the production of mul-
tiple products, many of which have inflammatory poten-
tial, is cyclooxygenase-2 (COX-2). As shown in Figure 7,
NA treatment elevated COX-2 mRNA and in the pres-
ence of LPS its effect was amplified (Figure 7B).

The pattern found for COX-2 production is different
from those found for all the other proteins analyzed.
This may be related to the differences in regulatory
mechanisms. Based on the data, we decided to examine
the effects of LPS and NA on COX-2 pathways further,
particularly PGE,. To this end, PGE, concentration in
the culture media was measured by EIA and allowed us
to observe modifications similar to those found for
COX-2 (Figure 7C).

Discussion

The present study demonstrates the induction of CX3CL1
by NA in astrocytes. Given the neuroprotective actions de-
scribed for CX3CL1 [28], its regulation by NA could help
to explain the mechanisms through which NA protects
neurons against different stimuli [29-31]. However, besides
its anti-inflammatory and neuroprotective roles, CX3CL1,
in its membrane anchored and soluble forms, also functions
as a chemoattractant able to activate inflammatory cells
[32]. In fact, an exaggerated response of CX3CL1 to certain
injuries can lead to irreversible neuronal damage [16-18].

Like CX3CL1, CCL2 is another chemokine known to
have certain protective actions in the CNS [33-37], but
is also able to potentiate the inflammatory response and
cause cell damage [38-40]. Similarly to CX3CL1, we had
previously described CCL2 induction by NA in astrocyte
cultures [9], as well as in mouse brain cortex astrocytes
[41] and its complex regulation by different adrenergic
receptors [42]. Both cytokines are expressed by cultured
astrocytes and seem to be independently regulated by
certain stimuli [43].

However, despite these dual effects of CCL2 and
CX3CL1, NA is known to reduce brain inflammation
[5,44] and prevent the progression of pathologies with a
neuroinflammatory component [45-48]. This led us to
hypothesize that in basal conditions, NA may help to
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Figure 6 NA effects on different cytokines. (A) Astrocytes were incubated with control media or NA 10 uM for 1, 2, 6 or 24 hours. RNA was
isolated and mRNA levels of IL-13, TNFa and IFNy were determined by RT-PCR. Data are expressed as percentage of control values (set to 100%).
*P <0.05 versus control; **P <0.01 versus control; ***P <0.001 versus control. Data are means + SE of n = 8 replicates per group. (B) Astrocytes
were incubated with control media (white columns), LPS 0.1 ug/ml (black columns) or LPS and NA 10 uM (gray columns) for 1, 2, 6 or 24 hours.
RNA was isolated and mRNA levels of IL-13, TNFa and IFNy were determined by RT-PCR. Data are expressed as percentage of control values (set
to 100%). **P <0.01 versus control; ***P <0.001 versus control; ®*P <0.01 versus LPS; ®*®P <0.001 versus LPS. Data are means + SE of n = 8
replicates per group. (C) Astrocytes were incubated with control media, NA 10 uM, LPS 0.1 pg/ml alone or in combination with NA 10 uM for 24

factor alpha.

hours. TNFa levels in the media were assessed by ELISA. ***P <0.001 versus control, ®®p 0001 versus LPS. Data are means + SE of n = 12
replicates per group. C, control; ELISA, enzyme-linked immunosorbent assay; IFNy, interferon gammea; IL-18, interleukin-1 beta; LPS,
lipopolysaccharide; NA, noradrenaline; RT-PCR, reverse transcription polymerase chain reaction; SE, standard error; TNFa, tumor necrosis

maintain CNS levels of different cytokines and
chemokines necessary for homeostasis, but under in-
flammatory conditions, NA prevents an exaggerated
production of some of these mediators with neurotoxic
potential. In agreement with this, the maximal concen-
tration of CX3CL1 production reached after NA treat-
ment was considerably lower than that observed when
LPS was used instead.

Based on our data, the reduction of brain NA levels
observed in certain neurodegenerative pathologies, such
as Alzheimer’s [6] and Parkinson’s [49] diseases, could
be the reason for the parallel loss of the constitutive pro-
duction of these chemokines. In fact, there is a de-
creased production of CX3CL1 in the cortex and
hippocampus of transgenic amyloid precursor protein

(APP) mice together with an elevated accumulation of
amyloid beta (AB) [50]. This could be in agreement with
those studies where the reduction of NA production ei-
ther by depletion of locus coeruleus neurons [51] or by
genetic alterations [52] aggravated the neurological dam-
age in models of Alzheimer’s disease.

While NA effects on chemokines production seem to
be mediated through its interaction with adrenergic re-
ceptors [9,42], the presence of major histocompatibility
complex class II molecules or cluster of differentiation
14 (CD14) proteins detected on the surface of stimulated
astrocytes [53,54], suggests that the promoter require-
ments and pathways leading to the production of the
different chemokines and cytokines analyzed may be dif-
ferent for both types of stimuli.
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Figure 7 NA effects on COX-2 and PGE,. (A) Astrocytes were
incubated with control media or NA 10 uM for 1, 2, 6 or 24 hours. RNA
was isolated and mRNA levels of COX-2 were determined by RT-PCR.
Data are expressed as percentage of control values (set to 100%).

**p <0.01 versus control; ***P <0.001 versus control. Data are means + SE
of n = 8 replicates per group. (B) Astrocytes were incubated with control
media (white columns), LPS 0.1 pg/ml (black columns) or LPS and NA 10
UM (gray columns) for 1, 2, 6 or 24 hours. RNA was isolated and COX-2
mMRNA levels determined by RT-PCR. Data are expressed as percentage
of control values (set to 100%). *P <0.05 versus control; **P <0.01 versus
control; **P <0001 versus control; ®P <0.01 versus LPS; ®®®P <0001
versus LPS. Data are means + SE of n = 8 replicates per group. (C)
Astrocytes were incubated with control media, LPS 0.1 ug/ml, NA 10 uM,
or LPS and NA for 24 hours. PGE, levels in the media were assessed by
EIA. **P <0001 versus control; ®*®P <0.001 versus LPS 0.1 ug/ml. Data
are means + SE of n = 8 replicates per group. C, control; COX-2,
cyclooxygenase-2; EIA, enzyme immunoassay; LPS, lipopolysaccharide;
NA, noradrenaline; PGE,, prostaglandin E; RT-PCR, reverse transcription
polymerase chain reaction; SE, standard error.
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The PCR analysis of CCL7, CCL12 and CXCL16 re-
veals an inhibitory effect of NA in the presence of LPS
for all of them, independently of NA effect in the ab-
sence of other stimulus. A similar pattern is observed
for CCL6 concentration in the culture medium, while its
mRNA levels are reduced by LPS. This indicates that in
this case some post-transcriptional alterations are in-
volved, resulting in a regulation similar to that observed
for the other cytokines and chemokines analyzed.

Our results suggest that in the presence of an inflam-
matory stimulus, such as LPS, the actions of NA with re-
spect to the expression of certain cytokines seem to be
oriented towards the reversion of LPS alterations, inde-
pendently of the changes NA may produce in the
absence of other stimuli. This possibility constitutes an
interesting new research subject, since the modification
of NA actions on astrocytes are probably due to trans-
formations caused by the activation of these cells as a
response to an injury or any threat to homeostasis [55].

The induction by LPS of IL-1p and TNF« is a well-
known response of astrocytes [56,57], and the inhibition
caused by NA is in agreement with its neuroprotective ef-
fects due to the pro-inflammatory nature of these cyto-
kines [58,59]. On the other hand, it was more surprising
to detect the induction of IL-1p by NA. Nevertheless, this
could be in agreement with the above mentioned hypoth-
esis, since this cytokine has been described to help protect
neurons against certain types of injuries [24,26].

NA effects on COX-2 production have been previously
analyzed in microglia by Schlachetzki et al. [60]. They
also observed an induction by NA that was potentiated
by LPS. Similarly to what we found for astrocytes, their
work also describes the release of PGE, by microglia in
response to LPS or NA and the boosting of this effect by
the combination of both treatments. Considering the in-
volvement of PGE, in the development of neuroin-
flammation [61], this effect of NA seems contradictory
with its neuroprotective actions. However, PGE, is an-
other mediator for whom neuroprotective actions have
also been discovered [62-65]. While this could help to
explain our results, the additive actions of LPS and NA
on COX-2 and PGE, expression, eliminate the possibility
of a simplistic explanation according to which NA re-
verses the changes caused by an inflammatory stimulus
on astrocytes. This confirms the complex nature of NA
mechanisms of action and, in particular, reveals the need
to study PGE, interactions with neurons and if the pres-
ence of NA also modulates the response to PGE,.

Conclusions

While NA neuroprotective actions are largely confirmed
by different studies, its mechanisms of action are not
well-known. MCP-1 and CX3CL1 induction could help
to explain some of NA effects due to their ability to
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prevent neuronal damage under diverse conditions.
However, such effect could be reversed when these and
other mediators are produced in an exaggerated/uncon-
trolled manner. The data presented here indicate that
NA may help to maintain the production of certain
chemokines, while preventing their overproduction and
subsequent toxicity. Further investigations of in vivo
models may help confirm this hypothesis, extend the un-
derstanding of NA neuroprotective role and hopefully
facilitate the development of NA-based therapies for
neurodegenerative diseases.
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