
REVIEW ARTICLE

Hybrids of cationic porphyrins with nanocarbons

Beata Girek • Wanda Sliwa

Received: 2 January 2015 / Accepted: 13 February 2015 / Published online: 17 March 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In the review hybrids of cationic porphyrins

(i.e. porphyrins functionalized by quaternary pyridinium

groups) with nanocarbons such as fullerenes, carbon nan-

otubes and graphene are described. Selected examples of

these species are characterized in regard of their properties

and possible applications.

Keywords Allotropes � Carbon nanotubes � Fullerene �
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Introduction

Porphyrins are planar tetrapyrrolic macrocycles that have

interesting properties and value for applications in various

fields. They are promising in the design of sensors [1] and

they show catalytic properties [2]; some metal porphyrins

may be used for analytical purposes [3]. The reactivity of

porphyrins enables synthesis of valuable systems, useful in

many areas [4–10], e.g. design of solar cells [11, 12] and

nanowires [13].

Cationic porphyrins, i.e. porphyrins meso-functionalized

by quaternary azaaromatic units, due to the presence of

four positive charges are of interest in the construction of

next generation photosensitizers [14]. Cationic porphyrins

exist as free ones, and as metalloporphyrins.

The representative compound of cationic porphyrins is

meso-tetrakis(N-methyl-4-pyridinium porphyrin (TMPyP),

in this review referred to as A. Among hybrids of cationic

porphyrins, those with nanocarbons are a topic of present

review.

A growing attention is paid today to interaction of ca-

tionic porphyrins with nucleic acids [15]. Cationic por-

phyrin A is a known 1O2 photosensitizer, effectively used

in photodynamic therapy (PDT), generating singlet oxygen

for selective destruction of localized tumors [16].

It is noteworthy that antimicrobial photodynamic ther-

apy (aPDT) is now emerging as an alternative to antibi-

otics; in this procedure the cationic photosensitizers such as

cationic porphyrins interact in the excited state with

molecular oxygen to produce singlet oxygen that kills the

microbial cells [17].

Among a variety of other applications of porphyrins in

medicinal field [18] one may mention the use of
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luminescence of porphyrins for fluorescence diagnostic

magnetic resonance imaging [19] and for design of self-

illuminating fluorophores suitable for in vivo applications

[20].

Nanocarbons, belonging to carbon allotropes include

zero-dimensional (0D) fullerenes, one-dimensional (1D)

carbon nanotubes and two-dimensional (2D) graphene.

Nanocarbons have attracted recently a growing attention

due to their unique electronic, optical, thermal and che-

mical properties, promising for their applications in a va-

riety of areas [21].

The smallest species, i.e. fullerenes consist of bent sp2

carbon atoms. From fullerenes to graphene the strain at sp2

carbon atoms decreases; the surfaces of fullerenes and

graphene have different reactivities. In fullerenes attempts

to release strain by formation of sp3 carbon centers exist,

therefore fullerenes have anomalously large reactivity,

while in graphene no strain at carbon atoms is observed,

i.e. no tendency for sp3 hybridization occurs, and conse-

quently, graphene is less reactive than fullerenes [22].

Nanocarbons are today a topic of an intense research,

and a considerable progress in this area is observed. Due to

valuable properties they may find applications in various

fields; one should point out the importance of these mate-

rials so from theoretical and practical viewpoints.

Fullerenes, carbon nanotubes and graphene are of in-

terest in the study of artificial photosynthesis and solar

energy conversion, in the construction of electronic, opto-

electronic, photovoltaic and sensing devices [23] and in the

study of advanced energy conversion (in design of solar

cells and fuel cells) and energy storage (in design of bat-

teries and supercapacitors) [24]. Fullerenes and carbon

nanotubes are promising as acceptor materials in organic

photovoltaics; the donor–acceptor blends with a polymer

donor and a fullerene or single walled carbon nanotubes

(SWCNT) acceptor were reported [25].

Carbon nanotubes and graphene may be applied in

photocatalytic reduction of CO2 (produced as an emission

from use of hydrocarbon fuels) to hydrocarbon fuels [26].

Carbon nanotubes and graphene are of interest for appli-

cation in mass and energy transport. They are examples of

low dimensional species promising in the reduction of di-

mensionality of the material [27].

Carbon nanotubes and graphene are investigated in

order to facilitate charge transport across abiotic-biotic

interfaces [28], they are promising for use in liquid-phase

chemiluminescence systems [29] and for design of nano-

resonator sensors [30]. The studies of interactions of sur-

faces of carbon nanotubes and graphene with metal atoms

were reported in view of their application in high frequency

electronic devices, fuel cells as well as memory and energy

devices [31].

Today the use of solar energy is crucial to solve the

energy problems for a sustainable society; molecular de-

vices employing hybrids of nanocarbons, (i.e. fullerenes,

single wall carbon nanotubes SWCNTs and graphene),

acting as electron acceptors, with photosensitizers, acting

as electron donors, are promising for this aim. In the ex-

periments concerning the above theme, the light-induced

electron transfer processes of nanocarbon hybridized with

photosensitizers, have been shown to be very useful for this

purpose.

Fullerenes act as electron acceptors for electron donors

such as cationic porphyrins and phthalocyanines to yield

characteristic radical ion pairs, suitable for construction of

artificial photosynthetic systems. SWCNTs are also elec-

tron acceptors for cationic porphyrins and phthalocyanines.

Graphene provides a reaction field of a wide p system for

formation of hybrids.

One should emphasize that the electron transfer pro-

cesses are of a great importance for efficient light-energy

harvesting devices such as photovoltaic solar cells [32].

In the paper the noncovalent assemblies of cationic

porphyrins with nanocarbons, i.e. hybrids of cationic por-

phyrins with nanocarbons are described in view of their

properties and possible applications. The review is a con-

tinuation of our former papers concerning cationic por-

phyrins [33–35], as well as quaternary azaaromatic

rotaxanes [36–39] and viologens [40].

Hybrids of cationic porphyrins with fullerenes

Fullerenes are widely investigated due to their unique

structure and interesting properties. They are promising for

application in industrial chemistry and electronics; one

should also mention construction of polymer/fullerene so-

lar cells. Fullerene derivatives are of interest as antiox-

idative agents in biological systems. Encapsulation of

various species inside fullerenes leads to endohedral

fullerenes, valuable in material science and medicine, and

in the field of organic photovoltaics. A reflection of the

above properties of fullerenes are many reports describing

their applications [41–47]. Porphyrins form with fullerenes

covalently bound compounds [48–50] or hybrids of por-

phyrins with fullerenes [51–58], these latter being the

theme of the present section.

284 J Incl Phenom Macrocycl Chem (2015) 82:283–300

123



Hybrids of cationic porphyrins with fullerenes are de-

scribed below; in these selected examples the dendro-

fullerenes were used.

Example 1.1

It was established that octacationic zinc porphyrin

ZnP8? forms with anionic C60 dendrofullerenes the

porph�f and porph2�f (porph = ZnP8?, f = fullerene)

assemblies by electrostatic and charge-transfer interac-

tions; due to these interactions the obtained assemblies

are very stable [59, 60]. One should point out that in

such assemblies also hydrophobic interaction should be

taken into account.

As C60 dendrofullerenes the compounds 1–3 have been

used. The formation of the assemblies was investigated by

gel electrophoresis. For example, the aggregation of ZnP8?

with 2 yields the assembly porph�2, and with 3 the

assemblies porph�3 and porph2�3 are obtained.

The results of experiments have shown that radical ion

pairs ZnP�1/C60
�2 are formed. All radical ion-pair states decay

to their singlet ground states without passing through the

intermediate triplet excited states of ZnP8? or C60 [59, 60].
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Example 1.2

The layer-by-layer (LbL) deposition of positively and

negatively charged oligoelectrolyte multilayer (OEM)

films was investigated in view of their assembly and dis-

assembly behavior. The LbL technique is a simple and very

efficient wet-coating method.

The LbL process involves the alternate deposition of

cationic and anionic species from a solution [61–65].

Due to electrostatic attraction and repulsion, the oppo-

sitely charged polyions can self-assemble on solid sur-

faces, e.g. on metal or glass. Formation of iterative

dipping circles makes it possible to obtain the deposited

thin films composed of alternating monolayers of poly-

cations and polyanions. This easy and cheap method

affords advanced materials based on polyelectrolyte

multilayer films.

The octacationic zinc porphyrin ZnP8? was used as a

positively charged oligoelectrolyte, and compounds 4–6

served as negatively charged oligoelectrolytes. By use

of electrolytes 5 and 6 containing the porphyrin chro-

mophore, the deposition could be easily followed by

UV–Vis spectroscopy [66]. However, using LbL

method, polymers serving as charged building blocks

are polydisperse and often do not adopt a defined shape

within the deposited layers, therefore in experiments the

LbL technique was extended to monodisperse oligo-

electrolytes with defined structures. It is worth noting

that the application of so-called reporter oligoelec-

trolytes is important, since they enable the precise

monitoring of the film assembly by using spectroscopic

methods.

Besides the assembly, also the first study of disassembly

was made; this investigation is promising in incorporation

of bioactive molecules at a given inter-layer position, since

after removal of the outer layers the bioactive molecules

can be released. Such drug delivery is interesting for bio-

medical use.

For LbL assembly of molecular oligoelectrolytes, the

layers of porphyrin ZnP8? and 4, 5 or 6 were deposited on

planar silica substrates using the alternate dipping

method. For investigation of possible application of

OEMs as drug delivery systems, the biologically active

pamidronate 7 used in the bone metastasis was employed

as an anionic building block. The porphyrin ZnP8? served

as a cationic component and at the same time as a reporter

electrolyte, therefore the detection of the anionic com-

ponent occurred indirectly. It was found that the ab-

sorbance of ZnP8? is enhanced when the number of

ZnP8? layers increases; the correlation is linear. This

behavior enables the regulation of the amount of de-

posited 7 by the number of layers.
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It was established that the use of chromophore con-

taining electrolytes, in particular porphyrins allows the

observation of both assembly and disassembly of OEMs

by optical spectroscopy; the compounds containing chro-

mophore serve here as reporter electrolytes. One should

point out that oligoelectrolytes used are monodisperse,

and various synthetic procedures enable modification of

properties of OEMs. It is of interest that the investigated

OEMs may show the time dependent release of active

components, this behavior being promising for drug de-

livery [66].

Hybrids of cationic porphyrins with carbon nanotubes

Carbon nanotubes have interesting mechanical, electronic

and optical properties, therefore they are promising for de-

sign of composite materials, drug carriers as well as sensing

and energy conversion devices. They are investigated with

the aim to obtain photo- and redox-responsive materials.

Carbon nanotubes, due to their unique structural and elec-

tronic properties are of interest for design of hybrids useful in

various areas. The applications of nanotubes are today a topic

of an enormous amount of reports [67–72].
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SWCNTs may be chemically modified for use as

nanosized building blocks. This process may be performed

by covalent or noncovalent functionalization. The covalent

functionalization is rather disadvantageous because of

structural changes of nanotubes and loss of some of their

unique properties. To overcome this difficulty the nonco-

valent functionalization of nanotubes is used, this process

leads to hybrids of nanotubes with functionalizing agents.

The noncovalent functionalization of nanotubes usually

proceeds by p-stacking interactions of an organic molecule

or polymer with nanotube walls. It is preferable when the

attached molecule has an extended p-electron system of

bonds, in this respect the use of porphyrins is convenient. It

is noteworthy that in porphyrin/nanotube hybrids, the ex-

istence of a light-induced charge transfer between por-

phyrins and SWCNTs is promising for their application in

solar energy conversion.

In the study of mechanism of the hybrid formation it

was found that the interaction of nanotubes and por-

phyrins with charged side residues is much stronger

than in the case of neutral porphyrins. Quantum-che-

mical calculations have shown that the hybrids formed

by nanotubes with charged molecules are stabilized due

to strong cation-p interactions. It is noteworthy that

such complexes are highly stable in water [73]. Hybrids

of porphyrins with carbon nanotubes are today inten-

sively studied owing to their promising properties [74–

80].

Hybrids of cationic porphyrins with carbon nanotubes

are a topic of an intense research, below some examples are

presented.

Example 2.1

It is known that assembling composites of chromophores

with carbon nanotubes is a crucial process for construction of

photoelectronic devices, biosensors and electron storage

devices [81]; for assembling of such composites it is neces-

sary to solubilize nanotubes because they have only low

solubility in most solvents. For this purpose the nanostruc-

tured LbL ultrathin film consisting of chromophores and

single-walled carbon nanotubes (SWNTs) was obtained [62–

65, 82]. As chromophores the cationic porphyrin 8 and an-

ionic sodium copper chlorophyllin 9 were used.

The LbL film 8-SWNT/9-SWNT was built from non-

covalently adsorbed composites 8-SWNT and 9-SWNT.

For this purpose SWNTs were dissolved in water soluble

cationic 8 and anionic 9, and the obtained solution served

for electrostatic LbL multilayer preparation. The compos-

ites were highly dispersed due to existence of p-p inter-

actions [82].

A strong quenching of 8 and 9 fluorescence resulting from

their interaction with SWNT was observed. Due to the effi-

cient charge separation and electron transfer in the above

LbL film electrodes, the photocurrent generation is enhanced

as compared with 8/9 film electrodes without SWNT.

Example 2.2

In the study of hybrids of porphyrins with carbon nan-

otubes the interaction of porphyrins A and meso-

5,10,15,20-tetraphenylporphyrin 10 with zigzag single-
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walled carbon nanotube (SWNT) has been investigated by

resonance Raman spectroscopy and by ab initio and

molecular dynamic calculations [73].

The results have shown that the interaction of A with

SWNT is stronger than the interaction of 10 with SWNT,

since between A and SWNT the cation-p attraction exists.

In the molecule A the strong cation-p attraction leads to the

saddling; the saddled structure of A provides a closer

contact between the charged groups of A with the SWNT

surface. The formation of A/SWNT complex in the aque-

ous solution has been modeled by the molecular dynamics

method, showing its stability in the water environment.

Example 2.3

Photoinduced electron transfer in ion-paired porphyrin/

SWNT hybrids has been studied. The donor–acceptor hy-

brids have been built from water-soluble cationic or an-

ionic porphyrins MA4? or MS4-, respectively, serving as

electron donors, and from noncovalently functionalized

SWNTs serving as electron acceptors. In a first step,

SWNTs were solubilized by p-p stacking of pyrene

functionalized by anionic (COO-) or cationic (NH3
?)

groups. Cationic or anionic porphyrins MA4? or MS4-

were ion-paired with functionalized SWNT/pyr- and

SWNT/pyr? systems to give porphyrin-SWNT donor–ac-

ceptor hybrids MA8?/SWNT/pyr- or MS8?/SWNT/pyr?

[83]. The steady-state and time-resolved emission studies

have revealed an efficient quenching of the singlet excited

state of porphyrins in hybrids. The transient absorption

spectra have shown the one-electron oxidation of por-

phyrins with a simultaneous one-electron reduction of

SWNT.
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The charge separation process was further confirmed by

an electron mediator (methyl or hexylviologen dication

MV2? or HV2?, respectively) and an electron–hole shifter

1-benzyl-1,4-dihydronicotinamide (BNAH) in water or

DMF, used as solvents. The photoinduced processes re-

sulted in the accumulations of radical cations MV�? and

HV�?, due to the electron-pooling in the presence of a

sacrificial electron donor. This behavior shows the pho-

toinduced electron transfer and enables photocatalytic ap-

plications of the above systems.

Example 2.4

The immobilization of porphyrin A on the carbon

nanohorn (CNH) was investigated in order to design

donor–acceptor CNH-based hybrids for managing elec-

tronic interactions in environmentally friendly aqueous

media. In the experiments the water soluble porphyrin A

has been immobilized by p-p stacking interactions on

carbon nanohorns (CNHs); this process does not disrupt

their p-electronic network [84].
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The efficient fluorescence quenching of the A unit in

the A/CNH assembly suggests charge separations from

the photoexcited A to CNH. The photoinduced charge-

separation processes within the illuminated A/CNH hy-

brids, i.e. oxidation of the porphyrin and reduction of the

nanohorns were studied by transient absorption spec-

troscopy. In the presence of MV2? and a hole trap, the

accumulation of the reduced form of methyl viologen was

observed by the illumination of A-CNH; this behavior

shows the electron migration from the initially formed

charge-separated state [84].

The CNHs were produced by CO2 laser ablation of

graphite in the absence of metal catalyst under the inert

argon atmosphere. The mild sonication of CNH in

aqueous solution of A afforded the water soluble

A/CNH hybrid. It was found that the morphology of

CNH was retained upon immobilization of A, this

suggests that the stacking of A onto CNH does not alter

the aggregation of CNHs. The high solubilization of

CNHs in aqueous solution shows that the surface of

CNHs is covered by A.

It is noteworthy that CNHs are more convenient for

design of nanomaterials than carbon nanotubes, since they

are of a high purity due to the absence of any metal

nanoparticles during the laser ablation production, and they

have heterogenous surface structure resulting from highly

strained conical ends. It is important that the rough surface

structure of CNH aggregates enables the better dispersion

of CNHs in liquid media than in the case of tightly bundled

carbon nanotubes.

In investigation of systems able to mimic natural pho-

tosynthesis, the hybrids built from porphyrins and CNHs

are of interest. They contain CNHs behaving as electron

acceptors and porphyrins as electron donors which act as

light-harvesting antennas capturing visible light and

transducing the excitation energy. It should be pointed out

that the above A/CNH assemblies are promising for use in

solar energy conversion.

Example 2.5

Formation of hybrids of cationic, water soluble metallo-

porphyrins MP8?, namely FeP8? and CoP8? with SWNTs

was investigated. For this purpose SWNTs were function-

alized with anionic pyrenes from among 11a–d and treated

with metalloporphyrins FeP8? or CoP8?. It was observed

that the resulting MP8?/SWNT/pyr- assemblies form

stable hybrid structures in aqueous media (pyr- = pyrene).

An important feature of this procedure is that an efficient
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exfoliation of the initial bundles affords isolated nanohy-

brid structures [85].

Upon excitation of the above MP8?/SWNT/pyr- hy-

brid with visible light, the rapid intrahybrid electron

transfer from the photoexcited MP8? to SWNT occurs.

This fact causes the reduction of the electron-accepting

SWNT and, at the same time, the oxidation of the elec-

tron donating MP8?.

One should note the importance of SWNT templates bearing

carboxylate or sulfonate groups. These negative groups act as

promoters for suspending SWNT samples in aqueous media

and as anchors interacting with pyridinium headgroups present

in metalloporphyrins. Pyrene compounds are strong fluor-

ophores therefore they are useful sensitive markers in the per-

formed experiments, the fluorescence spectroscopy being a

very convenient tool for investigation of the above electron

donor–acceptor interactions.

Hybrids of cationic porphyrins with graphene

Graphene is a single layer of graphite, where carbon atoms

are arranged in a honeycomb lattice; owing to its specific

electronic and mechanical properties, e.g. high charge carrier

mobility, graphene is today a topic of an intense research

[86–92]. One can say that 2D graphene was wrapped to form

0D fullerenes, was rolled to form 1D carbon nanotubes, and

stacked to form 3D graphite [93]. In contrast to fullerenes or

nanotubes, graphene is a large anisotropic, very flexible

material which may be bent or folded [94].

The selected techniques for preparation of graphene and

related species are presented below [95]. The completely

insoluble natural graphite powder upon oxidation affords

graphite oxide.

Graphene oxide (GO) is the single-layered graphite

oxide which can be prepared by the exfoliation of graphite
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oxide. GO having many functional groups such as hy-

droxyl, aldehyde, carboxyl, epoxy is obtained by exposing

graphite powder to strong oxidant solutions, e.g. KMnO4/

H2SO4 followed by H2O2 (30 %). Exfoliation is performed

by sonication of GO dispersion.

Chemically converted graphene (CCG) is prepared by

reduction of GO suspensions e.g. with hydrazine; in this

way a majority of the oxygen functional groups undergoes

elimination and the conjugated structure of GO is restored.

Carboxylic acid modified GO (CGO) is obtained by

sonication of GO under basic conditions, followed by

neutralization with HCl; it selectively reserves the car-

boxylic acid functional groups.

The unique electronic system of graphene results from its

high quality 2D crystal lattice in which electrons can move

without being scattered off, therefore high electrical conduc-

tivity exists. As drawbacks of graphene may be considered its

severe stacking as well as its complete insolubility in all sol-

vents including water. Therefore in the investigation of gra-

phene the main topics are its exfoliation from graphite and its

solubilization. Chemical methods of exfoliation involve the

use of strong acids [96], ionic liquids [97], surfactants [98] or

organic solvents [99]; also tip sonication induces graphene

exfoliation affording dispersion in organic solvents [100].

In order to improve the chemical compatibility of graphene

with diverse media, it is necessary to develop its well-dispersed

form. For this purpose covalent and noncovalent functional-

ization of graphene with various molecules and nanomaterials

was investigated in water and in organic solvents [101–103].

Functionalization of graphene offers its new application

possibilities. However, the extensive covalent functional-

ization of graphene introduces sp3 defects in its lattice; this

behavior decreases its high conductivity [104]. To over-

come this inconvenience, the noncovalent functionalization

may be used, in this way the electronic network of gra-

phene is not disrupted [104]. Noncovalent functionaliza-

tion, as compared with covalent one, preserves the intrinsic

properties of graphene and improves its solubilization via

hydrophobic interactions and p-p stacking.

In the noncovalent functionalization the planar aro-

matic organic molecules are employed; they interact

through numerous p–p van des Waals forces with the

graphitic framework and promote spontaneous exfoliation

[105]. For a noncovalent functionalization of graphene

(or of GO) the planar aromatic molecules such as por-

phyrins [106, 107]; phthalocyanines [108] or pyrenes

[109] may be used.

Describing graphene it seems noteworthy to mention

graphene-coated metal NPs and graphenes modified by

metal NPs; four examples concerning this theme will be

given (NP = nanoparticle).

In the study of graphene-coated metal NPs two exam-

ples will be shown. In the first one the graphene-coated

CoNPs 12 which can be functionalized are presented; e.g.

they can react with 4-nitrobenzene diazonium te-

trafluoroborate to give p-nitrophenyl derivative 13, which

upon reduction with elemental sulfur affords amin-

oderivative 14 useful for peptide coupling [21, 110–112].

The mechanism of the graphene-coated CoNPs reaction

with aryl diazonium salts involves an electron transfer from

graphene to the diazonium ion; upon evolution of nitrogen

the reactive phenyl radical is formed which reacts with

graphene surface.

In the next example the graphene-coated CoNPs func-

tionalized by (azidomethyl)benzene 15 undergo ‘‘click’’

reaction with stable radical propargyl ether TEMPO 16

yielding 17 which is an efficient catalyst for oxidation of

primary and secondary alcohols [113].
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In the study of graphenes modified by NPs, two exam-

ples, i.e. graphenes modified by AuNPs and by AgNPs will

be shown. Graphene sheets composed from 2 to 10 layers

may serve for preparation of graphenes modified by NPs.

Chemical exfoliation of graphite in aqueous medium

(H2SO4/KMnO4, then 30 % H2O2) afforded GO; the sub-

sequent thermal treatment of GO (1050 �C, 30 s) promoted

further exfoliation.

The oxygen functionalities (hydroxyl and epoxy groups)

situated on the graphene surface are reactive sites for

chemical modification and for deposition of NPs [114]. The

presence of the oxygen functionalities is important for the

growth of Au NPs; it was observed that AuNPs cannot

deposit on the totally reduced graphene sheets. After re-

duction with hydrazine, the graphene as an aqueous sus-

pension was treated with HAuCl4 solution, and the

subsequent reaction with sodium citrate afforded graphene

modified by AuNPs. This material may serve as a substrate

for surface-enhanced Raman scattering (SERS) [114].

Another method was used for preparation of graphene

modified by AgNPs. GO sheets have been anchored onto

TiO2 films. It was observed that upon UV illumination of

TiO2/GO films, the photogenerated electrons from TiO2 are

captured by GO. [115, 116]. These electrons not only re-

duce GO to RGO, but also become stored across its sp2

network. The stored electrons can serve for reduction of

metal ions to metal NPs.

In the presence of silver ions, the AgNPs begin deposit

onto GO surface opposite TiO2, since GO is able to transport

electrons through its plane. The above procedure is possible

due to the unique property of GO/RGO to shuttle electrons in

a direction orthogonal to its plane, and transfer electrons to

Ag? ions. The formed semiconductor-graphene-metal

(SGM) film is valuable for catalysis and sensor use. These

SGM films, tested as SERS sensors produced considerable

target molecule signal enhancement, in this way enabling

detection of their nanomolar concentrations.

It seems that the above examples concerning graphene-

coated NPs and graphenes modified by NPs may be

considered as a supplement to the wide field of graphene

applications [117–122].

Hybrids of cationic porphyrins with graphene are today

intensively studied. Among many works concerning gra-

phenes functionalized by porphyrins [123–126], a special

attention has been paid to graphenes noncovalently func-

tionalized by cationic porphyrins, i.e. hybrids of cationic

porphyrins with graphene [127–131].

Example 3.1

The noncovalent functionalization of graphene with por-

phyrins was widely investigated [130, 131]. In order to

elucidate this process the interaction of different chemical

types of graphene, i.e. GO, CCG and CGO with porphyrin

A was studied. It was observed that the intermolecular

interaction occurs immediately upon mixing graphene with

A; in this process A is immobilized on the graphene surface

via electrostatic and p-p stacking interactions.

It is worth noting that functional groups on the surface

and edge of GO, CCG and CGO play an important role in

functionalization of graphenes with A. The strong

fluorescence quenching of A upon its interaction with

graphene is due to the efficient electron or energy transfer

from excited state A to graphene. The red shift of Soret

band of A occurring at its interaction with graphene de-

pends on the kind of functional groups of graphene and

decreases in the order CCG[CGO[GO [95].

Example 3.2

In further experiments porphyrin A was integrated via

Coulombic interactions to exfoliated graphene, and the

possible photoinduced electron/energy transfer phenomena

have been investigated [106]. It is known that the wetta-

bility of graphene can be tuned as a function of pH from

the organic to aqueous phase by addition of amphiphilic

block copolymer poly(isoprene b-acrylic acid), further

294 J Incl Phenom Macrocycl Chem (2015) 82:283–300

123



referred to as pol [106]. The stable aqueous dispersions of

graphene were prepared using block copolymer pol in the

form of its anion at alkaline pH, then the cationic A was

integrated to the system taking advantage of opposite

charges of graphene dispersions and A4?. As a result, the

aqueous dispersion of graphene/pol/A4? assembly was

formed. It was established by photoluminescence ex-

periments that in this assembly the graphene layers act as

electron acceptor, and A is the photoexcited electron donor.

The absorption and fluorescence spectroscopic measure-

ments have shown the presence of electronic communication

between A and graphene in the ground and excited states.

Basing on experimental results and taking into account the

reported redox potential of graphene [132], one may con-

clude that the quenching of A fluorescence results rather

from electron transfer than from energy transfer [106].

Example 3.3

It is known that the selectivity and improved sensitivity of

SERS measurements are desirable for analytical and en-

vironmental applications. The RGO-AgNP composite has

been studied for improvement of surface-enhanced

resonance Raman signal (SERRS) sensitivity of porphyrin

A (RGO = reduced GO; NP = nanoparticle). The SERS-

active materials include noble metal NPs, such as silver or

gold NPs. These NPs provide a localized surface plasmon

resonance leading to a large local electromagnetic field

which can enhance Raman scattering signals, enabling

single molecule SERS [133]. Metal NPs have been com-

bined with graphene to give composites able to SERS

sensing [115].

The RGO-AgNP composite is promising for use as a

SERS substrate. Graphene has high surface area, therefore

is suitable for dispersion of metal NPs. It was observed that

metal NPs can be grown directly on graphene by a simple

solution-based approach. The intrinsic ability of RGO to

adsorb and complex with molecular species facilitates the

enhanced SERRS sensing.

The increased sensitivity for SERS detection using RGO-

AgNP composite was investigated in terms of RGO-AgNP-

target molecule, i.e. porphyrin A interaction; in experiments

RGO was shown to be an effective substrate for dispersing

AgNPs. The red shift of the Soret band of A in UV–Vis

absorption spectrophotometry, observed upon complexation

of A with RGO-AgNP confirms this behavior [134]. It was
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established that the use of RGO-AgNP composite results in a

significant SERRS enhancement for target molecule A that

undergoes complexation with RGO-AgNP.

Conclusion

Hybrids of cationic porphyrins with nanocarbons, i.e.

fullerenes, carbon nanotubes and graphene showed to be

promising for various applications, therefore recently they

are a topic of a wide investigation. In view of the intense

progress in the field of porphyrins [135–138], fullerenes

[139–142], carbon nanotubes [143–146] and graphene

[147–150] one may expect the further development of

porphyrin hybrids with nanocarbons which could be used

e.g. in the area of electronics or photovoltaics.

In a summary it should be pointed out that the theme

concerning hybrids of cationic porphyrins with nanocar-

bons is very large, therefore from among a great number of

reports only selected works have been shown in the review.

However, one may hope that, although not exhaustive, it

would to some extent help to gain better insight into this

area, promising for novel, valuable applications.
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