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1 Introduction

In the 1960s and 70s, the study of black holes revealed that general relativity knows thermo-

dynamics: the geometry of spacetime encodes thermodynamic quantities like temperature

and entropy, in such a way that the laws of thermodynamics become geometrical theo-

rems. A corollary of the statement that classical gravity is a thermodynamic theory is

that quantum gravity is a statistical-mechanical theory. This idea has received its sharpest

– 1 –



J
H
E
P
0
3
(
2
0
1
4
)
0
8
5

expression in the form of holographic dualities, which posit an equivalence between a grav-

itational theory and a field theory, where the number of fields is of order 1/(GN~)gravity, so

that the classical limit of the former is the thermodynamic limit of the latter.

During the past decade, we have been learning another remarkable lesson, namely

that GR also knows quantum information theory: the geometry of spacetime encodes

information-theoretic quantities like entanglement entropies (EEs), in such a way that

properties of quantum information like strong subadditivity become geometrical theorems.

This idea has received its sharpest expression in the form of holographic EE formulas.

There are two such formulas: the Ryu-Takayanagi (RT) formula applies to static bulk

states and constant-time boundary regions, giving the EE in terms of the area of a mini-

mal hypersurface inside a bulk constant-time slice [1, 2]; on the other hand, the Hubeny-

Rangamani-Takayanagi (HRT) formula is generally covariant with respect to both bulk and

boundary diffeomorphisms, giving the EE in terms of the area of an extremal codimension-

2 spacelike surface in the full Lorentzian bulk geometry [3]. In this paper we will focus on

the static case.

The RT formula has been applied to a wide variety of holographic systems, leading

to many insights into EEs in holographic field theories, as well as in field theories more

generally. Our interest here will not be in the application of RT to any particular system,

but rather in the general properties that it predicts for EEs and corresponding bulk geo-

metrical objects. In short, whereas most work uses RT to learn about EE from holography,

our goal here is to learn about holography from EE.

As we will see, there are many such properties. Some of the ones we will discuss

are new. The others include ones that are explicitly the subject of previous work, ones

that are implicit in the literature and/or known to experts in the field; and ones that

are perhaps obvious (or at least obvious until you start thinking about them). We will

attempt to provide a unified treatment, with the aim of clarifying and making explicit

the various properties, the assumptions required to prove them, their logical interrelations,

etc. Also, it turns out that there are gaps in the previously-published proofs of some of

the previously-known properties, which we will fill as we review them.

Most of the properties we will discuss fall into two classes: (1) Ones that hold in a

general quantum-mechanical system or quantum field theory, and are therefore required

for the consistency of the RT formula (such as strong subadditivity); these both provide

support for the formula and, presuming its correctness, give us a window into how GR

encodes fundamental properties of information in spacetime geometry. (2) Ones that do

not hold in a general quantum-mechanical system or field theory, but rather are special

properties of holographic theories (such as monogamy of mutual information); we will

attempt to give an interpretation on the field-theory side for these, again in order to learn

something about holographic theories from their EEs. In a few cases (such as continuity

and the reflection inequality), it is not presently known which category the property falls

into; here, as in so many other instances, the power of holography has allowed us to go

farther than we can for other field theories.

Given the restrictions imposed by the static EE formula, the reader might reasonably

wonder why we are focusing on it, rather than the more generally applicable covariant
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formula. There are at least three reasons:

• The RT formula is far easier to work with than the HRT formula, both for calculating

and for proving theorems. It therefore makes a good warm-up before tackling the

much harder covariant case.

• At the moment, the evidence in favor of the RT formula is significantly stronger than

for HRT;1 it is possible that the the former is correct while the latter is not (or at

least needs to be amended or qualified in some way).

• It is not obvious that RT and HRT always agree in cases where both can be applied.

If this is not true then either one of them is wrong or they are calculating different

quantities (e.g. the EE with respect to different states of the full system).2 This issue

remains to be well understood.

An interesting question is whether, for each property of the static formula, an analogous

property holds in the covariant case. Answering this question is important both in order to

test the latter formula and (if it is correct) to learn which special properties of holographic

theories extend to the time-dependent case. As we will see, the proofs in the static case

are quite simple and rely only on very basic properties of minimal surfaces in Euclidean

spaces (we will appeal to the Einstein equation only once, in the proof of property 4.2).

On the other hand, the analogous statements in the covariant case are novel and highly

non-trivial GR conjectures. Indeed, even the very existence of an appropriate extremal

surface, as required by the HRT formula, is a non-trivial conjecture, whereas in the static

case the existence of a minimal surface is more or less obvious, at least at a physicist’s

level of rigor (as we will briefly discuss in subsection 2.3). Significant progress has recently

been made on several of these conjectures (see [13, 15–17] and especially [12]). It is hoped

that the present systematic presentation of the properties of RT might help to further such

investigations.

Most of the proofs in this paper rely only on the positivity and extensivity of the area

functional, together with some elementary topology. As mentioned above, we will appeal

to the Einstein equation only once. In other words, the properties we discuss are in some

sense kinematical, rather than dynamical. This suggests that the information-theoretic

structure of spacetime implied by the RT formula applies more generally than to Einstein

gravity. We leave the investigation of this issue to future work.

1The evidence in favor of the RT formula includes: the fact that it satisfies a large number of required

properties, as discussed in this paper; agreement with first-principles calculations of EEs in specific cases

(among others, [1, 2, 4–7]) and of the general structure of its UV divergences (among others, [8]); and

an argument relating it to Euclidean quantum gravity [9]. The evidence in favor of the HRT formula

includes evidence that it obeys the strong subadditivity property [10–12] and agreement with first-principles

calculation in a much smaller number of cases (among others, [3]). The fact that both formulas have been

applied in a large and diverse set of situations, apparently always giving physically reasonable results, should

also be counted as evidence in their favor.
2Examples where the two formulas apparently give different answers include bag-of-gold spacetimes [13]

and certain geons [14].
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1.1 Outline

We will assume that the reader has some familiarity with the RT formula and how it

is typically applied.3 Nonetheless, in section 2, we will state the formula, after explain-

ing the general set-up and defining our notation. As emphasized there, we will strive

to be as general as possible, if necessary sacrificing mathematical rigor. Therefore, our

precise assumptions (concerning properties of the bulk spacetime, the region whose EE

is being calculated, etc.) will vary from property to property. We will attempt to spell

out the assumptions in each case, and sometimes will give counterexamples to illustrate

their necessity.

We begin listing the properties in section 3, where we will observe that the EE changes

continuously under continuous variations of the region, even when bulk minimal surface

whose area gives the EE jumps discontinuously. We will discuss what this phenomenon

tells us about the structure of the corresponding reduced density matrices.

Throughout this paper we will emphasize an aspect of the RT formula that we believe

has been generally underappreciated, namely that it associates to every spatial region A

of the field theory a spatial region r(A) of the bulk, in a natural and canonical way. This

map, which plays a role in virtually every property we will discuss, has many interesting

properties in itself, which we will list in section 4. At the end of that section we will discuss

a possible interpretation of the map, namely that r(A) is the holographic description of

the reduced density matrix ρA whose von Neumann entropy is the EE S(A).

In section 5 we will review inequalities derivable from the RT formula, such as subad-

ditivity, strong subadditivity, and monogamy of mutual information. Along the way, we

will fill in gaps in the previously published proofs of strong subadditivity and monogamy.

We will also give a new inequality, motivated by a conjecture of Casini [19], which applies

when the bulk has a Z2 reflection symmetry. A very interesting feature of holographic the-

ories is that these inequalities can be saturated, at leading order in GN, quite generically.

For several of them, we will give necessary and sufficient conditions for saturation, and

try to draw lessons from this phenomenon about how the field-theory degrees of freedom

are organized.

2 Background

2.1 Set-up

We consider a fixed, static, asymptotically anti-de Sitter spacetime M , which we take to

be the holographic description of a static state ρ of a field theory living on the conformal

boundary Ṁ .4 We work in a limit where the bulk physics is described by classical Einstein

gravity. Let Σ be a constant-time slice, and denote by Σ̇ its conformal boundary, which is

a constant-time slice of Ṁ . We assume that M (and hence Σ) is connected.

Actually, we need to introduce a regulator in order to make the areas of bulk surfaces

that reach Ṁ finite. We will not be specific about this regulator, except that it should

3See [18] for an overview.
4More complicated asymptotics, such as Lifshitz geometries, should also be acceptable. This will have

no effect on what follows, as long as there is a well-defined bulk Einstein-frame metric.
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alter the metric on M near Ṁ to make Ṁ a finite distance from points in the interior of

M ; nonetheless, the metric near Ṁ , as well as the induced metric on Ṁ , should in some

sense be “large”. Hence M is no longer strictly speaking asymptotically AdS and Ṁ is no

longer strictly speaking its conformal boundary. From the field-theory viewpoint, this is

an ultraviolet regulator. Since we will not discuss the dependence of EEs on the regulator,

we will simply leave it fixed.

The state ρ may be pure or mixed (typically thermal). Indeed, if M is bounded by a

Killing horizon, then Σ is bounded by its bifurcation surface H, and the entropy of ρ is

given by its area

Stot = area(H) . (2.1)

(Throughout this paper, we set 4GN = 1, and all areas are calculated with respect to the

induced Einstein-frame metric on Σ.) H may be at a finite or infinite distance from points

in the interior of Σ. It may also intersect Σ̇, in which case Ṁ is itself bounded by a Killing

horizon (as in [20]). To avoid having to treat the case with no horizon separately, in that

case we simply set H = ∅.
If there is a Killing horizon, then M may be a subset of a larger spacetime that extends

to the other side it. (The larger spaceime may either be non-static, e.g. if M is one external

region of a maximally extended AdS-Schwarzschild black hole, or static with respect to a

different Killing vector, e.g. if M is the Poincaré patch inside global AdS.) For the most

part we will simply ignore the larger spacetime, and assume that M gives a complete

description of ρ, at least in the classical limit.

We should also consider the possibility that, in addition to horizons, Σ is bounded by

walls, where gtt does not vanish and the spacetime actually ends, i.e. there is nothing on the

other side. Such walls occur naturally in many contexts; examples include confining walls,

orbifold and orientifold fixed planes in string theory, and the surface Q in the AdS/BCFT

duality [21]. The important difference between horizons and walls for our purposes is that

the former carry intrinsic entropy (of order 1/GN), while the latter don’t. Walls may

intersect Σ̇ and H.

Presumably walls must obey some general physical constraints. Indeed, by cutting up

a spacetime in arbitrary ways it is easy to produce (presumably pathological) examples

that violate many of the properties we describe below. Rather than attempt to state a set

of precise and general conditions on walls, we will simply point out potential pathological

behaviors along the way, and where possible give assumptions that can be used to rule

them out. We take the same attitude toward singularities that may occur in the interior

of Σ (branes, orbifold singularities, etc.).

As a slight generalization of the case considered here, it may be reasonable also to

apply the RT formula to cases where Σ consists of constant-time slices Σ1,Σ2 of two static

regions M1,M2 joined along a common bifurcate horizon (Einstein-Rosen bridge), such as

the two exterior regions of a maximally extended eternal black hole spacetime. (See [22]

for an example of such an application.) Although we will not consider such situations

explicitly in this paper, it is fairly straightforward to see that all of the properties we

describe would continue to apply. (Note that we would not include the common horizon in
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r

ṙ

∂r

wall

H

Σ̇

Σ

Figure 1. Illustration of the various regions and boundaries defined in section 2. Σ is a constant-

time slice of the bulk spacetime M . Σ̇ is its conformal boundary, which is a constant-time slice of

the boundary spacetime Ṁ . H is the horizon of black hole in the bulk. The bulk is also bounded

at the bottom by a wall of some kind. r (in green) is a region of the bulk. The part of its boundary

along Σ̇ is denoted ṙ. The rest of its boundary, including the part along H but not including the

part along the wall, is denoted ∂r.

H, since it does not bound M .) It can also be shown (using Properties 4.2 and 4.3) that

such a generalization is consistent, in the sense that, for a region A ⊆ Σ̇1, one gets the

same result for S(A) whether one works in Σ or in Σ1.

2.2 Regions and boundaries

We define a boundary region to be a codimension-0 subset of Σ̇ which is “nice”, in the

sense that neither it nor its complement contains higher-codimension components and

its boundary has locally finite area (i.e. is not fractal). We denote boundary regions

by A,B, . . .; these are assumed to be non-overlapping, but may be adjacent (i.e. their

boundaries may overlap). We denote A ∪B by AB, etc.

We similary define a bulk region as a “nice” codimension-0 subset of Σ, and surface as

a codimension-1 subset. Given a bulk region r, we let ṙ denote the part of its boundary

that lies along Σ̇. We let ∂r denote the part that lies either in the interior of Σ or along

H (not along Σ̇ or a wall). See figure 1 for an illustration. Applying this rule to all of Σ,

for example, we have H = ∂Σ. In other words, morally we consider a wall to be “inside”

Σ, rather than a boundary of it.

We will be extensively considering unions, intersections, and differences of both bound-

ary and bulk regions in the properties and proofs that follow. In cases of interest, very often

two regions share a boundary, so we should be careful how we treat the shared boundary.

Also, a little extra notation will go a long way towards simplifying the proofs.

Given two bulk regions r1, r2 (possibly overlapping), the surface ∂r1 may be divided

into four surfaces:

1. the part that lies inside of r2, whose area we denote int(r1, r2);

2. the part that lies outside of r2, whose area we denote ext(r1, r2);
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3. the part that lies along ∂r2 with r1, r2 on opposite sides of the shared boundary,

whose area we denote opp(r1, r2);

4. the part that lies along ∂r2 with r1, r2 on the same side, whose area we denote

sam(r1, r2).

We thus have

area(∂r1) = int(r1, r2) + ext(r1, r2) + opp(r1, r2) + sam(r1, r2) . (2.2)

We define r1 ∪ r2 to include any shared boundary where r1,2 are on opposite sides (as

if r1, r2 were closed), but r1 ∩ r2 to exclude it (as if they were open); similarly, we define

r1 \ r2 to exclude a shared boundary with r1,2 on the same side. We define the union,

intersection, and difference of boundary regions the same way. These definitions ensure

that the operators preserve the “niceness” of the regions.5 Their surface areas are then

given by the following formulas, which will be used repeatedly throughout this paper:

area(∂(r1 ∪ r2)) = ext(r1, r2) + ext(r2, r1) + sam(r1, r2) (2.3)

area(∂(r1 ∩ r2)) = int(r1, r2) + int(r2, r1) + sam(r1, r2) (2.4)

area(∂(r1 \ r2)) = ext(r1, r2) + int(r2, r1) + opp(r1, r2) . (2.5)

Finally, we will often use the fact that the dot (conformal boundary) operator com-

mutes with the union, intersection, and difference operators, e.g. ˙(r1 ∪ r2) = ṙ1 ∪ ṙ2.

2.3 Ryu-Takayanagi formula

We are now finally ready to state the Ryu-Takayanagi formula [1, 2]. We will do so in a

slightly non-standard way, because we wish to emphasize the bulk region that the formula

associates to each boundary region. Given a region A ⊆ Σ̇, the RT formula gives its

entanglement entropy in the state ρ as

S(A) = min
r⊆Σ:ṙ=A

(area(∂r)) . (2.6)

We will denote the minimizer r(A), and define m(A) := ∂r(A), so we have S(A) =

area(m(A)), which is the usual statement of the RT formula. In terms of m(A), the

condition ṙ = A incorporates both the anchoring condition ṁ(A) = ∂A and the so-called

homology condition.

Even in the presence of an ultraviolet cutoff, S(A) can be infinite due to an infrared

divergence. We assume that some infrared cutoff has been imposed, so that S(A) is finite

for all regions of interest, as is Stot.
6

5These rules correspond to what would happen if the space was latticized, with the regions being sets

of lattice points and their boundaries sets of links.
6There are two issues that make an IR cutoff desirable. First, while one can require m(A) to be locally

minimal, it is difficult to define a globally minimal surface when area(∂r) is infinite for all suitable r. Second,

in the presence of translational symmetry of both M and A, one may be interested in the “EE per unit

length”, which is most easily defined by first introducing an IR cutoff.
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Implicit in the definitions of r(A) and m(A) above are the assumptions that the min-

imizer exists and is unique. The existence of a minimizer is crucial for almost everything

we do in this paper. Following common practice, we will more or less it for granted, but let

us make a few comments. The existence of a minimal surface with a prescribed boundary

(Plateau’s problem) has been proven rigorously in various contexts (see for example [23]),

including in hyperbolic spaces with prescribed boundary on the conformal boundary [24].

The main new issue in our case is that Σ may be bounded by horizons and walls, and ∂r

could “run off” to one of these boundaries. (It won’t run off to Σ̇, since the metric on Σ is

large in the vicinity of this boundary.) While this is certainly a possibility, it produces no

conflict with the existence of a minimizer, since r(A) can itself be bounded by the wall or

horizon (even one that is infinitely far away). It is interesting to note that, even when this

occurs, m(A) will still be a stationary point of the area functional. (This is a non-trivial

statement because the minimum of a function occurring on the boundary of its domain

need not in general be a stationary point.) If m(A) coincides (entirely or in part) with

H, then this follows from the fact that, being a bifurcate horizon, H is itself an extremal

surface. And if m(A) intersects a wall, it will do so perpendicularly, and therefore still

be a stationary point of the area. It is important here that the wall is not included as

part of m(A).7

On the other hand, uniqueness of the minimizer is definitely not always the case. For

example, it is well known that the globally minimal surface can jump between two locally

minimal surfaces as the region A is varied, in analogy to a first-order phase transition,

and at the transition point the two minimal surfaces will have equal area (see Property 3).

However, as far as we are aware, the minimizer is always generically unique: if it is not

unique, then after a small change in A it will become unique. For the most part, we will

assume uniqueness, because this will substantially simplify both our notation and several

of our proofs. However, we will endeavor to point out when this assumption is more than

just a convenience, and how it can be relaxed.

Finally, let us make two comments about the proofs that follow: first, there will be

little attempt at rigor; rather, our main purpose will be to make explicit the important

physical assumptions that stand behind each property. Second, for many of the proofs we

will give sketches to illustrate the constructions. These sketches involve one-dimensional

boundaries and two-dimensional bulks, with the simplest topologies possible to give the

necessary illustration. However, one should keep in mind that, except where otherwise

noted, the properties hold irrespective of the dimension and topology of the boundary,

bulk, and regions involved.

3 Continuity of S

This property states that, if Ax is a continuous one-parameter family of regions, then S(Ax)

is a continuous function of x.

7A counterexample can be constructed by combining a wall and a horizon, specifically by allowing them

to intersect at an obtuse angle. Then a minimal surface that coincides with H will not intersect the wall

perpendicularly. We are not aware of an otherwise physically reasonable example where this happens.
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Proof.8 Essentially, this property follows from the fact that S(A) is defined by a global min-

imization, so even if there are competing local minima, the value at the global minimum will

be continuous. A more careful argument, which rules out the possibility that a minimum

could simply disappear, is the following. We wish to show that ∆S := S(Ax+∆x)− S(Ax)

goes to 0 as ∆x → 0. We define the region r′(Ax+∆x) such that ṙ′(Ax+∆x) = Ax+∆x,

by deforming r(Ax) only in a small neighborhood of Σ̇. The difference in area ∆S′ :=

area(∂r′(Ax+∆x))− S(Ax) goes to 0 as ∆x→ 0. Since S(Ax+∆x) ≤ area(∂r′(Ax+∆x)), we

have ∆S ≤ ∆S′, and so lim∆x→0 ∆S ≤ 0. By deforming r(Ax+∆x), the same argument

gives lim∆x→0 ∆S ≥ 0, so together we have lim∆x→0 ∆S = 0.

Notice that this proof does not imply that S is continuously differentiable. Indeed,

the minimizer can switch discontinuously between distinct (typically topologically distinct)

local minima, so that r(Ax), m(Ax), and dS(Ax)/dx need not be continuous. For example,

for some range of x values we may have two local minima m1,2(x), with areas S1,2(x)

respectively, such that S1(x) < S2(x) (S1(x) > S2(x)) for x < xc (x > xc). Then

S(Ax) =

{
S1(x) , x < xc

S2(x) , x > xc
. (3.1)

Many examples of such “phase transitions” are known (see [4, 25–27] for early ones).

Is the continuity of S required for consistency, or is this property special to holographic

theories? In a general quantum-mechanical system, we cannot usually continuously vary

the subsystem A, so in asking this question we will restrict ourselves to the context of

quantum field theories. It is generally believed that, in a field theory with a finite number

of fields, as long as A is bounded, there should be no phase transitions in S(A). Phase

transitions are certainly possible either in the thermodynamic limit or in infinite volume,

but we are not aware either of an example where S(A) jumps as a function of A, or of an

argument that it cannot do so.

Therefore, it is interesting to ask what we can learn about the structure of the reduced

density matrix ρA in holographic theories from the fact that S(A) is defined by a global

minimization, and hence is continuous across phase transitions. In the example above,

it seems reasonable to infer that the reduced density matrix ρAx includes sub-ensembles

ρ1,2(x), with entropies S1,2(x) respectively, both of which are present over the whole range

of x but exchange dominance at x = xc. In other words we have, at least roughly,

ρA = p1ρ1 ⊕ p2ρ2 (3.2)

(with pi > 0, p1 + p2 = 1; the pi also depend on x, but for clarity we’ve dropped all the

x-dependences). (3.2) implies

S(A) = p1S1 + p2S2 − p1 ln p1 − p2 ln p2 . (3.3)

A similar situation occurs in the microcanonical ensemble, where there may be a com-

petition between different macrostates with the same energy. In the simple case where

8See [13] for an alternative discussion.
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there are just two macrostates, (3.2) and (3.3) apply; since all microstates are weighted

equally, pi = eSi/(eS1 + eS2), and, in the thermodynamic limit, S = max(S1, S2) (where all

quantities are functions of the energy). The entropy is continuous but has a discontinuous

second derivative as a function of the energy, just as for the EE as a function of x. Unlike

for the EE, however, it is the macrostate with the largest entropy that dominates. From

this point of view, the behavior of the holographic EE seems strange. In order for the

sub-ensemble with the smallest entropy to win, it must be that each state in sub-ensemble

ρi is weighted inversely with eSi . For example, a simple possibility that yields (3.1) in the

thermodynamic limit is

pi =
e−Si

e−S1 + e−S2
. (3.4)

4 Properties of the map r

As mentioned in the Introduction, one interesting but perhaps underappreciated feature of

the Ryu-Takayanagi formula is that it associates, in a canonical and geometrically natural

way, a bulk region A to each boundary region r(A). In this section we will give four

properties that this map obeys. While some of the these properties have been mentioned

in passing in previous work, we are not aware of a systematic treatment. In subsection 4.5,

we will then give a possible physical interpretation of this map, in view of these properties.

4.1 r(∅) = ∅

This immediately implies m(∅) = ∅, S(∅) = 0. The latter fact is required for consistency.

Proof. Since r = ∅ is certainly allowed, since it obeys ∅̇ = ∅. Furthermore, it is the

minimizer: since Σ is connected and equipped with a positive-definite metric, the only

regions such that area(∂r) = 0 are r = ∅ and possibly r = Σ; but the latter does not

obey ṙ = ∅.

4.2 r(Σ̇) = Σ

This immediately implies m(Σ̇) = H, S(Σ̇) = area(H) = Stot. The latter fact is clearly

required for consistency, given that, by the Bekenstein-Hawking formula, Stot is the en-

tropy of ρ.

We will not give a complete proof of this property. Essentially, what we wish to

exclude is the existence of a minimal surface other than H that could serve as ∂r and

possibly have smaller area than H (see figure 2). (Such a surface would in essence be a

traversable wormhole, so the statement is akin to the topological censorship theorem [28].)

To do so, we will assume that there are no walls and that the metric on Σ is smooth. We

will also appeal to the Einstein equation and the null energy condition.9 With arbitrary

placement of walls, or a singular metric on Σ, it is easy to construct a counterexample (see

9The counterexample on the left side of figure 2 shows that, unlike in most of the proofs in this paper, it

is necessary to constrain the geometry of Σ in some way in order to prove this property. Such a geometry

could certainly appear as a Cauchy slice of a solution to the Einstein equation (e.g. one could choose it as

part of initial data), so we will have to go off of Σ and invoke the staticness assumption in the proof.
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H H

walls

Σ̇
Σ̇

m(Σ̇) m(Σ̇)

Figure 2. Left: situation excluded by Property 4.2, in which there exists a minimal surface

homologous to Σ̇ with smaller area than H, that would therefore be m(Σ̇). (The proof actually

excludes the existence of even a local minimal surface homologous to Σ̇ other than H.) Right:

counterexample to Property 4.2: the walls on the left and right bend in to create a minimal surface

homologous to Σ̇, with smaller area than H. Presumably such behavior for walls is unphysical.

for example the right side of figure 2). However, we are not aware of one that is otherwise

physically reasonable. It seems likely that, with appropriate physical conditions on walls

and singularities, one could prove the property even in their presence.

Proof. We will first assume that H does not intersect Σ̇; in the next paragraph we will relax

this assumption. For any region r such that ṙ = Σ̇ and area(m) is finite, where m := ∂r,

m is necessarily closed. We will show that, if m is also minimal, then m = H. Send

out a congruence of future-directed null geodesics orthogonally from m, in the direction

of r. Since m is minimal, this congruence starts out with zero expansion; by a standard

application of the Einstein and Raychaudhuri equations and null energy condition, the

expansion cannot become positive. Consider the intersection of the congruence with a

constant-time slice a short time later than Σ; by transporting this surface along the Killing

vector back to Σ, we obtain a surface m′. Since the expansion is not positive, area(m′) ≤
area(m). Now, for points on H, the null congruence simply follows the horizon. (Recall

that H is the bifurcation surface of the horizon.) On the other hand, since the Killing vector

is null only on the horizon, and timelike elsewhere, if m 6= H then m′ 6= m. (Note that

proper subsets of H are not homologous to Σ̇, so if m 6= H then some points of m are not

in H.) Since m is minimal, any small variation increases its area, so area(m′) > area(m),

and we have arrived at a contradiction.

Now suppose H does intersect Σ̇; call the intersection Ḣ. Necessarily ṁ = Ḣ. Since m

is minimal, its area increases under any small variation that fixes ṁ, where it is anchored.

So, to run the argument from the previous paragraph, we only need to show that ṁ′ = ṁ.

If m is minimal then it hits Σ̇ perpendicularly (at least in the limit that the UV cutoff is

removed), so along the boundary spacetime, the null congruence coincides with the horizon,

hence ṁ′ = ṁ.

Being the bifurcation surface of a Killing horizon, H is necessarily extremal. However,

a bifurcation surface can be minimal (as for a black-hole horizon), maximal (as for a
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A
B

m0(A) B

m0(AB)

A

m(A)

B

Σ̇

Σ

B

m(AB)

Figure 3. Left: illustration of the situation excluded by Property 4.3. A and m(A) are in blue, B

is in green, and m(AB) is in red. Right: surfaces m′(A) := ∂r′(A) (blue) and m′(AB) := ∂r′(AB)

(red) used in the proof of Property 4.3, for the surfaces shown on the left.

cosmological horizon), or neither (as for a Rindler horizon). An interesting corollary of

this property is that H must be minimal (presuming, as we do throughout this paper, that

a minimal surface exists).

4.3 r(A) ⊆ r(AB)

If we do not assume uniqueness of the minimizers, then the precise statement is that r(A),

r(AB) can be chosen so that r(A) ⊆ r(AB).

If B = ∅ then the property is trivial, so we will henceforth assume B 6= ∅. Necessarily

r(A) 6= r(AB), so the property states that r(A) ⊂ r(AB), in other words that the map r

is strictly monotonic.

Proof. We proceed by contradiction. Define two new regions

r′(A) := r(A) ∩ r(AB) , r′(AB) := r(A) ∪ r(AB) , (4.1)

and their corresponding boundary areas, S′(A) := ∂r′(A), S′(AB) = ∂r′(AB). (See fig-

ure 3.) The regions satisfy ṙ′(A) = A, ṙ′(AB) = AB, but are distinct from r(A), r(AB).10

So if we assume uniqueness of the minimizer then we must have

S′(A) > S(A) , S′(AB) > S(AB) . (4.2)

On the other hand, using (2.2), (2.3), (2.4), we have

S′(A)− S(A) + S′(AB)− S(AB) = −2 opp(r(A), r(AB)) ≤ 0 , (4.3)

which is a contradiction. If we don’t assume uniqueness, then the inequalities in (4.2)

become non-strict, so there is the possibility that

S′(A) = S(A) , S′(AB) = S(AB) , opp(r(A), r(AB)) = 0 . (4.4)

10Since r(A) 6= r(AB), if r(A) 6⊂ r(AB), some part of r(A) lies outside of r(AB). Hence r′(A) 6= r(A),

r′(AB) 6= r(AB).
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A

m(A)

m(B)

B

A

B

m0(A)

m0(B)

Σ

Σ̇

Figure 4. Left: illustration of the situation excluded by Property 4.4. A and m(A) are in blue,

while B and m(B) are in green. Right: surfaces m′(A) := ∂r′(A) (blue) and m′(B) := ∂r′(B)

(green) used in the proof of Property 4.4, for the surfaces shown on the left.

But in that case, since their areas equal those of minimizers, r′(A), r′(AB) must themselves

also be minimizers, and they certainly obey r′(A) ⊂ r′(AB).

This property is required for consistency in the case when M is a subset of a larger

static spacetime M ′ (for example, the Poincaré patch or a Rindler wedge inside AdS) and

Σ is a subset of a constant-time slice Σ′ of M ′. If it true that M represents the state of

the field theory on Ṁ , then the EE of any region A ⊆ Σ̇ should be computable from Σ,

without knowing the larger space Σ′, in other words we need r(A) ⊆ Σ.

4.4 r(A) ∩ r(B) = ∅

Proof. Same argument as for Property 4.3, but with r′(A) := r(A) \ r(B), r′(B) := r(B) \
r(A) (see figure 4).

4.5 Interpretation

The four properties of the map r listed above, together with the fact that, by definition,

ṙ(A) = A, strongly suggest that the bulk region r(A) should represent some natural object

in the field theory associated to the region A. The additional fact that S(A) = area(∂r(A))

suggests further that this object is the reduced density matrix ρA, whose von Neumann

entropy is S(A). In other words, if you know r(A) —including its topology and the full

classical field configuration on it — then you know ρA, even if you don’t know anything

about the rest of the bulk Σ. (This statement is similar to one of the proposals by Czech

et al. in [15].)

Of course, such a statement must be understood in a large-N sense. (In this paragraph,

for concreteness, we adopt the language of a gauge/string duality.) Indeed, even the usual

statement that the classical field configuration on Σ represents the state ρ on Σ̇ is only true

at leading order in 1/N . For example, if Σ̇ is a sphere and the field theory is a CFT, then

the vacuum and a thermal state below the Hawking-Page temperature are represented by

the same classical spacetime, namely global AdS. Knowing Σ, one can directly read off the

leading terms in the one-point functions of local single-trace operators from the asymptotic
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behavior of the fields near Σ̇. However, higher-order terms in one-point functions and

connected higher-point functions require knowledge of the quantum state of the fields on

Σ (to say nothing of corrections that are non-perturbative in 1/N). The same is true

for one-point functions of local single-trace operators on A, given knowledge of r(A). (It

also holds, albeit in a trivial way, for non-local single-trace operators such as connected

spacelike Wilson loops. Their one-point functions are of the form e−aws/α′
, where aws is

the string-frame area of the minimal worldsheet ending on the boundary, which vanishes

in the limit of Einstein gravity, α′ → 0.11)

Note that it is not in general true that r(AB) = r(A)∪r(B) (nor the weaker statement

r(Ac) = r(A)c). (In section 5, we will give sufficient conditions for this equality to hold.)

What, then, does the remainder r(AB) \ (r(A) ∪ r(B)) represent? In general, knowledge

of ρA and ρB does not fix ρAB. So presumably the rest of r(AB) encodes how ρA and ρB
fit inside ρAB.12

Of course it would be useful to make the above speculations more precise. The map r

will play an essential role in the properties and examples we will study in the next section,

and in turn they will help us build intuition about its physical meaning.

5 Inequalities and their saturation

In this section we discuss inequalities obeyed by the entanglement entropy, as calculated by

the Ryu-Takayanagi formula. The proofs of the inequalities were previously published, with

two exceptions. First, we fill a small gap in the published proofs of strong subadditivity

and monogamy of mutual information. Second, the last inequality, Property 5.7, is new.

For several of the inequalities, we will also give necessary and sufficient conditions for

their saturation, in terms of the relevant bulk regions and surfaces. The sufficiency of the

conditions is obvious, so we will only give proofs of their necessity. It will be convenient to

assume uniqueness of the minimizer in these proofs. If one doesn’t assume uniqueness, then

the correct statement is that the relevant bulk regions r(A) etc. can be chosen such that the

given condition holds. In each case, we will also discuss the interpretation of the saturation

from the field-theory viewpoint, which turns out to reveal quite a bit about the structure

of reduced density matrices in holographic theories. The following point will play a crucial

role: since the RT formula only gives the order 1/GN part of the entanglement entropy, by

“saturation” in this context we actually mean “saturation at order 1/GN”. In fact, as we

will discuss, we do not expect any of these inequalities to be exactly saturated, except in

trivial cases. For definiteness, it will be convenient to adopt the language of large-N gauge

theories (for example, “gluon” and “glueball” degrees of freedom). However, very similar

statements can be made about other holographic theories, such as two-dimensional CFTs

where 1/GN ∼ c.

11Note that, even if the Wilson loop lies entirely within A, the minimal worldsheet will not in general lie

within r(A). To construct a counterexample, fix a Wilson loop and let A be a tubular neighborhood of it

that is much smaller in radius than the size of the Wilson loop; r(A) will be a small half-tube very close to

Ṁ , and will certainly not contain the minimal worldsheet ending on the Wilson loop.
12Similar speculations appeared previously in [15].
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The inequalities in this section are logically related to each other in various ways. For

example, 5.4 implies 5.2, and 5.5 implies 5.3. However, it is useful to list them separately

in order to clarify the exposition, especially as regards the conditions for saturation.

5.1 S(A) ≥ 0

Proof. Obvious from the definition.

This is a general property of entropy in any quantum system, and is therefore required

for consistency.

5.1.1 Saturation

Condition. S(A) = 0 if and only if either A = ∅ or A = Σ̇ and Stot = 0.

Proof. Given that Σ is assumed to be connected and carries a positive-definite metric, any

non-empty proper subset r ⊂ Σ has ∂r > 0. So if S(A) = 0 then either r(A) = ∅ or

r(A) = Σ. The former implies A = ∅, while the latter implies A = Σ̇.

At first glance this statement seems to merely say that non-trivial regions are always

entangled, which we would expect in any field theory. However, it actually says that the

EE is always of order 1/GN ∼ N2. The physical interpretation is that, in any state that

can be described holographically, the entanglement across any entangling surface involves

the gluonic (i.e. non-gauge-invariant) degrees of freedom. This is a statement about short-

distance correlation; in the next subsection, we will see that it is not necessarily the case

for measures of long-distance correlation.

5.2 S(AB) ≤ S(A) + S(B)

Proof. Define r′(AB) := r(A) ∪ r(B), S′(AB) := area(∂r′(AB)). This satisfies ṙ′(AB) =

AB, so S(AB) ≤ S′(AB). From (2.3) we have

S′(AB) = ext(r(A), r(B)) + ext(r(B), r(A)) , (5.1)

while from (2.2) we have

S(A) + S(B) = ext(r(A), r(B)) + ext(r(B), r(A)) + 2 opp(r(A), r(B)) , (5.2)

where we have used the fact that, by Property 4.4, sam(r(A), r(B)) = int(r(A), r(B)) =

int(r(B), r(A)) = 0. So S′(AB) ≤ S(A) + S(B).

This property is called subadditivity. It is a general property of entropy in any quantum

system, and is therefore required for consistency. The difference between the two sides

defines the mutual information,

I(A : B) := S(A) + S(B)− S(AB) , (5.3)

which quantifies the total amount of correlation between A and B, including both classical

correlation and entanglement. For example, a pair of bits in A,B in the maximally en-

tangled state 1
2(|00〉 + |11〉)(〈00| + 〈11|) contributes 2 ln 2 to I(A : B), while a pair in the

maximally classically correlated state 1
2(|00〉〈00|+ |11〉〈11|) contributes ln 2.
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x
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A

B

Figure 5. Left: illustration of a case where the subadditivity inequality is saturated. Right:

example of two thermodynamic systems coupled via a macroscopic variable: two species of gas in

a box separated by a movable piston. A,B represent the states of the two gases respectively. As

discussed in the main text, such a system is closely analogous to the state of regions in a holographic

field theory such that subadditivity is saturated, as on the left side.

5.2.1 Saturation

Condition. S(AB) = S(A) + S(B) if and only if r(AB) = r(A) ∪ r(B) and m(AB) =

m(A) ∪m(B) (see figure 5, left side).

Proof. Looking at the proof of subadditivity, we see that its saturation implies

S(AB) = S′(AB) = S(A) + S(B) . (5.4)

The first equality, along with uniqueness of the minimizer, implies r(AB) = r′(AB). It

then follows from the second that opp(r(A), r(B)) = 0, hence m(AB) = m(A)∪m(B).

Subadditivity is saturated whenever the regions A,B are far enough apart, relative

to their sizes and any scales in the background, for the preferred minimal surface not

to join them.13 If we fix their sizes and shapes and vary their separation continuously,

there is usually a first-order phase transition at some separation, in which I(A : B) goes

from being zero to non-zero, continuously but with a discontinuous first derivative. The

simplest example is the vacuum of a CFT on the line in 1 + 1 dimensions, with A,B

each a single interval, where the phase transition occurs when the cross-ratio of their four

endpoints is 1/2.

It is interesting to ask what the field-theory interpretation of this situation is. In

a general quantum system, I(A : B) vanishes exactly if and only if ρAB = ρA ⊗ ρB.

This implies that the connected two-point functions between any operator in A and any

operator in B vanish, which would be rather surprising in a field theory. However, in

the holographic case, I(A : B) does not strictly vanish, but rather is of order G0
N ∼ N0.

(There must also exist non-perturbative corrections to the EE, which smooth out the phase

transition at finite N .) This indicates that the correlations are being carried only by gauge-

invariant degrees of freedom (glueballs, etc.); on the other hand, when I(A : B) is of order

1/GN ∼ N2, the amount of correlation is so large that it must be being carried by the

colored degrees of freedom (gluons, etc.).

13The discussion in this paragraph and the next one follows [4].
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The same phenomenon occurs for any two thermodynamic systems that are coupled to

each other only via macroscopic observables. For example, let A,B be two species of gas

in a box separated by a movable piston (see figure 5, right side). The states of A,B will be

correlated due to fluctuations in the position of the piston. However, in the thermodynamic

limit these fluctuations are small, and therefore I(A : B) is small. More precisely, if there

are of order M molecules of each gas, then the entropies S(A), S(B), S(AB) are of order

M , but the fluctuations in the position of the piston are of order 1/
√
M and the mutual

information is of order 1. To see this, write the state ρAB as a direct sum of states with

definite values of the macroscopic variable x; since A,B are coupled only via x, each state

in the direct sum is a tensor product:

ρAB =
1

Z

⊕
x

e−F (x)ρA(x)⊗ ρB(x) , (5.5)

where F (x) is the free energy for fixed x. Since the systems are macroscopic, F (x) is of

order M . A short calculation then shows

I(A : B) =
1

Z

∫
dx (F (x)− lnZ) e−F (x) ; (5.6)

this is of order 1, since in the leading saddle-point approximation lnZ ≈ F (x1), where x1 is

the equilibrium value of x (the minimum of F (x)). Similarly, 〈(x− x1)2〉 is of order 1/M .

(On the other hand, if the two gases are allowed to mingle, then the mutual information

will be extensive in M .)

The large-N limit of a gauge theory is a thermodynamic limit, where the “macroscopic

observables” are the gauge-invariant operators. In a holographic theory, the corresponding

degrees of freedom are the bulk fields. So, by analogy to the box of gas, we conclude

that when the regions A,B are sufficiently far separated, their mutual information can be

understood in terms of fluctuations of the bulk fields. While from the field-theory point

of view these are statistical fluctuations, from the bulk point of view they are quantum

fluctuations, and indeed are of order
√
GN ∼ 1/N , as expected from the above reasoning,

with M ∼ N2. (See also [29, 30].)

The view of far-separated regions as thermodynamic systems coupled via macroscopic

observables also demystifies a puzzling feature of their Rényi entropies. Replica-trick cal-

culations of Rényi entropies for the example mentioned above (two disjoint intervals in a

two-dimensional CFT on the line in the vacuum) revealed that, even when I(A : B) is of or-

der 1, the mutual Rényi information (MRI) Iα(A : B) := Sα(A)+Sα(B)−Sα(AB) (α 6= 1)

is of order 1/GN ∼ c [4]. At first sight, this large MRI is rather surprising: given that a

strictly vanishing mutual information implies a vanishing MRI, one might have expected

that when the former is small the latter is also small. However, since the MRI is known

not to be a good measure of correlation — for example, it is not positive or monotonic

under inclusion — the physical significance of this large value was not clear.

In fact, this behavior is not at all surprising when we view A,B as macroscopically

coupled systems. Given the ensemble (5.5), a short calculation shows that Iα(A : B) is of

order M for α 6= 1. The reason is that changing α away from 1 changes the saddle-point
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value of x by an amount of order 1, and so effectively changes the macroscopic state (unlike

the small fluctuations in x that lead to the order-1 value of I(A : B)). For example, for the

box of gas, changing α effectively changes the temperature; if the two gases have different

equations of state, say, then the equilibrium position of the piston will shift as a result.

Thus the state (5.5), representing thermodyanic systems coupled via macroscopic vari-

ables, reproduces several qualitative features of the reduced density matrix for far-separated

regions in a holographic theory. However, we should also note an important difference: the

state (5.5) is separable, meaning that there are only classical correlations but no entangle-

ment between A and B, while it is expected that regions in quantum field theories always

have some entanglement between them [31]. Thus the state ρAB in the holographic case is

likely more complicated than (5.5).

5.3 S(A) ≤ S(AB) + S(B)

Proof. Same strategy as for proof of subadditivity, with r′(A) := r(AB) \ r(B).

This is called the Araki-Lieb (AL) or triangle inequality. It is often written |S(A) −
S(B)| ≤ S(AB). It generalizes the statement that, if ρAB is pure, then S(A) = S(B).

It is a general property of entropy in any quantum system, and is therefore required

for consistency.

In analogy to the mutual information, we can define the difference between the two

sides as the intrinsic entropy :

J(B,A) := S(AB) + S(B)− S(A) , (5.7)

which quantifies how much of the entropy in B is not due to entanglement with A.14 For

example, consider a bit of B that, after tracing over A, is in the maximally mixed state
1
2(|0〉〈0|+ |1〉〈1|), and therefore contributes ln 2 to S(B). If, before tracing over A, the bit

is uncorrelated with A, then it contributes 2 ln 2 to J(B,A); on the other hand, if it is

maximally classically correlated with some bit in A, then it contributes only ln 2, while if

it is maximally entangled then it does not contribute at all.

5.3.1 Saturation

Condition. S(A) = S(AB) + S(B) if and only if r(A) = r(AB) \ r(B) and m(A) =

m(AB) ∪m(B). (See figure 6.)

Proof. Similar to saturation of subadditivity (except the condition opp(r(AB), r(B)) = 0

is replaced by the condition sam(r(AB), r(B)) = 0).

An important special case is when S(AB) = 0, in which case AL is necessarily satu-

rated. By property 5.1.1, this can only happen when B = Ac and Stot = 0. In this case,

r(B) = r(A)c; see figure 6, left side. In particular, if the full system is in a strictly pure

state, such as the vacuum, and B = Ac, then AL is necessarily exactly saturated. On the

other hand, if the entropy of the full system is of order 1 (for example, in a thermal state

14If the full system is in a pure state, then J(B,A) = I(B : (AB)c).
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B

m(AB)

m(B)m(A)

A

B

m(A) = m(B)

A
B

m(AB) = H

m(B)m(A)

A

Figure 6. Illustration of cases where the AL inequality is saturated. In the left case, B = Ac

and S(AB) = Stot = 0; therefore, for any choice of A, AL must be saturated and r(B) = r(A)c. In

the center and right cases, S(AB) 6= 0 (in the center, B 6= Ac; on the right, B = Ac but Stot 6= 0);

therefore, the fact that AL is saturated depends on the particular arrangement of A,B.

below the Hawking-Page transition), then we would expect AL to only be saturated at

order 1/GN.

AL can still be saturated even when AB is not pure, either because B 6= Ac (figure 6,

middle) or because Stot 6= 0 (i.e. the bulk contains a horizon; figure 6, right side), or both.

Saturation requires B to be surrounded by A, i.e. ∂B ⊆ ∂A; otherwise we cannot have

r(A) = r(AB) \ r(B). Roughly speaking, J(B,A) vanishes when B is sufficiently small

compared to A and other relevant scales in the background. If we tune the relative sizes

of the two regions, a first-order phase transition can occur in which J(B,A) goes from

being zero to non-zero, continuously but with a discontinuous first derivative.15 In these

cases, we would expect the saturation to occur only at order 1/GN. There must also be

non-perturbative corrections that smooth out the phase transition at finite GN, i.e. finite N .

The saturation of AL has intriguing implications from the field-theory viewpoint. We

should first ask what its saturation implies for a general quantum system. Since the intrinsic

entropy quantifies how much of the entropy of B is not due to entanglement with A, we

would expect that, when it vanishes, all of B is maximally entangled with all or part of A;

by the monogamy of entanglement, the rest of A must then be uncorrelated with both B

and the first part of A. This intuition is confirmed by the following theorem [32]: J(B,A)

vanishes exactly if and only if the A Hilbert space can be decomposed into two factors,

HA = HA1 ⊗HA2 , such that

ρAB = ρA1 ⊗ ρA2B , (5.8)

where ρA2B is pure. In other words, the degrees of freedom of A can be divided into two

uncorrelated sets, those that carry all of the entanglement with B and those that carry all

of the full system’s entropy.

Returning to the saturation of AL in the holographic context, we might be tempted to

conclude from the above theorem that, again, the A Hilbert space can be decomposed such

that ρAB = ρA1 ⊗ ρA2B, with ρA2B pure. In other words, the degrees of freedom of A can

15Examples of saturation of AL and the accompanying phase transition, in cases where B = Ac and the

bulk contains a horizon, were studied in [13].
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be divided into two uncorrelated sets, one of which is maximally entangled with B and the

other of which carries all of the entropy of AB. It is clear that such a division cannot be only

according to geometric regions, since such regions would never be uncorrelated; therefore it

must somehow be among the gluonic degrees of freedom. The idea that the gluonic degrees

of freedom living at a given point in space can be divided into two uncorrelated sets is

quite surprising.

However, the situation is actually more complicated, since in a holographic system we

don’t expect J(B,A) to vanish exactly, but rather to be of order 1 (except when B = Ac

and the full system is in an exactly pure state, in which case the above decomposition

is trivial). One simple kind of state consistent with S(A), S(B), S(AB) = O(1/GN) and

J(B,A) = O(1) is, again, ρAB = ρA1⊗ρA2B, with S(A1) = O(1/GN) and J(B,A2) = O(1)

(again, A1,2 are not regions); in other words, B is almost but not entirely entangled with

part of A. However, it seems unlikely that the degrees of freedom in an interacting field

theory could ever admit a decomposition into exactly uncorrelated subsets. A more realistic

model would include mixtures of such states, analogous to (5.5). Thus, we decompose HA
into a direct sum of products, HA =

⊕
iHAi

1
⊗HAi

2
, and write

ρAB =
⊕
i

piρAi
1
⊗ ρAi

2B
, (5.9)

where pi ≥ 0,
∑

i pi = 1. We have J(B,A) ≤
∑

i piJ(B,Ai2)−
∑

i pi ln pi, so if J(B,Ai2) is

of order 1 for all i, and the mixing entropy −
∑

i pi ln pi is of order 1, then J(B,A) is of

order 1. Of course, the actual state ρAB in a holographic theory may well take a form that

is even more complicated than (5.9).

5.4 S(B) + S(ABC) ≤ S(AB) + S(BC)

Proof. Same strategy as for previous proofs, with r′(B) := r(AB) ∩ r(BC), r′(ABC) :=

r(AB) ∪ r(BC).

This inequality is called strong subadditivity (SSA). It says that the mutual information

increases under inclusion, I(A : BC) ≥ I(A : B), as we would expect from a measure of

correlation. By setting B = ∅, it implies subadditivity (5.2). It is a general property of

entropy in any quantum system, and is therefore required for consistency.

The proof above was essentially given in [33], except that in the decomposition

of the surfaces m(AB), m(BC), ∂r′(AB), ∂r′(BC), the terms sam(r(AB), r(BC)),

opp(r(AB), r(BC)) were neglected. These terms can be finite, even without any fine-

tuning of the geometry. For example, if B has a component B1 that is distant from A, C,

and the other components of B, then r(B1) will be a component of both r(AB) and r(BC),

so sam(r(AB), r(BC)) will include S(B1). Similarly, if A includes a small component A1

that is surrounded by C, then opp(r(AB), r(BC)) will include S(A1). Aside from allowing

us to complete the proof of the SSA inequality, recognizing the presence of these terms is

important when investigating the conditions for its saturation.
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A

C

A

C

C

B

B
B

B

A

Figure 7. Illustration of cases where SSA is saturated. In each diagram, r(B) is the green region,

r(AB) is blue + green, r(BC) is green + yellow, and r(ABC) is blue + green + yellow.

5.4.1 Saturation

Condition. S(B)+S(ABC) = S(AB)+S(BC) if and only if r(ABC) = r(AB)∪r(BC),

r(B) = r(AB) ∩ r(BC), opp(r(AB), r(BC)) = 0.

Proof. Follows directly from the proof of SSA.

Figure 7 illustrates two kinds of configurations in which SSA can be saturated. (More

complicated configurations are also possible, for example by combining these two.) The

configuration on the left resembles the one in figure 5: if we decompose B as B = B1B2,

where the subregions B1,2 are close to A and C respectively, then we have I(AB1 : B2C) =

0. In the configuration on the right side, on the other hand, B cannot be decomposed

spatially into parts that are close to A and C respectively.

The bulk regions r(A) and r(C) are not shown in figure 7 (as their surface areas don’t

enter into the SSA inequality). However, according to Properties 4.3 and 4.4, r(A) must

be contained in the blue region; similar with r(C) and the yellow region. It follows that

I(A : C) = 0. In fact, this is always the case: using Properties 5.2 and 5.6, it is easy to

show that S(B) + S(ABC) = S(AB) + S(BC) implies I(A : C) = 0.

As with subadditivity and AL, we should ask what form the reduced density matrix

ρABC takes when SSA is saturated. Again, we begin by asking what its (exact) saturation

implies for ρABC in a general quantum system, and, again, a theorem is available to answer

that question. Saturation of SSA is equivalent to I(A : BC) = I(A : B), so we would

expect that C has no correlations with A other than ones that are already present in the

AB system. The following theorem [34] shows that this intuition is correct: I(A : BC) =

I(A : B) if and only if there exists a decomposition of the B Hilbert space,

HB =
⊕
i

HBi
1
⊗HBi

2
(5.10)

such that

ρABC =
⊕
i

piρABi
1
⊗ ρBi

2C
, (5.11)

– 21 –



J
H
E
P
0
3
(
2
0
1
4
)
0
8
5

where pi ≥ 0,
∑

i pi = 1. In a state of this form, which is called a quantum Markov chain,

the correlations between A and C are entirely mediated by B.

Of course, just like subadditivity and AL, SSA is presumably not saturated exactly in

holographic theories, but only at order 1/GN (except in trivial cases), so the form (5.11)

should not be taken literally. Nonetheless, it is quite suggestive, and may be approximately

true in some sense. In particular, it is clear that, in a configuration of the kind shown on

the left side of figure 7, the B Hilbert space can be decomposed geometrically as HB =

HB1 ⊗ HB2 , with ρABC containing only an order-1 amount of classical correlation and

entanglement between AB1 and B2C. On the other hand, in a configuration of the kind

shown on the right side, any such decomposition cannot be (only) geometrical, must be

(also) be somehow among the “glueball” degrees of freedom, just as in the saturation of AL.

5.5 S(A) + S(C) ≤ S(AB) + S(BC)

Proof. Same strategy as for previous proofs, with r′(A) := r(AB)\r(BC), r′(C) := r(BC)\
r(AB).

This inequality is also a form of SSA. It says that the intrinsic entropy increases under

inclusion (with the total system fixed), J(AB,C) ≥ J(A,BC), as we would expect. By

setting C = ∅, it implies AL 5.3. It is a general property of entropy in any quantum system,

and is therefore required for consistency.

5.6 S(A) + S(B) + S(C) + S(ABC) ≤ S(AB) + S(BC) + S(AC)

Proof. Same strategy as for previous proofs, with r′(A) := r(AB) ∩ r(AC) \ r(BC), etc.

and r′(ABC) := r(AB) ∪ r(BC) ∪ r(AC).

This property is called monogamy of mutual information (MMI). It can be written in

terms of the mutual information as I(A : BC) ≥ I(A : B) + I(A : C) (in which form it

resembles inequalities of a general class called monogamy inequalities), or in terms of the

intrinsic entropy as J(AB,C) ≥ J(A,BC) + J(B,AC).

The proof above was given in [35], except that terms from coincident boundaries, such

as opp(r(AB), r(BC)), were neglected.

Unlike the previous four properties, MMI is not a general property of quantum sys-

tems;16 for example, it is violated by the state on three bits ρABC = 1
2(|000〉〈000| +

|111〉〈111|). It is also violated in many quantum field theories [36]. Thus it is not required

for consistency, but is rather a special property of holographic systems.17 (Even in holo-

graphic theories, it can likely be violated by order-1 corrections when it is saturated at

order 1/GN.) Its physical interpretation is not entirely clear, but it seems to indicate that

the correlations between spatial regions in holographic theories are dominated by entangle-

ment rather than classical correlation, and, perhaps more importantly, that this continues

16However, the following similar but weaker inequality can be derived from SSA, and is therefore a general

property of quantum systems: S(A) + S(B) + S(C) + S(ABC) ≤ 4
3
(S(AB) + S(BC) + S(AC)).

17Intringuingly, it also seems to be obeyed by massive 2 + 1 dimensional theories with long-range topo-

logical order [35].
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to be true even after tracing out other regions. In general, tracing out one part of a sys-

tem decoheres the rest, converting entanglement into classical correlations. For example, if

ABC consists of three qubits in the entangled state ρABC = 1
2(|000〉+ |111〉)(〈000|+〈111|),

then tracing out C leads to the classically correlated state ρAB = 1
2(|00〉〈00| + |11〉〈11|).

Apparently this does not happen in holographic theories, at least at leading order in GN.

Perhaps the fact that such theories have a large number of degrees of freedom at each

spatial point allows them to remain dominantly entangled despite the decoherence that

occurs as a result of tracing out regions. A fuller discussion can be found in [35].

MMI, together with SSA, implies an infinite set of constrained inequalities on four or

more subsystems that hold for any quantum system (but are independent of SSA) [37, 38].

Since these are required for consistency, they provide a remarkably stringent test of the

RT formula. The simplest of them is as follows: if I(A : BC) = I(A : B) = I(A : C) and

I(B : CD) = I(B : C), then I(C : D) ≥ I(C : AB).

5.7 S(AĀ) + S(BB̄) ≤ S(AB̄) + S(BĀ)

We will call this property the reflection inequality. Unlike the previous inequalities in this

section, this is a new result. Also, the set-up and notation are slightly different than before,

as we will explain.

Consider first a field theory on Minkowski space with coordinates xµ. Let A,B be

spacelike regions lying in the “left” Rindler wedge x1 < 0, |x0| < |x1|. A,B need not be

disjoint, or even lie on a common spacelike slice. Let Ā, B̄ be the regions in the “right”

Rindler wedge x1 > 0, |x0| < |x1| obtained by acting on A,B respectively with a simulta-

neous time reversal and parity transformation,

(x0, x1, x2, . . .)→ (−x0,−x1, x2, . . .) . (5.12)

Casini has conjectured that the vacuum EEs in any unitary field theory obey the above

reflection inequality [19]. The conjecture was motivated by an analogy between EEs and

correlators, together with a property of correlators called wedge reflection positivity, which

is a Lorentzian analogue of reflection positivity. Note that the reflection symmetry implies

that S(BĀ) = S(AB̄), so the inequality can also be written

1

2

(
S(AĀ) + S(BB̄)

)
≤ S(AB̄) . (5.13)

Or it can be written in terms of the mutual informations:

1

2

(
I(A : Ā) + I(B : B̄)

)
≥ I(A : B̄) . (5.14)

We will give a sufficient condition, in terms of the bulk geometry, for a state in a

holographic theory to obey the reflection inequality. The condition is that Σ (and hence

Σ̇) admits a reflection symmetry, that is, a Z2 isometry with a fundamental domain W such

that w := ∂W ∩ ∂W̄ is the fixed locus of the isometry (where the bar indicates the action
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of the isometry).18 Under this assumption, we will show that (5.13) holds for A,B ⊆ Ẇ .

(Again, unlike in the rest of the paper, A,B need not be disjoint. We will never consider

S(AB), but only S(AĀ), S(BĀ), S(AB̄).) In particular, the condition is obeyed by the

vacuum of a holographic theory on Minkowski space, since Σ in that case is hyperbolic

space, which, in the usual Poincaré coordinates, is invariant under x1 → −x1. Hence our

theorem includes, as a special case, Casini’s conjecture applied to a constant-time slice of a

holographic theory, and thereby supports its validity. Conversely, if Casini’s conjecture is

generally true, then this property (applied to the vacuum of a theory on Minkowski space)

is required for consistency of the RT formula.

Before giving the proof, we would first like to show that the reflection inequality is

independent of the previous ones in this section, by giving an example of a state that

violates it but obeys the others. Let A,B be disjoint, and let

ρABĀB̄ = ρAB̄ ⊗ ρBĀ , (5.15)

where ρAB̄ and ρBĀ do not factorize.19 It is straightforward to check that this state obeys

(in fact saturates) MMI; being an allowed quantum state it necessarily satisfies all of the

other inequalities of this section as well. However, it violates the reflection inequality, as

the left-hand side of (5.14) vanishes while the right-hand side is positive.

Proof. We assume that r(AB̄), r(BĀ) are related by a reflection (if the minimizers are

unique, then this must be the case; if not, choose them so).20 We define the regions

r1 := r(AB̄) ∩W , r2 := r(BĀ) ∩W , (5.16)

so that we have r(AB̄) = r1 ∪ r̄2. From (2.3), and noting that r1 and r̄2 are disjoint,

we have

S(AB̄) = ext(r1, r̄2) + ext(r̄2, r1) . (5.17)

We can further decompose ext(r1, r̄2) into the part of ∂r1 exterior to W̄ and the part

along w:

ext(r1, r̄2) = ext(r1, W̄ ) + area(∂r1 ∩ w \ ∂r̄2) ; (5.18)

similarly with ext(r̄2, r1). All in all, and using the symmetry, we find

S(AB̄) = ext(r1, W̄ ) + ext(r2, W̄ ) + area(∂r1 ∩ w \ ∂r̄2) + area(∂r2 ∩ w \ ∂r̄1) . (5.19)

We now define the regions

r′(AĀ) := r1 ∪ r̄1 , r′(BB̄) := r2 ∪ r̄2 (5.20)

18More generally, this reflection can be thought of the restriction to Σ of a combined CPT transformation

on the full spacetime M and all the fields in it. Invariance of M under this CPT transformation is equivalent

to the state ρ of the field theory being CPT-invariant. However, only the parity invariance of the metric

on Σ will play a role in our considerations.
19It is not clear if such a state can exist in a holographic theory with a connected bulk Σ. If it can, then

of course by our theorem the bulk would not admit a reflection symmetry.
20It is easy to show that r(AĀ) and r(BB̄) are themselves symmetric under reflection (or, if the minimizers

are not unique, then they can be chosen to be symmetric). However, this fact will not play a role in our proof.
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A
W W̄

B̄
m(AB̄)

w

A Ā

m0(AĀ)

Figure 8. Left: reflection-symmetric bulk Σ, divided into two fundamental domains W, W̄

separated by the fixed locus w of the reflection. Boundary regions A ⊆ Ẇ and B̄ ⊆ ˙̄W are

indicated, along with the bulk surface m(AB̄). Right: the surface m′(AĀ) := ∂r′(AĀ) used in the

proof of Property 5.7, for the surfaces shown on the left.

and their boundary areas S′(AĀ), S′(BB̄) (see figure 8). We have a similar decomposition

as for S(AB̄). However, the terms area(∂r1∩w\∂r̄1) and area(∂r2∩w\∂r̄2) vanish because

w is the fixed locus of the reflection. Hence we have

1

2

(
S′(AĀ) + S′(BB̄)

)
= ext(r1, W̄ ) + ext(r2, W̄ ) ≤ S(AB̄) . (5.21)

On the other hand, since ṙ′(AĀ) = AĀ and ṙ′(BB̄) = BB̄,

S(AĀ) ≤ S′(AĀ) , S(BB̄) ≤ S′(BB̄) . (5.22)
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