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Abstract During the last decades, simulation software
based on the Finite Element Method (FEM) has sig-
nificantly contributed to the design of feasible forming
processes. Coupling FEM to mathematical optimization
algorithms offers a promising opportunity to design opti-
mal metal forming processes rather than just feasible ones.
In this paper Sequential Approximate Optimization (SAO)
for optimizing forging processes is discussed. The algorithm
incorporates time-consuming nonlinear FEM simulations.
Three variants of the SAO algorithm—which differ by their
sequential improvement strategies—have been investigated
and compared to other optimization algorithms by applica-
tion to two forging processes. The other algorithms taken
into account are two iterative algorithms (BFGS and SCPIP)
and a Metamodel Assisted Evolutionary Strategy (MAES).
It is essential for sequential approximate optimization algo-
rithms to implement an improvement strategy that uses as
much information obtained during previous iterations as
possible. If such a sequential improvement strategy is used,
SAO provides a very efficient algorithm to optimize forging
processes using time-consuming FEM simulations.
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1 Introduction

At the end of the previous century, the Finite Element
Method (FEM) has become an important tool for design-
ing feasible metal forming processes. More recently, several
authors recognised the potential of coupling FEM simu-
lations to mathematical optimization algorithms to design
optimal metal forming processes instead of just feasible
ones. Early 2D non-steady forging optimizations were pre-
sented by Fourment and Chenot (1996), Fourment et al.
(1996), Zhao et al. (1997) and an early 3D extension was
given by Laroussi and Fourment (2004). A critical issue in
the application of optimization algorithms to forming pro-
cesses is the long calculation time for one single function
evaluation by FEM, typically of the order of one hour to
several hours for 2D problems and several hours to several
days on a parallel computer for 3D problems. Therefore,
optimization algorithms should be used that require only a
limited number of function evaluations. The efficiency of
sequential approximate optimization algorithms, compared
to some other methods applied to forging is the main focus
of this paper.

A way of optimizing metal forming processes is using
classical iterative optimization algorithms (Conjugate Gra-
dient, BFGS, etc.), where each function evaluation means
running a FEM calculation, see e.g. Naceur et al. (2001),
Vielledent and Fourment (2001), Kleinermann and Ponthot
(2003), Lin et al. (2003). These algorithms are well-known,
but suffer from a number of disadvantages: function eval-
uations are inherently sequential, require difficult to obtain
sensitivities, and may be trapped in local optima.

Several authors have tried to overcome these disadvan-
tages by applying genetic or evolutionary optimization algo-
rithms, see e.g. Castro et al. (2004), Schenk and Hillmann
(2004), Fourment et al. (2005), Habbal et al. (2008). Genetic
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and evolutionary algorithms look promising because of their
tendency to find the global optimum and the possibility for
parallel computation. However, they are known to require
many function evaluations (Emmerich et al. 2002).

A third alternative is using approximate optimization
algorithms such as Response Surface Methodology (RSM)
or Kriging (DACE). Classical RSM is based on fitting a
lower order polynomial metamodel through response points
allowing for a random error, Kriging interpolates exactly
through these response points. Approximate optimization
algorithms allow for parallel computing, tend to find global
optima and do not need sensitivities. However, the accu-
racy of the obtained optimum completely depends on the
accuracy of the metamodel. Examples where approximate
optimization algorithms are applied to optimize metal form-
ing processes include Jansson et al. (2003, 2005), Naceur
et al. (2004), Bonte et al. (2007).

This paper describes Sequential Approximate Optimiza-
tion algorithms to optimize forging processes using time-
consuming Finite Element simulations. The sequential
improvement aims at achieving an accurate solution of
the global optimum with the lowest possible number of
FE simulations. Two advanced methods are considered
in Section 2: ‘minimising a merit function’ according to
Emmerich et al. (2002) and ‘maximum expected improve-
ment’ according to Schonlau (1997). Subsequently, their
performance is compared to that of other algorithms (two
iterative algorithms and an evolutionary strategy) by appli-
cation to two forging processes in Section 3.

2 Sequential Approximate Optimization algorithm

The Sequential Approximate Optimization (SAO) algorithm
using time-consuming FEM simulations is presented in
Fig. 1. The several stages will be explained one by one.
Sections 2.1 through 2.4 shortly describe the initial (non-
sequential) metamodel based optimization algorithm, as
described in Bonte et al. (2007). The Sequential Approxi-
mate Optimization algorithm extends this approach with the
sequential improvement strategies presented in Section 2.5.
These dramatically increase the efficiency of the algorithm.
In Section 2.6 three other algorithms are introduced that are
used for comparison with the SAO approach in Section 3.

The optimization algorithm presented here is imple-
mented in MATLAB and can be used in combination with
any Finite Element code. It may also be applied to appli-
cations other than forging, for which performing many
function evaluations is time-consuming or otherwise pro-
hibitive. For the fitting of the DACE/Kriging metamodels,
use was made of the MATLAB Kriging toolbox imple-
mented by Lophaven, Nielsen and Søndergaard (Nielsen
2002; Lophaven et al. 2002a, b).
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Fig. 1 Sequential Approximate Optimization algorithm

2.1 Modelling

The first step is to create the optimization model, i.e. quan-
tifying objective function and constraints, and selecting the
design variables. The combination of a structured modelling
procedure and an optimization algorithm for solving the
modelled optimization problem is referred to as an optimi-
zation strategy. In the remainder of this paper, the focus is
on the solving part of such an optimization strategy rather
than on the modelling part. A structured approach to the
construction of an optimization model for metal forming
processes can be found in Bonte (2007) and Bonte et al.
(2008).

2.2 Design Of Experiments (DOE)

When the optimization problem has been modelled a num-
ber of design points is selected by a Design Of Experiments
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(DOE) strategy. A space-filling Latin Hypercube Design
(LHD) is a good and popular DOE strategy for construct-
ing metamodels from deterministic computer experiments
such as Finite Element calculations (McKay et al. 1979;
Santner et al. 2003) and has been selected for the SAO
algorithm. A typical size of an initial space-filling LHD
for computer experiments exists of 10 times the number of
design variables (Schonlau 1997).

However, when a metamodel is used for optimization, it
is important that the metamodel gives accurate results in the
neighbourhood of the optimum. Often, this optimum lies
on the boundary of the design space. Therefore, an accu-
rate prediction is needed on the boundary, which implies
performing measurements on that boundary. An LHD will
generally provide design points in the interior of the design
space and not on the boundary. Therefore, the LHD is com-
bined with a Resolution III or IV fractional factorial design,
which puts DOE points in corners of the design space.
This method was also proposed by Kleijnen and van Beers
(2008).

2.3 Running the FEM simulations and fitting
the metamodels

The responses (objective function and constraints) are evalua-
ted at the design points given by the DOE strategy, running
parallel FEM calculations. The next step is to fit meta-
models for each response. Two metamodelling techniques
are considered: Response Surface Methodology (RSM) and
Kriging or Design and Analysis of Computer Experiments
(DACE).

Using RSM, the response measurements y are presented
as the sum of a lower order polynomial metamodel and
a random error term ε (Myers and Montgomery 2002).
A metamodel based on RSM can be used to predict the
response y0 of an unknown design variable setting x0:

ŷ0 = xT
0 β̂ (1)

where β̂ are the regression coefficients obtained by least
squares regression. It is also possible to determine the
variance at this location (Myers and Montgomery 2002):

var(ŷ0) = σ 2xT
0 (XTX)−1x0 (2)

where σ 2 is the error variance. The variance at x0 is used in
the sequential improvement strategies in Section 2.5.

Four possible shapes of RSM metamodels are commonly
applied. They are in ascending complexity:

– linear
– linear + interaction

– pure quadratic or elliptic
– (full) quadratic

Sacks et al. (1989a, b) proposed Kriging or DACE to fit
metamodels using deterministic computer experiments. A
metamodel based on Kriging interpolates between the mea-
surement points and exactly matches the calculated response
at the design points. In this work, a Gaussian exponential
correlation function is adopted. Gaussian exponential func-
tions are intuitively attractive because they are infinitely
differentiable. Moreover, Gaussian exponential functions
are frequently used in literature (Santner et al. 2003) and
have been found to give accurate results (Lophaven et al.
2002a).

Analogously to RSM, Kriging can be used to predict the
response y0 at an unknown location x0, see e.g. Koehler and
Owen (1996), Lophaven et al. (2002b), Santner et al. (2003),
Martin and Simpson (2005):

ŷ0 = xT
0 β̂ + rTR̂−1

(
y − Xβ̂

)
(3)

where β̂ are the regression coefficients, r is the matrix
containing the correlation between x0 and the DOE points,
R the matrix containing the correlation between the DOE
points themselves, y the response measurements, and X the
design matrix containing the DOE points.

A measure for the predicted variance at this location is
given by the Mean Squared Error (MSE), see e.g. Martin
and Simpson (2005):

MSE (y0) = σ 2
z

(
1 − [

xT
0 rT

] [
0 XT

X R

] [
x0

r

])

(4)

where σ 2
z is the process variance. The Mean Squared Error

is, again, used in the sequential improvement strategy in
Section 2.5.

Several Kriging metamodels can be distinguished based
on the order of their trend functions:

– Kriging with a zeroth order trend function
– Kriging with a first order trend function
– Kriging with a second order trend function

Computer simulations such as the Finite Element Method
are thought of as being deterministic (Sacks et al. 1989a, b),
which is in favour of Kriging as a metamodelling technique.
However, numerical noise due to for example finite ele-
ment discretization, automatic mesh refinement or step size
adjustment may be present, which pleads for using RSM or
modified Kriging models for inaccurate data as presented in
Sakata et al. (2007).



800 M.H.A. Bonte et al.

2.4 Metamodel validation, optimization and accuracy
evaluation

Selecting the best metamodel for each response is done
by metamodel validation. Metamodel validation for RSM
is based on ANalysis Of VAriance (ANOVA) and residual
plots, see e.g. Myers and Montgomery (2002). Metamodel
validation for Kriging is based on cross validation. Using
cross validation, one leaves out one, say the i th, of the
response measurements and fits the metamodel through the
remaining response measurements. The difference between
the measured value yi and the value predicted by the meta-
model at this location ŷ−i is a measure for the accuracy of
the metamodel. One can repeat this procedure for all say n
measurement points and calculate the cross validation Root
Mean Squared Error (RMSECV):

RMSECV =
√√√√

n∑
i=1

(
yi − ŷ−i

)2

n
(5)

As RMSECV approaches 0, the metamodel becomes more
and more accurate.

For each response (objective function and constraints)
the metamodel outperforming the other six metamodels
is selected. These best metamodels for objective function
and constraints are subsequently optimized using a stan-
dard Sequential Quadratic Programming (SQP) algorithm.
To avoid convergence to a local minimum, the SQP algo-
rithm is restarted at all DOE points. Since the evaluation
takes place on the metamodels—being explicit mathemati-
cal functions—the evaluation time remains small compared
to a complete nonlinear FEM analysis.

The obtained approximate optimum is finally checked
by running one last FEM calculation with the approxi-
mated optimal settings of the design variables. In addition to
metamodel validation, the difference between the approxi-
mate objective function value and the value of the objective
function calculated by the last FEM run is a measure for
the accuracy of the obtained optimum. If the user is not
satisfied with the accuracy, the Sequential Approximate
Optimization algorithm allows for sequential improvement.

2.5 Sequential improvement

Sequential improvement implies adding new DOE points
to the initial DOE. Goal of sequential improvement is to
improve the accuracy of the metamodel and hence the accu-
racy of the approximate optimum. Three different sequential
improvement strategies are considered:

– adding new DOE points in a space-filling way (SAO-
SF),

– adding new DOE points by Minimising a Merit Func-
tion (SAO-MMF),

– adding new DOE points by Maximising Expected
Improvement (SAO-MEI).

SAO-SF The first variant (SAO-SF) simply adds new
DOE points in a space-filling way. The same space-
filling Latin Hypercube Design that has been introduced in
Section 2.2 is used for this.

In earlier work (Bonte et al. 2007) a zooming strategy
was investigated. A new metamodel was created in a lim-
ited zone near the approximate optimum. However, ongoing
research revealed two drawbacks for this strategy. Firstly,
zooming is not trivial in case of multiple local optima and
secondly, it is not efficient since time-consuming calcula-
tions performed in previous iterations are disregarded if they
are outside the zoomed-in design space. For several analyti-
cal test functions this approach was found to be less efficient
than a space-filling sequential improvement. Therefore, the
following—advanced—sequential improvement strategies
are compared to the straightforward space-filling improve-
ment.

SAO-MMF The second sequential improvement strategy
makes use of all the information obtained during previous
iterations of the algorithm, i.e. metamodels of the objective
function ŷ and its standard deviation ŝ.

To explain this, consider the Kriging metamodel of an
objective function depicted in Fig. 2. The cross marks in
the figure denote the response measurements from the pre-
vious iteration(s). At an untried design variable setting x0,
the predicted objective function value is ŷ, using (1) or (3).
The uncertainty at this location can be modelled as a normal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

y^ (x
0
)

y^ (x
0
)  s^(x

0
)

Fig. 2 Sequential improvement employing metamodel information of
the previous iteration
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distribution with standard deviation ŝ as shown in the figure.
For RSM, ŝ equals the square root of the variance in (2), for
Kriging it equals the square root of the Mean Squared Error
(RMSE) in (4).

The second sequential improvement strategy (SAO-
MMF) selects the new DOE points based on the merit
function:

fmerit(x) = ŷ(x) − w · ŝ(x) (6)

where ŷ and ŝ are for both RSM and Kriging given by meta-
models from previous iterations of the algorithm. w is a
weight factor.

Emmerich et al. (2002) use the same merit func-
tion for making evolutionary algorithms more efficient.
They propose the “Metamodel-Assisted Evolution Strategy”
(MAES) that is also included in the comparison in Section 3.
MAES is shortly introduced further in Section 2.6.

Alternatively, Torczon and Trosset (1998) propose to
minimise the merit function in (6). However, instead of the
standard deviation in (6) they use the distance between a
possible new candidate point and an already evaluated point
as a measure for the error of the metamodel. Based on this
approach, Büche (2004) and Büche et al. (2005) use the
RMSE of Kriging-like Gaussian Processes instead of the
distance. Büche determines the minimisation of the merit
function by an evolutionary strategy.

Here, the SAO-MMF algorithm minimises the merit
function of (6) with the multistart SQP algorithm introduced
in Section 2.4. A remaining question is how to set the value
of the weight factor w. If one selects w = 0, the new DOE
points equal the optima of the metamodel ŷ. If w → ∞,
the new DOE points are added in a space-filling way. It was
found that w = 1 provides a good compromise between both
extreme cases.

To illustrate how SAO-MMF selects new DOE points,
consider Fig. 3. The figure shows the same Kriging meta-
model as the one in Fig. 2 (the dotted line). The metamodel
of its merit function fmerit is also visualised as the dashed
line. One can easily obtain the (in this case) five minima
of the merit function by applying the multistart SQP algo-
rithm. Note that only those minima of the merit function are
taken into account that actually promise improvement with
respect to the best objective function value fmin obtained in
previous iterations of the algorithm. In this example, this
saves running three time-consuming FEM simulations: only
two FEM simulations have to be run instead of five in case
all minima of the merit function would have been taken into
account.

SAO-MEI A third sequential improvement strategy has
been proposed by Schonlau (1997) and aims at maximis-
ing the expected improvement of an untried point. This
method is also reported in Jones et al. (1998), Jones (2001),
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Fig. 3 SAO-MMF vs. SAO-MEI

Santner et al. (2003), Sasena et al. (2002) and—just as
SAO-MMF—fully exploits all information available from
previous iterations of the algorithm.

The method starts by defining Improvement I as Schonlau
(1997):

I =
{

fmin − y if y < fmin

0 otherwise
(7)

where fmin is the lowest objective function value obtained
during earlier iterations and y is a possible new outcome of
a function evaluation. Clearly, if y < fmin, the situation
has improved. In general, the expected value of a stochastic
variable X is defined as:

E(X) =
∫ ∞

−∞
xp(x)dx (8)

in which x is a possible value of X and p(x) is the probabil-
ity that X actually obtains this value. p(x) is the probability
density function. Assuming a normal distribution, com-
bination of (7) and (8) yields the Expected Improvement:

E(I ) =
∫ fmin

−∞
( fmin − y)φ(y)dy (9)

where φ(y) is the normal probability density function.
Now y can be replaced by the metamodel of the objective
function ŷ and (9) may be rewritten to Schonlau (1997),
Jones et al. (1998):

E(I ) = (
fmin − ŷ

)
�

(
fmin − ŷ

ŝ

)
+ ŝφ

(
fmin − ŷ

ŝ

)
(10)

E(I ) = 0 if ŝ = 0
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where ŷ is the objective function metamodel and ŝ its stan-
dard deviation as depicted in Fig. 2. φ and � denote the
probability density and the cumulative distribution func-
tions of the standard normal distribution. Schonlau (1997)
proposes to maximise E(I ) in (10) to yield the point promis-
ing the Maximum Expected Improvement (MEI). Only this
point is subsequently evaluated.

For the SAO algorithm, it is proposed to exploit the
possibility for parallel computing and to include all points
that (locally) Maximise Expected Improvement. This algo-
rithm is referred to as SAO-MEI. The Expected Improve-
ment function of (10) is again maximised by the multistart
SQP algorithm. Difficulties for maximising the Expected
Improvement function are indicated by Jones et al. (1998):
(i) the function can be extremely multimodal with flat planes
in between, which makes it difficult to optimize; and (ii) the
Expected Improvement is 0 by definition for DOE points
that have already been calculated, thus the SQP algorithm
cannot be started from the DOE points. These problems
have been overcome by starting the SQP algorithm from a
dense grid of newly generated design points.

Figure 3 also shows the expected improvement function
of the Kriging metamodel introduced in Fig. 2 as the solid
line. Note that the function is indeed multimodal with large
flat planes, and that the function is zero at locations where
simulations have already been performed.

SAO-MEI is similar to SAO-MMF introduced in the pre-
vious paragraph. Both make use of all information available
from previous iterations. They both tend to select new DOE
points in the region where the global optimum is predicted
to be (ŷ is small). Additional points are selected where no
points have been sampled before (ŝ is large). Note from
Fig. 3 that the points obtained by SAO-MEI are at sim-
ilar, but not the same locations as the points obtained by
SAO-MMF.

One of the differences between both methods is that
SAO-MEI includes the best value fmin directly in the
expected improvement function. However—as discussed
earlier—for SAO-MMF it is recommended to run only the
FEM simulations that promise to be better than fmin, which
reduces the difference between both methods.

2.6 Other algorithms

In the next section, SAO-SF, SAO-MMF and SAO-MEI will
be compared to each other by application to forging. Other
algorithms will also be taken into account. This section
shortly introduces the other algorithms: two iterative algo-
rithms (BFGS and SCPIP), and an efficient evolutionary
strategy.

BFGS The well-known BFGS algorithm (Broyden 1970)
is usually the most efficient quasi-Newton method for opti-
mization problems. It makes it possible to find satisfactory
solutions within few iterations when the objective function
is convex, for instance as in Vielledent and Fourment (2001)
for 2D forging applications. It requires computing the gra-
dient, which is not a simple issue. In the FEM code used
for the forging applications in Section 3, the adjoint state
method is used and the partial derivatives are calculated with
a semi-analytical approach (Laroussi and Fourment 2004).
When the optimization problem is more complex, the solu-
tion may depend on the starting point and the algorithm gets
trapped into local optima.

SCPIP In order to escape from local extrema, the method
of moving asymptotes (Svanberg 1987) has been proposed.
A convex envelope of the objective function is built during
optimization iterations, using a convex approximation and a
family of rational functions. The utilised SCPIP algorithm
(Zillober 2001) represents one of its variants derived from
Sequential Convex Programming. It is particularly suited for
constrained optimization problems.

MAES Evolutionary algorithms are regarded as the most
robust with respect to local extrema, making it possi-
ble to solve the most complex optimization problems.
Evolutionary algorithms typically consist of the selection-
recombination-mutation process. This process in combi-
nation with FEM simulations as function evaluations is
presented in Fig. 4.

Evolutionary Strategies (ES) are similar to Genetic Algo-
rithms (GA), with slight differences. ES use real coding,
mutation is the main genetic operator while recombination

Initialisation

Function evaluation

OK?Optimum

Selection

Recombination

Mutation Method?

Fit metamodel

individuals
Select best

MAES

ES

No

Yes

Fig. 4 Overview of metamodel assisted and direct evolutionary
strategy
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is not systematically used. The selection of parents is sim-
pler, with only two strategies, the “plus” (parents are kept in
the new generation) and the “comma” (parents do not sur-
vive) ones. In general, ES can find a solution more rapidly,
whereas GA would find a more global extremum. More
general information on Evolutionary Strategies and Genetic
Algorithms can be found in e.g. Schwefel (1995), Bäck and
Schwefel (1993), Beyer and Schwefel (2002).

However, as mentioned in the introduction, the costs of
both ES and GA are usually high in terms of function eval-
uations, which is considered a serious disadvantage when
each function evaluation is a time-consuming FEM simula-
tion. The utilised Metamodel-Assisted Evolution Strategy
(MAES) proposed by Emmerich et al. (2002) combines
an Evolutionary Strategy (ES) with Kriging metamodels
to reduce the number of function evaluations. Hence, one
could refer to MAES as a hybrid algorithm combining two
of the three groups of algorithms reviewed in Section 1:
evolutionary algorithms and approximate optimization.

MAES is also depicted in Fig. 4. The specific algo-
rithm that was used comprises a regular (2 + 10)-ES. It
starts by randomly choosing an initial population of three
times the number of design variables. After having run the
FEM simulations for this initial population, the two best
settings are selected, recombined and mutated to yield ten
children. Before running these children settings, the results
of the previously performed FEM calculations are used to
fit a Kriging metamodel. Instead of running the FEM cal-
culations for the ten children directly, the results are first
predicted by the merit function of (6) where the weight fac-
tor w is taken equal to 1. Based on the prediction, the best
20% of the individuals are subsequently evaluated by run-
ning FEM simulations for the corresponding design variable
settings. In this way, the application of metamodelling tech-
niques saves eight time-consuming FEM calculations per
generation with respect to a regular ES.

Subsequently, the procedure is repeated: the two best set-
tings are selected again, recombined and mutated to yield
ten new children, the Kriging metamodel is updated, and
the performance of the new children is predicted by the
new merit function. This procedure is continued until one
is satisfied with the results.

3 A comparison between the optimization algorithms
by application to forging

In this section, the three proposed Sequential Approximate
Optimization algorithms will be applied to two industrial
forgings: a spindle (Section 3.1) and a gear (Section 3.2)
with realistic objective functions. The algorithms will be

compared to each other, and to the other optimization
algorithms introduced in Section 2.6.

In both examples, finite element calculations are per-
formed with the code Forge3. Elements with linear velocity
and pressure interpolation are used with a bubble function
enrichment of the velocity field. The material is modelled
by an incompressible rigid-viscoplastic Norton–Hoff law:

s = 2K
(√

3ε̇eq

)m−1
ε̇ (11)

where s represents the deviatoric stress, ε̇ the strain rate
tensor and ε̇eq = √

2/3 ε̇ : ε̇ the equivalent strain rate; K
is the material consistency and m its strain rate sensitiv-
ity. As a first approach, the calculations consider isothermal
conditions.

Both products, the spindle and the gear, are obtained in
two forging steps, and the main issue of the process design
regards the shape of the forming tools. While the die geome-
tries for the last step are straightforwardly derived from the
required product shape, the shape of the preform dies can
have very varied forms depending on the designer and pur-
sued objectives. They have strong influence on the product
quality and the process efficiency. In particular, the preform
shapes determine the correct filling of the die and surface
defects like folding, as well as the energy consumption in
the final forging step. Therefore, the shape of the preforms
is the current subject of the optimization problems. The
simulations were performed on a 2.4GHz Intel Pentium 4
desktop computer with 2GB memory.

In Section 3.3 the results of the comparison of the
algorithms are discussed.

3.1 Spindle

The optimization problem The first case is presented in
Fig. 5. It regards the hot forging of a spindle out of a cylin-
drical billet with a diameter of 50 mm and height of 90 mm

Fig. 5 The spindle: a The preform; b The final product
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Fig. 6 (a) The FE model after
upsetting; (b) The FE model
after forging; (c) Folding

made of 38MnSi4 steel. The two process operations take
place at a temperature of 1100 ◦C: a preform is first made
by upsetting the cylinder between simple dies, before being
forged into the final product.

To evaluate whether the final product can be made in
the factory, a Finite Element (FEM) calculation was per-
formed. The material parameters for the Norton–Hoff law
are K = 1809 MPa and m = 0.14. Figure 6a and b show
the FE models after the two operations. Use has been made
of symmetry, so only one twelfth of the component was
considered, using 6-fold symmetry in the plane and 2-fold
symmetry along the horizontal plane. The two-stepped pro-
cess simulation, took about four hours with the utilised
computer. In Fig. 6c, one can observe that a folding defect
occurs, which deteriorates the final product quality. The
depicted quantity is the equivalent plastic strain rate at the
free surface of the product, i.e. where no contact exists
between the product and the die.

To overcome the folding defect, the geometry of the pre-
form is optimized with as goal to minimise the equivalent
plastic strain rate at the free surface during forging. This
objective function was proposed by Fourment et al. (1998)
and has been used successfully since. The objective function
is formulated as follows:

�fold = 1

tend − t0

∫ tend

t=t0

(
1

�ft,ref

∫

�ft

(
ε̇eq

ε̇eq,ref

)α

ds

) 1
α

dt

(12)

t denotes the time, �ft is the free surface of the discretized
domain at time t and �ft,ref the reference free surface at time
t = t0. ε̇eq and ε̇eq,ref are the equivalent strain rate and a ref-
erence equivalent strain rate and α is an amplification factor,
which is selected to be equal to 10.

The geometry of the axi-symmetric preform die is mod-
elled by the B-spline shown in Fig. 7 as the thick line. The
B-spline is determined by the six control points C1...C6 with
radial coordinates of 0, 10, 20, 30, 35 and 40 mm respec-
tively. The vertical position of the control points C1 to C4,
relative to C5 and C6 are parameterized by the three design

variables μ1 to μ3 as presented in Fig. 7. Control point C1

is placed on the symmetry axis. Note that C1 and C2 will
always have the same vertical position, leading to a hori-
zontal tangent at the centre. All design variables are allowed
to vary between −10 and 20 mm. In the initial preform die,
all control points are on the same vertical position, 55 mm
above the plane of symmetry. The stroke of 25 mm (in the
symmetric model) is fixed to control points C5 and C6. For
this optimization problem, the material flow is rather sim-
ple and the forging force and die filling are not an issue,
therefore no other constraints are present.

The total optimization problem can now be modelled as
follows:

min �fold(μ1, μ2, μ3)

s.t. − 10 mm ≤ μ1 ≤ 20 mm

− 10 mm ≤ μ2 ≤ 20 mm

− 10 mm ≤ μ3 ≤ 20 mm

(13)

Applying the optimization algorithms The proposed
Sequential Approximate Optimization algorithm, as well as
the optimization algorithms introduced in Section 2.6, are
now applied to solve the optimization problem modelled in
(13).

Table 1 presents the results. The table shows for all
algorithms the number of the FEM calculation Nopt, that

Fig. 7 The B-spline describing the geometry of the preform die for the
spindle
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Table 1 Results of optimizing the spindle

Nopt/Ntot μ1 (mm) μ2 (mm) μ3 (mm) �fold OK?

Initial – 0 0 0 10.49 No

BFGS 3/12 7.02 2.92 6.55 10.25 No

SCPIP 10/10 −4.25 −6.01 −3.07 9.17 Yes

MAES 30/48 −7.26 −3.84 −10 8.35 Yes

SAO-SF 36/50 −1.69 −5.95 8.33 9.20 No

SAO-MMF 38/48 −10 −6.50 −9.82 8.06 Yes

SAO-MEI 22/50 −8.52 −6.40 −10 7.97 Yes

gave the optimal settings, as a fraction of the total num-
ber of simulations Ntot performed for a specific algorithm.
Additionally, it presents the optimal design variable settings
and corresponding objective function values and it answers
the question whether the folding defect has been solved
or not as verified visually after an analysis with a refined
mesh. Figure 8 visualises the initial preform geometry and
geometries after optimization using different algorithms.
The convergence of the optimization algorithms is depicted
in Fig. 9.

The results will be discussed in Section 3.3 together with
the results of the second forging application.

3.2 Gear

The optimization problem The second case regards the
warm forming of a steel gear at 600 ◦C out of a preform
shape as presented in Fig. 10. Just as was the case for the
spindle, forming the gear is a two step process, but this time,

Fig. 8 Preforms of the spindle: a Initial; b BFGS; c MAES; d SAO-
SF; e SAO-MMF; f SAO-MEI
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Fig. 9 Convergence of the algorithms for optimizing the spindle

the preform shape of the component rather than the shape of
the preforming dies was regarded as the optimization objec-
tive. Consequently, it was not necessary to simulate the first
forging operation. The resulting parts after both production
steps are shown in Fig. 10.

To optimize the process, a Finite Element model was
made. Figure 11a shows the FE model of the preform. Note
that use has been made of the product symmetry, so only
one twentieth of the component was considered. Initial cal-
culations with a fine mesh and proper Norton–Hoff law took
12 hrs., which was considered too much for optimization
purposes. To reduce the calculation time a relatively coarse
mesh was used and the sensitivity index m in the Norton–
Hoff law was set to 1.0, which modified the material flow in
a not too significant manner, so that the optimization prob-
lem was not really changed. For this linearized case, the
material consistency K does not affect the material flow and
only acts as a multiplication factor for the forging force or
energy. It does not influence the optimization results. With
this setup one full simulation of the gear took about half an
hour.

Fig. 10 The gear: a The preform; b The final product
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(a) (b)

Fig. 11 (a) The 3D FE model of the gear; (b) The design variables
describing the geometry of the preform of the gear

To limit the production costs and environmental pol-
lution under warm forming conditions, it is essential to
increase the tool life and consequently to minimise the forg-
ing force or the total energy required for forging the gear.
An objective function is formulated as:

�ene =
∫ tend

t=t0

(∫

�t

σ : ε̇ dw +
∫

�ct

τ · v ds

)
dt (14)

t denotes the time, �t is the discretized domain at time t ,
σ and ε̇ are the stress tensor and strain rate tensor. In the
second part of the equation, �ct is the contact surface and τ

and v are the surface shear stress and the relative velocity,
respectively. To assure a final part without folding defects,
the objective function for energy reduction is combined with
the function already defined for the reduction of folding
potential in (12) resulting in:

�tot = a
�fold

�fold,ref
+ (1 − a)

�ene

�ene,ref
(15)

where the weight factor a is chosen equal to 0.5. To make
the two objective functions comparable to each other, they
are normalised by �fold,ref and �ene,ref.

The design variables μ1, μ2, μ3 and μ4, describing the
preform geometry are presented in Fig. 11b. Requiring a
specific volume to fill the final die, μ4 can be expressed as
a function of the other three:

μ4 = f (μ1, μ2, μ3) (16)

Thus, a set of three design variables μ1, μ2 and μ3 remains.
The inner radius (points A and B) is fixed to 11.25 mm and
the radius of points G and F are 16 and 20 mm respec-
tively. The z-coordinates of points A and E are 5.6 and
2.47 mm respectively. The curves between points A and G
and between F and E are represented by quadratic functions
in r and the curve between C and D is represented by a
quadratic function in z, such that there is a horizontal tan-
gent in F and G and a vertical tangent in D. No constraints
have been formulated except the box constraints bounding
the design variables. These box constraints are included in
the following optimization model that is used for optimizing
production of the gear:

min �tot(μ1, μ2, μ3)

s.t. 40 mm ≤ μ1 ≤ 46 mm

18 mm ≤ μ2 ≤ 22 mm

30 mm ≤ μ3 ≤ 34 mm (17)

The initial preform design variable values are μ1 =
44.60 mm, μ2 = 21.65 mm and μ3 = 32.33 mm. These
design variables result in an objective function value �tot

of 1.19. The amount of energy (�ene) and folding (�fold)

obtained for these design variable values are set to 100%.

Applying the optimization algorithms Now, the differ-
ent optimization algorithms are compared to each other by
applying them to the optimization problem modelled in (17).
The obtained results are also compared to the results of the
initial preform.

Table 2 presents the results. The table again shows for
all algorithms the number of the FEM calculation Nopt, that

Table 2 Results of optimizing
the gear Nopt/Ntot μ1 (mm) μ2 (mm) μ3 (mm) �ene �fold �tot

Initial – 44.60 21.65 32.33 100% 100% 1.19

BFGS 3/7 40.91 18.00 30.11 N/A N/A 1.157

SCPIP 3/21 45.80 19.80 30.00 N/A N/A 1.123

MAES 42/49 45.67 18.36 30.25 −9.7% −7.6% 1.079

SAO-SF 51/51 45.25 18.00 30.58 −8.7% −6.6% 1.091

SAO-MMF 31/49 45.25 18.18 30.65 −8.2% −9.8% 1.076

SAO-MEI 49/54 45.35 18.00 30.41 −9.4% −9.8% 1.068
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gave the optimal settings, as a fraction of the total num-
ber of simulations Ntot performed for a specific algorithm.
Additionally, it presents the optimal design variable set-
tings and corresponding objective function values as well
as the reduction in energy and folding potential obtained by
optimization. Figure 12 visualises the shapes of the initial
preform and after optimization using different algorithms.
The convergence of the algorithms is depicted in Fig. 13.

3.3 Discussion

Concluding this comparison between optimization algo-
rithms, the results are discussed. For both the spindle and
the gear, the results show similar trends.

Iterative algorithms BFGS and SCPIP For both forging
cases, the iterative BFGS and SCPIP algorithms yielded rel-
atively small improvements in only few iterations. For the
spindle, the improvement proved to be too small to solve the
folding defect. SCPIP performed significantly better than
BFGS, since it is able to escape from some local minima.
It is, however, not global thus it can get stuck in other
local minima. In the case of the spindle, it managed to
solve the defect. Hence, the improvement proved to be large
enough. A similar trend emerged for optimizing the gear,
although the difference between the two algorithms is not
as significant.

As a return for being local, the BFGS and SCPIP algo-
rithms require relatively few time-consuming FEM calcu-
lations for obtaining their optima. This makes them useful
when a quick, but not too large improvement is required.
For a more global convergence, other algorithms could be
studied, such as GCMMA (Svanberg 1995; Bruyneel et al.
2002). However, an important disadvantage of such algo-
rithms is the necessity to calculate sensitivities. Sensitivities
are provided by the Forge3 code as described in Laroussi
and Fourment (2004). The additional computational cost
they require is about 30% of the total time. Meanwhile, they
cannot readily be obtained for any forging configuration,
and are not available on most commercial FE codes, which
pleads for developing non-gradient algorithms.

Fig. 12 Preforms of the gear: a Initial; b BFGS; c MAES; d SAO-SF;
e SAO-MMF; f SAO-MEI
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Fig. 13 Convergence of the algorithms for optimizing the gear

Metamodel Assisted Evolutionary Strategy (MAES)
Being an evolutionary strategy, MAES is a global algorithm
and use can be made of parallel computations. However,
instead of running all 10 FEM calculations in this case, only
the best 20% = 2 simulations are really performed. Hence,
the possibility for parallel computing is not used to full
extent. However, in return, the convergence plots in Figs. 9
and 13 show that the objective function improves quickly
and greatly, the latter due to being a global algorithm.

MAES convincingly removed the folding defect from
the spindle and reduced the forming energy and folding
potential of the gear by 9.7% and 7.6%, respectively. It out-
performs the iterative algorithms and shows that combining
an evolutionary strategy with metamodelling techniques can
overcome the disadvantage that genetic and evolutionary
algorithms need many function evaluations in return for pro-
viding a global optimum and/or significant improvement.

Sequential Approximate Optimization (SAO) SAO-SF,
SAO-MMF and SAO-MEI all started with 20 FEM cal-
culations generated by the space-filling Latin Hypercube
Design introduced in Section 2.2. This explains the coin-
ciding convergence behaviour of the three variants of SAO
during the first 20 FEM calculations in Figs. 9 and 13. Sub-
sequently, the different sequential improvement strategies
further improved the results in a number of batches. Using
SAO-SF each new batch consisted of 10 new FEM calcula-
tions. The optimum of the metamodel of the previous batch
was included each time. SAO-MMF and SAO-MEI them-
selves determine how many new simulations are required in
a next batch (this depends on the number of minima found
for the merit function and the number of maxima found for
the expected improvement function, respectively).

For both forging cases, the convergence plots in Figs. 9
and 13 show very slow convergence behaviour for SAO-SF,
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which simply adds new DOE points in a space-filling way.
The final objective function value improvement is generally
better than that obtained by the local BFGS and SCPIP algo-
rithms, but worse than MAES. Within 50 FEM calculations,
SAO-SF did not manage to remove the folding defect for the
spindle.

In contradiction to SAO-SF, the SAO-MMF and SAO-
MEI algorithms exploit all information available from pre-
vious iterations (mean and standard deviations) and per-
form much better. SAO-MMF and SAO-MEI did solve the
folding problem convincingly and they improved objective
function values for the gear by about 10%, see Table 2.
SAO-MMF and SAO-MEI even performed better than the
MAES algorithm in both forging cases. For both the spin-
dle and the gear, SAO-MEI performed slightly better than
SAO-MMF, although the difference is small.

An advantage of SAO-MMF over SAO-MEI is that it
is easier to optimize the merit function than the expected
improvement function, as clearly seen in Fig. 3. The some-
what arbitrary selection of the weight factor w for SAO-
MMF is seen as a disadvantage compared to SAO-MEI
where arbitrary assumptions are not needed.

A f inal comparison Concluding this comparison, it can
be stated that applying any of the optimization algorithms
yielded better results than the initial situations. For the spin-
dle, it was shown that the folding defect can be solved using
optimization. For the gear, both the folding susceptibility
and the energy consumption could be decreased by about
10% with respect to the initial forging process.

It has been found that global algorithms perform bet-
ter than local (or quasi-local) algorithms. MAES and the
three variants of the SAO algorithm generally yield supe-
rior results compared to the BFGS and SCPIP algorithms.
The local algorithms are less capable of solving the folding
defect for the spindle, whereas most global algorithms do
solve this forging defect. The exception is SAO-SF, which
shows slow convergence behaviour, and less improvement
than MAES, SAO-MMF and SAO-MEI.

In the end, it can be concluded that MAES, SAO-MMF
and SAO-MEI all are very good algorithms for the opti-
mization of forging processes. They have been shown to
eliminate the folding defect for the spindle and have reduced
both the folding susceptibility of the gear and the energy
consumption needed for forging this part by approximately
10%. The fact that the difference between MAES, SAO-
MMF and SAO-MEI is small is demonstrated by Tables 1
and 2: for both the spindle and the gear the optimal design
variable settings are approximately the same for all three
algorithms. This is visualised by the Figs. 8 and 12: the opti-
mal preform shapes are very similar for MAES, SAO-MMF
and SAO-MEI. Comparing the performance of these three
algorithms to each other, SAO-MEI proves to be the best

algorithm, followed closely by SAO-MMF. Both SAO vari-
ants performed slightly better than MAES in both forging
cases.

4 Conclusions

In this paper, the performance of Sequential Approximate
Optimization (SAO) algorithms for optimizing forging pro-
cesses using time-consuming Finite Element simulations is
considered. Response Surface Methodology and Kriging are
incorporated as metamodelling techniques. The best meta-
models for objective function and constraints are included
in the optimization model and optimized using a multistart
Sequential Quadratic Programming (SQP) algorithm. SAO
allows for sequential improvement if the acquired optimum
is not accurate enough.

Three variants of the SAO algorithm have been investi-
gated. They differ by the sequential improvement strategies
used. The first variant puts in new DOE points in a space-
filling way (SAO-SF). The second and third variants exploit
all information already obtained during previous iterations.
New DOE points are selected based on Minimising a Merit
Function (SAO-MMF) and Maximising Expected Improve-
ment (SAO-MEI).

These three variants of the SAO algorithm have been
compared to each other and to other optimization algorithms
by application to two forging processes: a spindle and a gear.
The other algorithms taken into account are two iterative
algorithms (BFGS and SCPIP) and a Metamodel Assisted
Evolutionary Strategy (MAES).

It is concluded that it is essential for sequential approx-
imate optimization algorithms to implement a sequen-
tial improvement strategy that uses as much information
obtained during previous iterations as possible. SAO-MEI
and SAO-MMF have performed much better than the SAO-
SF algorithm.

If an efficient sequential improvement strategy is used,
SAO provides a very good algorithm to optimize forging
processes using time-consuming FEM simulations: it out-
performs the iterative algorithms which get stuck in a local
optimum. Only the MAES algorithm stays close.

The potential of the proposed SAO algorithm has been
demonstrated by two forging cases: it solved a folding
defect for the spindle and decreased both the energy con-
sumption and folding susceptibility for the gear with about
10%.

Finally, this paper shows the capacity of metamodel algo-
rithms to solve actual 3D forging optimization problems
within a limited and quite reasonable number of expensive
FEM simulations. Sound results, if not globally optimal,
are provided, which can offer a great aid in the design of
complex forging sequences.
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