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Abstract Intercellular communication plays an important

role in cancer initiation and progression through secretory

molecules, including growth factors and cytokines. Recent

advances have revealed that small membrane vesicles,

termed extracellular vesicles (EVs), served as a regulatory

agent in the intercellular communication of cancer. EVs

enable the transfer of functional molecules, including

proteins, mRNA and microRNAs (miRNAs), into recipient

cells. Cancer cells utilize EVs to dictate the unique phe-

notype of surrounding cells, thereby promoting cancer

progression. Against such ‘‘education’’ by cancer cells,

non-tumoral cells suppress cancer initiation and progres-

sion via EVs. Therefore, researchers consider EVs to be

important cues to clarify the molecular mechanisms of

cancer biology. Understanding the functions of EVs in

cancer progression is an important aspect of cancer biology

that has not been previously elucidated. In this review, we

summarize experimental data that indicate the pivotal roles

of EVs in cancer progression.
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Introduction

The malignant phenotypes of tumors not only are determined

by cancer cells themselves but also depend on their sur-

rounding tumor microenvironments [1, 2]. These

microenvironments consist of various cell types, such as

fibroblasts, lymphocyte, inflammatory cells, epithelial cells,

endothelial cells, and mesenchymal stem cells. These cells

within the tumor microenvironment and cancer cells interact

with each other and form the intrinsic communication net-

works that affect several cancer hallmarks, as described by

Hanahan and Weinberg [3]. Several reports documented that

such intercellular communications were modulated by var-

ious humoral factors, such as growth factors, cytokines, and

chemokines. Similar to these molecules, recent advances in

cancer biology revealed that extracellular vesicles (EVs)

also served as a regulatory agent in such communications.

EVs have a heterogenetic population and are generally

categorized as exosome, microvesicles or ectosomes, and

apoptotic bodies [4–6]. These vesicles originate from dif-

ferent subcellular compartments [4–6]. Exosomes are small

membrane vesicles, ranging from 50 to 150 nm in diame-

ter, that have a lipid bilayer membrane and originate from

the exocytosis of multivesicular bodies (MVBs) containing

intraluminal vesicles [6]. Exosome biogenesis and release

are modulated by the endosomal sorting complex that is

required for transport (ESCRT) machinery and the cer-

amide-dependent pathway [6]. Researchers in EV biology

have identified several types of exosome markers, includ-

ing tetraspanins (CD9, CD63, CD81), heat shock proteins

(HSP60, 70, and 90), membrane transporters and fusion

proteins (Annexins and flotillin), and MVB synthesis pro-

teins (Alix and TSG101) [7]. Microvesicles are

100–1000 nm in diameter and are produced directly from

the plasma membrane via budding [8]. Microvesicles are
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enriched in some lipid components and phosphatidylserine

[9]. The biogenesis of microvesicles is modulated by the

interaction between phospholipid redistribution and the

contraction of cytoskeletal structures [10]. Apoptotic bod-

ies (500–4000 nm in diameter) are formed during the

apoptotic process and contain organelles and nuclear

fragments [6, 10, 11]. Apoptotic bodies also contain DNA

fragments and RNA. Macrophages subsequently clear

apoptotic bodies by phagocytosis [11]. However, these

apoptotic bodies may participate in the intercellular com-

munication of the cancer microenvironment. Indeed,

H-rasV12- and human c-myc-transfected to rat fibroblasts

could transfer their DNA to other fibroblasts by apoptotic

bodies, thereby inducing tumorigenic phenotypes [12].

EVs contain functional cellular components such as pro-

teins, mRNAs, and microRNAs (miRNAs) that enable the

transfer of these principal factors to various cell types [13].

These components of EVs are also functional in the recipient

cells and are highly variable depending on the origin cells

[6]. As shown in Figs. 1 and 2, this EV-mediated interaction

between cancer cells and their surrounding cells within

tumor microenvironment confers advantages for cancer

initiation and progression. Non-tumoral cells also utilize

EVs to transfer the tumor-suppressive molecules that affect

cancer initiation and progression (Fig. 2). Therefore,

researchers consider EVs to be important cues for under-

standing the molecular mechanisms underlying the

intercellular communication in the tumor microenviron-

ment. In this review, we will summarize the current

knowledge regarding the functional role of EV components

on intercellular communication between cancer cells and

each cell type within the tumor microenvironment.

Interaction between cancer cells and surrounding
stromal fibroblasts via EVs

The fibroblasts within tumor stroma, which are also termed

cancer-associated fibroblasts (CaFs), have heterogeneous

populations and include myofibroblasts that are similar to

fibroblasts associated with wound healing [14]. CaFs

enable the formation of a unique microenvironment that

plays a pivotal role in cancer development and progression.

Although the origins of CaFs and the signaling that

mediates CaF induction remain controversial, several types

of factors, including transforming growth factor-beta

(TGF-b), are required for the induction and maintenance of

CaFs [14–18]. In addition to these factors, the EVs derived

from cancer cells induce such CaF-like phenotypes in

cancer surrounding stromal cells (Table 1). Webber et al.

showed that TGF-b was loaded on the surface of EVs

derived from prostate cancer and mesothelioma cell lines

[19, 20]. These cancer-derived EVs could trigger the TGF-

b/SMAD3 signaling pathway in fibroblasts and induce the

myofibroblast-like phenotypes, including the induction of

a-smooth muscle action (a-SMA) expression and the pro-

duction of fibroblasts growth factor 2 (FGF2) [19]. These

data suggest that cancer cells could dictate the characters of

their surrounding stromal cells via EVs and create a con-

venient microenvironment to support cancer cell survival

and progression.

In contrast, stromal fibroblasts that are ‘‘educated’’ by

cancer cells also secreted EVs and established the com-

munication networks that provide the ultimate benefit for

cancer progression. Luga et al. demonstrated that CD81-

positive CaF-derived EVs enhanced breast cancer cell

motility and metastasis by activating the Wnt-planar cell

polarity (PCP) signaling pathway [21]. Endocytosis and

internalization of the Wnt-receptor complex from the

plasma membrane are required for signal transduction [22].

Wnt11 and CD81 are localized on EVs, and the internal-

ization of CD81 molecules on the EVs in breast cancer cell

may support the endocytic trafficking of autocrine Wnt

ligand to activate the Wnt-PCP pathway [21]. Because

CD81 is a well-known marker of EVs [7], it is possible that

CD81-positive EVs derived from other cell types within

the tumor microenvironment may contribute to the acti-

vation of the Wnt-PCP pathway in cancer cells. Boelens

et al. demonstrated that resistance to chemotherapy and

radiation in breast cancer is mediated by CaF-derived EVs

[23]. These CaF-derived EVs contain non-coding or

transposable RNAs that stimulate RIG-I recognition to

activate STAT1. Activated STAT1 cooperates with jux-

tacrine-activated NOTCH3 to mediate NOTCH target gene

transcriptions. NOTCH and its target genes support the

maintainance of tumor-initiating cells that are known to be

resistant to chemotherapy and radiation [24]. Therefore,

NOTCH target gene induction via EVs results in the

expansion of therapy-resistant tumor-initiating cells [23].

Interestingly, CaF-derived EVs preferentially affect breast

cancer cells with the basal-like subtype that is associated

with aggressive phenotype of breast cancer [23, 25].

Although the mechanism by which CaF-derived EVs could

preferentially affect basal-like subtype breast cancer cells

has not been addressed, CaF-derived EVs potentially have

a tropism to influence treatment-resistant cancer cells.

Recently, an increasing number of reports have

demonstrated that secreted miRNAs also enable to com-

pose the communication networks between cancer cells

and CaFs to modulate cancer progression. Pang et al.

showed that miR-155 was secreted through cancer-derived

EVs and dictated CaF-like phenotypes in fibroblasts by

repressing TP53INP1 [26]. This finding suggests that

cancer-derived EVs also affect stromal fibroblasts through

transferring miRNAs. However, Josson et al. demonstrated

that CaF-derived EVs contain miR-409, which promotes
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Fig. 1 Cancer cell-derived EVs modify the characters of cancer

surrounding microenvironment. Several kinds of cell types, such as

cancer cells, fibroblasts, immune cells, endothelial cells, epithelial

cells, and mesenchymal stem cells, comprise unique microenviron-

ment for cancer progression. Cancer cells utilize EVs to modify

surrounding cells within tumor microenvironment. Cancer-derived

EVs have multiple functions that depend on component molecules of

EVs. To induce cancer-associated fibroblast (CaF)-like phenotypes in

cancer surrounding fibroblasts and mesenchymal stem cells, cancer

cells secrete EVs and transfer growth factors and microRNAs

(miRNAs), including transforming growth factor-beta (TGF-b) and

miR-155, respectively. To escape from immune surveillance, cancer

cells transfer several types of immunoregulatory molecules into

immune cells. However, these cancer-derived EVs also stimulate

cancer immunity to kill tumor cells because tumor antigens were

packaged in EVs and stimulated cancer immunity. Cancer-derived

EVs also contain angiogenic proteins and miRNAs that promote

migration and proangiogenic activity of endothelial cells. In addition,

miR-105 and miR-181c in EVs are capable of rupturing the vascular

system to increase the permeability that supports cancer metastasis.

Cancer-derived EVs confer malignant phenotypes in other cancer

cells and epithelial cells by transferring oncogenic proteins and

miRNAs, such as EGFRvIII, miR-200, and tissue transglutaminase

(tTG). Taken together, cancer cells ‘‘dictate’’ the characters of their

surrounding stromal cells and create a convenient microenvironment

to support cancer progression via EVs
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the epithelial-to-mesenchymal transition (EMT) [27].

Moreover, Yeung et al. demonstrated that CaFs and cancer-

associated adipocytes secreted miR-21 via EVs and con-

ferred chemo-resistance to cancer cells by regulating

apoptotic peptidase activating factor 1 (APAF1) expression

[28]. Because miRNA expression changes involve regu-

lating the tumor-promoting function of CaFs [29], the

miRNA expression profile in CaFs and their EVs reflect the

disease status of cancer. Understanding EV communication

networks in tumor-stromal interaction will enable the

development of therapeutic strategies to target EVs and

may provide novel functional marker of CaFs.

Cancer cells can reprogram their energy metabolism to

be distinct from that of normal cells [3, 30]. Interestingly,

Fig. 2 The functional role of non-tumoral cell-derived EVs in cancer

initiation and progression. Non-tumoral cells utilize EVs to affect

cancer initiation and progression. Cancer-associated fibroblasts

secrete EVs and affect invasion, proliferation, chemoresistance, and

metabolic properties of cancer cells by transferring CD81, miR-21,

miR-409, and metabolites. Macrophage-derived EVs contain miR-

223, which stimulates the invasive activity of cancer cells. Monocytes

transfer miR-155 to neuroblastoma via EVs and induce chemoresis-

tance in neuroblastoma. ‘‘Non-educated’’ mesenchymal stem cells

(MSCs) by cancer cells secrete EVs containing miR-16 to suppress

tumor growth and angiogenesis. However, interestingly, ‘‘educated’’

MSCs by cancer cells enable to secrete EVs that contain tumor

promotive proteins such as plakoglobin and CCL2. MSC-derived EVs

also transfer miR-23b, which induce dormant state of cancer cells to

survive in a quiescent state while waiting for the appropriate

environmental conditions to begin proliferation again. Non-aberrant

epithelial cells secreted EVs to transfer miR-143 into cancer cells and

suppress tumor growth
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CaFs within tumor stroma also support the metabolic

properties of cancer cells [31, 32]. Zhao et al. showed that

CaF-derived EVs alter the metabolic properties of prostate

cancer cells [33]. In the presence of CaF-derived EVs,

oxidative phosphorylation is inhibited, but glycolysis and

lactate levels are increased in prostate cancer cell lines.

This finding suggests that EVs induce the ‘‘Warburg

effect’’ [30, 34]. These CaF-derived EVs also transfer TCA

cycle metabolites, amino acids, and lipids into cancer cells.

Interestingly, breast cancer-derived EVs also modify the

glucose consumption of fibroblasts in metastatic sites by

targeting pyruvate kinases [35]. Therefore, cancer-derived

EVs enable to educate stromal cells within distant niche to

promote cancer metastasis. Similarly, several reports also

showed the important aspects of cancer-derived EV on the

cancer progression through remodeling the stromal cells

within pre-metastatic niche [36, 37]. Although further

studies are required to clarify the advantages of metabolic

change in cancer progression, these findings suggest that

the communication networks of EVs contribute to cancer

proliferation and survival in the surrounding environment

with limited oxygen and nutrient supplies.

Cancer-derived EVs in the immune system

The major function of the immune system is not only to

protect against several infectious pathogens but also to

eradicate the abnormal cells [40]. Therefore, to promote

cancer initiation and progression, evasion from immune

surveillance is one of the key hallmarks of cancer cells [3].

However, increasing evidences indicate that the immune

systems play a dual role in cancer progression and can both

suppress and support the tumor cells. In addition, several

reports suggested that macrophages and neutrophils within

tumor tissue were associated with cancer progression

[40–44]. These macrophages and neutrophils also exhibit

polarity on either a tumor-suppressive or a tumor-promot-

ing phenotype, depending on the surrounding

microenvironment [43, 44]. Hence, cancer cells and

immune cells form intricate communication networks that

affect the risk of cancer development.

EVs also modulate the evasion of cancer cells from

immune surveillance (Table 2). For example, cancer-

derived EVs induce apoptosis of CD8-positive T-cells and

promote regulatory T-cell expansion to suppress anticancer

immunity [45, 46]. Additionally, cancer-derived EVs

included several types of immunoregulatory molecules,

such as FasL [47], TGF-b [48], NKG2D ligands [49],

galectin-9 [50], and HSP72 [51], to support the immune

escape of cancer cells. These EVs also induce the differ-

entiation of monocytes into immunosuppressive

macrophages [52]. Interestingly, cancer-derived EVs

increase the survival rate of monocytes [53, 54]. Conse-

quently, cancer-derived EVs facilitate the formation of

macrophages from monocytes in the tumor microenviron-

ment. These macrophages are also capable of producing the

EVs that enhance the metastatic properties of cancer cells

Table 1 EV interaction between cancer cells and fibroblasts

Cell types of EV

donor

Cell types of EV

recipient

EV components Functions References

Positive regulation of extracellular vesicles on cancer progression

Cancer cells Fibroblasts TGF-b Triger the myofibroblast differentiation [19]

TGF-b Triger the myofibroblast differentiation and promote cancer

growth and angiogenesis

[20]

Integrins Up-regulates S100 gene expressions and promote cell

growth and migration

[38]

miR-155 Induce cancer-associated fibroblast-like phenotype through

repressing TP53P1

[26]

miR-122 Down-regulates glucose consumption of fibroblasts [35]

Fibroblasts Cancer cells CD81 Enhance cancer motility and metastasis [21]

Extracellular matrix proteins

and ADAM10

Promote cancer motility [16]

Non-coding of transposable

RNAs

Expansion of therapy-resistant tumor-initiating cells [23]

miR-409 Promote epithelial-mesenchymal transition [27]

Wnt3a Expansion of cancer stem cell to enhance chemoresistance [39]

miR-21 isomiR Confer the chemo-resistance through targeting APAF1 [28]

Metabolites including amino

acids and lipids

Affect of metabolic properties of cancer cells [33]
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Table 2 EV interaction between cancer cells and immune cells

Cell types

of EV

donor

Cell types

of EV

recipient

EV components Functions References

Positive regulation of extracellular vesicles on cancer progression

Cancer

cells

Immune

cells

FasL Induce the apoptosis of lymphocytes [47]

FasL and HLA class I antigens Induce apoptosis and caspase activation [71]

FasL and TRAIL Induce T-cell apoptosis [72]

Several proteins including chemokine receptor 6 (CCR6)

and CD44 variant 7/8

Increase the survival rate of monocytes [53]

CD44 Induce tumor-associated macrophage-like

phenotypes from monocytes

[73]

TGF-b Inhibit NK cell cytotoxic function and enhance

regulatory T cell immune suppressive

function

[48]

NKG2D and TGF-b Inhibit lymphocyte effector function [49]

Melanoma antigen (MAGE), FasL and MHC class I Apoptosis of CD8 positive T-cell and promote

regulatory T cell expansion

[45]

Galectin-9 Induce the apoptosis of mature Th1 lymphocytes [50]

IL-10, TGF-b, FasL, MAGE and MHC class I Apoptosis of CD8 positive T-cell and promote

regulatory T cell expansion

[46]

HSP72 Induce immunosuppressive activity of myeloid-

derived suppressor cells

[51]

Palmitoylated proteins Induce pro-inflammatory cytokines, including

IL-6, TNF-a and CCL2, through activating

NF-jB signaling

[56]

Chondroitin sulfate proteo-glycan 4, a2-macroglobulin,

lactadherin, syntenin-1, myristoylated alanine-rich

C-kinase substrate (MARCKS), integrin alpha-V,

integrin alpha-3, and epithelial growth factor receptor

(EGFR)

Induce the differentiation of monocyte into

immunosuppressive macrophages

[52]

Phospholylated receptor thyrosin keinase Increase the survival rate of monocytes by

regulating the MAPK pathway

[54]

miR-203 Suppress the expression of the immune

response-relative genes, and may contribute

to suppressing anticancer immunity

[65]

miR-21 Induce miR-155 expression in TLR8 dependant

manner

[66]

Cancer

cells

Kupffer

cells in

the liver

Migration inhibitory factor (MIF) Promote TGF-b secretion in Kupffer cells and

activate hepatic stellate cells to form fibrotic

niche

[97]

Immune

cells

Cancer

cells

miR-223 Stimulates the invasive activity of breast cancer

cells by regulating the Mef2c-b-catenin

pathway

[55]

miR-155 Enhance chemoresistance of cancer cells

through targeting TERF1

[66]

miR-126a Induce IL-13 positive Th2 macrophage

maturation and promote tumor angiogenesis

that lead to cancer cell metastasis

[74]

Negative regulation of extracellular vesicles on cancer progression

Cancer

cells

Immune

cells

Melanoma antigen (Mart1) Stimulated cancer immunity to kill tumor cells [57]

Tumor antigens Stimulated cancer immunity to kill tumor cells [58]
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[55]. Moreover, cancer-derived EVs internalize into mac-

rophages and induce pro-inflammatory cytokines,

including IL-6, TNF-a, and CCL2, through activating NF-

jB signaling [56]. Thus, EV communications between

cancer cells and immune cells seem to provide the

advantage of evasion from immune surveillance and cancer

progression. However, several researchers suggested that

tumor antigens were packaged in EVs and stimulated

cancer immunity to kill tumor cells [57, 58]. Therefore,

cancer-derived EVs are also utilized as anti-tumoral vac-

cines [59, 60]. In addition, dendritic cells (DC)-derived

EVs induce CD8-positive T-cell activation in both a CD4-

positive T-cell and B-cell-dependent manner [61]. The

availability of these DC-derived EVs as a tool of vaccine

immunotherapy was also tested [62–64]. Taken together,

EVs within the tumor microenvironment also participate in

such complex interactions between cancer cells and

immune cells.

Among these communication networks of the EVs

involved in cancer immunity, the miRNAs secreted via

EVs are also involved in the regulation of cancer immunity

(Fig. 1; Table 2). Indeed, pancreatic cancer-derived EVs

containing miR-203 regulate the expression of the immune

response-relative genes, including toll-like recepter-4, and

may contribute to suppress anticancer immunity [65]. In

addition, macrophage-derived EVs can transfer miR-223,

which stimulates the invasive activity of breast cancer

cells, by regulating the Mef2c-b-catenin pathway [55].

Furthermore, miR-21 is transferred into monocytes via

neuroblastoma-derived EVs and can bind to TLR8 to

stimulate NF-jB pathway and induce miR-155 expression

in monocytes [66]. Interestingly, miR-155 is also trans-

ferred from monocytes to neuroblastoma via EVs and

induces chemoresistance in neuroblastoma through target-

ing telomeric repeat binding factor 1 (TERF1). Such

communication networks of secreted miRNAs via EVs are

likely associated with programmed cell death protein

ligand-1 (PD-L1) in mediating the immune response. PD-

L1 is well known as a ligand of programmed cell death

protein-1 (PD-1) that plays a pivotal role in T-cell

inhibition and exhaustion. PD-L1 is up-regulated in several

cancers to suppress the cytotoxic activity of T-cells and

escape from the immune system. Instability of the PD-L1

30-untranslated region (UTR) was recently reported to be

associated with aberrant PD-L1 expression in cancer cells

[67]. Importantly, most miRNA targeting sites are located

in the 30-UTR region of target genes [68]. Several reports

have demonstrated the functional role of miRNAs in

immune checkpoints by regulating PD-L1 expression

[69, 70]. Although it is unclear that miRNAs targeting PD-

L1 are packaged in EVs, it is conceivable that the genetic

status of PD-L1 may affect the functional role of the

secreted miRNAs that are included in EVs in the evasion of

cancer cells from immune surveillance. Further under-

standing of the molecular mechanisms underlying these

complex communication networks via EVs will provide

several avenues for cancer immunotherapy and diagnosis.

The communication network of EVs
between cancer cells and endothelial cells

Angiogenesis within tumor tissue is required to provide

nutrients and oxygen to cancer cells and allows entry to the

blood circulation system [3, 77, 78]. Angiogenesis can

trigger the formation of metastatic foci in secondary sites.

Tumor vascularization is regulated by a number of poten-

tial mechanisms, and vascular endothelial cells are one of

the origins of the tumor vessel [79]. Cancer-derived EVs

support the vascularization by affecting endothelial cells

within the tumor microenvironment and may confer the

aggressive phenotypes to cancer cells (Table 3). For

instance, prostate and ovarian cancer cells secrete EVs to

transfer sphingomyelin and CD147 into endothelial cells.

These EV molecules promote migration and proangiogenic

activity of endothelial cells [80, 81]. Similarly, nasopha-

ryngeal cancer-derived EVs contained intercellular

adhesion molecule-1 (ICAM-1) and CD44 variant isoform

5 (CD44v5), which significantly increase the migration,

invasion, and tubulogenesis of endothelial cells [82].

Table 2 continued

Cell types

of EV

donor

Cell types

of EV

recipient

EV components Functions References

Immune

cells

Immune

cells

Tumor peptide, MHC class I and II Stimulated cancer immunity to kill tumor cells [75]

Cytosolic proteins (including hsc73) and membrane

proteins (including milk fat globule-EGF-factor VIII

(MFG-E8))

Stimulated cancer immunity [76]

MHC class I Induce CD8-positive T-cell activation in both a

CD4-positive T-cell and B-cell dependent

manner

[61]
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Although these reports did not clarify the contribution of

these EV components in cancer progression, cancer-

derived EV-induced angiogenesis within the tumor

microenvironment probably supports cancer survival and

metastasis.

In contrast, cancer cell-derived EVs also transported

miRNAs into endothelial cells to modulate neovascular-

ization. Metastatic breast cancer-derived EVs transport

miR-210 into endothelial cells [83]. This miRNA secretion

is regulated by neutral sphingomyelinase 2 (nSMase2),

which is highly expressed in cancer cells compared with

non-neoplastic cells [83–85]. Because nSMase2 expression

promotes metastatic initiation, miRNA secretion via can-

cer-derived EVs modulates cancer metastasis through neo-

vascularization. The functional role of EVs containing

miR-135 and miR-210 in tumor angiogenesis is also

observed in multiple myeloma and leukemia, respectively

[86, 87]. Interestingly, hypoxic conditions promote the

secretion of EVs containing miR-135 and miR-210 in

cancer cells [86, 87]. Hypoxic conditions within tumor

tissues affect several characteristics of cancer, including

angiogenesis [88]. Furthermore, hypoxia promotes EV

release and alteration in the EV components [89, 90].

Therefore, EVs are utilized to facilitate the malignant

behavior in hypoxic tumor microenvironments. However,

the exact contribution of miRNAs and proteins in EVs

during angiogenesis and cancer metastasis remains unclear.

Understanding these relationships will enable the devel-

opment of cancer therapy. Indeed, anti-angiogenic

strategies to inhibit EVs secretion and miRNA contents

were examined [91].

Cancer-derived EVs mediate tumor angiogenesis within

proximal microenvironments. However, cancer cells also

utilize EVs for endothelial cell modifications within distant

microenvironments to form a metastatic niche. For

instance, the blood–brain barrier (BBB) tightly regulates

the permeability from the vascular system to the central

nervous system [88, 92, 93]. Thus, BBB destruction is one

of the key steps to allow the extravasation of cancer cells

during brain metastasis [88]. Although several types of

molecules contributed to the BBB disruption [92, 94], EVs

are also associated with brain metastasis of cancer cells by

affecting BBB endothelial cells. A recent study indicated

that brain metastasis breast cancer-derived EVs containing

miR-181c were closely associated with the BBB destruc-

tion and brain metastasis [95]. miR-181c is transferred into

endothelial cells of the BBB by EVs and causes the delo-

calization of actin by suppressing the expression of

3-phosphoinoitide-dependent protein kinase-1 (PDPK1).

PDPK1 suppression leads to the degradation of the

Table 3 EV interaction between cancer cells and endothelial cells

Cell types of

EV donor

Cell types of

EV recipient

EV components Functions References

Positive regulation of extracellular vesicles on cancer progression

Cancer

cells

Endothelial

cells

Sphingomyelin Promote migration and vascularization of

endothelial cells

[80]

Tetraspanin CO-029/D6.1A (as known

tetraspanin-8 (TSPAN-8)

Induce vascularization [98]

CD147 Promote migration and vascularization of

endothelial cells

[81]

Several molecules including TSPAN-8, CD49d

and CD106

Enhance cell growth, migration, vascularization

and maturation of endothelial cells

[99]

IL-6, VEGF, MMP2 Induce vascularization of endothelial cells [100]

Intercellular adhesion molecule-1 (ICAM-1) and

CD44 variant isoform 5 (CD44v5)

Promote migration and vascularization of

endothelial cells

[82]

H19 long non-coding RNA Promote an angiogeneic phenotype in

endothelial cells

[101]

miR-9 Promote migration and vascularization of

endothelial cells

[102]

miR-210 Modulates cancer metastasis through

neovascularization

[83]

miR-210 Induce vascularization of endothelial cells [87]

miR-135 Induce vascularization of endothelial cells [86]

miR-105 Destroy the tight junction of the endothelial cells

to promote metastasis

[96]

miR-181c Disrupt the permeability of the BBB to promote

brain metastasis

[95]
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phosphorylated cofilin, which is important for actin

dynamics and disrupts the permeability of the BBB. Sim-

ilar to this report, Zhou et al. reported that metastatic breast

cancer-derived EVs also contain miR-105 that directly

inhibits tight junction protein 1 (ZO-1) expression in

endothelial cells and destroys the tight junction to promote

metastasis [96]. It appears that miR-181c is included in the

EVs that preferentially accumulate in brain endothelial

cells, but EVs that contain miR-105 may affect endothelial

cells throughout the body. Therefore, cancer-derived EVs

may participate in such organ-specific metastasis of cancer

cells through remodeling the distal pro-metastatic niche.

Indeed, pancreatic cancer-derived EVs are selectively

uptaken by liver Kupffer cells and promote liver metastasis

of cancer cells [97]. In addition, cancer-derived EVs had a

tropism depending on surface integrin marks [38]. How-

ever, it is still controversial whether all of cancer-derived

EVs exhibit specificity for the pre-metastatic niche.

Clarification of these points is necessary for the use of EVs

as novel therapeutic targets of cancer metastasis.

The functional role of EVs on intercellular
communication between cancer cells
and mesenchymal stem cells

Cancer-derived EVs affect the mesenchymal stem cells

(MSCs) as well as fibroblasts and endothelial cells

(Table 4). MSCs reside in several types of mesodermal

tissues, such as bone marrow (BM), adipose tissue,

umbilical cord, and peripheral blood [103–105]. Several

lines of evidence indicated that these MSCs are recruited

into the tumor microenvironment and could promote tumor

growth and metastasis [106, 107]. Cancer-derived EVs

control the differentiation of BM-MSCs to a CaF-like state

through activating the TGF-b signaling pathway [108].

Table 4 EV interaction between cancer cells and bone marrow stromal cells

Cell types of

EV donor

Cell types of

EV recipient

EV components Functions References

Positive regulation of extracellular vesicles on cancer progression

Cancer cells Mesenchymal

stem cells

TGF-b Induce cancer-associated fibroblast-like

phenotype through activating TGF-b/

SMAD pathway

[119]

TGF-b Induce cancer-associated fibroblast-like

phenotype and enhance tumor proliferation

and invasion

[108]

Functional miRNA and proteins Induce cancer-associated fibroblast-like

phenotype and enhance tumor proliferation

[109]

miR-146a Induction of several cytokines and

chemokines in mesenchymal stem cells, and

enhance cancer viability and migration

[120]

Cancer cells Bone marrow

progenitor

cells

MET Change the phenotype and mobilzation of

bone marrow progenitor cells and support

tumor angiogenesis

[121]

Mesenchymal

stem cells

Cancer cells Fibronectin, Junction plakoglobin, and CCL2

from cancer ‘‘educated’’ mesenchymal stem

cells

Promote cancer proliferation and

dissamination

[118]

Probably transferred HGF mRNA by EVs Promte cancer growth and migration [116]

miR-23b Induce cancer cell dormancy [113]

miR-21, miR-34a, PDGFR-b, TIMP-1, TIMP-2,

lactic acid, glutamic acid, and sphingomyelin

Increase cancer cell proliferation and survival [122]

Bone marrow

stromal cells

Cancer cells monocyte chemo- attractant protein 1 (MCP-1),

interferon-inducible protein 10 (IP-10),

stromal cell-derived factor 1 (SDF-1)

Promote cancer cell growth, migration, and

drug resistance

[123]

Negative regulation of extracellular vesicles on cancer progression

Mesenchymal

stem cells

Cancer cells miR-16 Inhibit tumor vascularization through

suppressing VEGF expression

[115]

miR-15 from healthy donor-derived

mesenchymal stem cells

Inhibit cancer proliferation and dissamination [118]

Bone marrow

stromal cells

Cancer cells miR-146b Inhibit cancer growth [124]
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This differentiated BM-MSC with EVs exhibits proangio-

genic properties to enhance tumor proliferation and

invasion. Similarly, Paggetti et al. demonstrated that

chronic lymphocytic leukemia (CLL) cells also secreted

EVs to induce CaF-like phenotypes in BM-MSCs and

endothelial cells [109]. BM-MSCs and endothelial cells

with CLL-derived EVs support CLL adhesion, survival,

and growth in vitro and in vivo. The origins of CaFs are

still controversial, and cancer-derived EVs also induce

CaF-like phenotypes in cancer surrounding fibroblasts [14].

Therefore, cancer-derived EVs can convert several types of

stromal cells into CaF-like cells. These data suggest that

EVs are associated with CaF population diversity.

Breast cancer patients have a protracted risk of recur-

rence within 5 years and even up to 10–20 years after

surgery or adjuvant chemotherapy [110–112]. The phe-

nomenon indicates that breast cancer cells acquire a

dormant state and survive for a long time in the patient’s

body. Although cancer cells cease dividing under a dor-

mant state, they can survive in a quiescent state while

waiting for the appropriate environmental conditions to

begin proliferation again. Importantly, BM-MSCs con-

tribute to the maintenance of such cancer cell dormancy via

EVs [113]. BM-MSCs transfer miR-23b-containing EVs

into breast cancer cells and modulate the dormant state by

targeting myristoylated alanine-rich C-kinase substrate

(MARCKS), which modulates cell motility and cell cycle

progression [114]. Consistent with this report, it was also

indicated that BM-MSCs secreted miR-16 via EVs and

downregulated vascular endothelial growth factor (VEGF)

expression to lead to the inhibition of growth and

angiogenesis in breast cancer [115]. In contrast, several

reports also showed that these MSC-derived EVs promoted

tumor growth in renal cancer [116], gastric cancer, and

colorectal cancer [117]. Thus, the functional role of MSC-

derived EVs depends on cancer cell types. In addition, it

was reported that EVs derived from BM-MSCs of multiple

myeloma patients enhance tumor growth but that healthy

subject-derived BM-MSCs suppress tumor growth via EVs

[118]. Taken together, these different functions of MSC-

derived EVs depending on the phenotypes of cancer cells.

Understanding these points will provide a novel insight

into cancer therapy.

Horizontal propagation of oncogenic molecules
by EVs

As mentioned above, cancer-derived EVs controlled stro-

mal cells within the tumor microenvironment to promote

cancer progression. However, cancer cells can also transfer

their oncogenic properties to other cancer cells via EVs

(Table 5). For instance, the epithelial growth factor

receptor (EGFR) truncated mutant, EGFR variant III

(EGFRvIII), is closely associated with cancer progression

and poor patient prognosis of glioblastoma (GBM), which

is most common brain malignancy in adults [125]. Al-

Nedwi et al. reported that the EGFRvIII could be trans-

ferred from EGFRvIII-positive GBM cells to negative

GBM cells through EVs [126]. Internalization of EGFR-

vIII-containing EVs activated the MAPK and Akt signaling

pathways in the EGFRvIII-negative GBM cells, resulting

Table 5 EV interaction between cancer cells and another cancer cells

Cell types of

EV donor

Cell types of EV

recipient

EV components Functions References

Positive regulation of extracellular vesicles on cancer progression

Cancer cells Cancer cells H-ras and c-myc Induce tumorigenic phenotypes [12]

EGFR variant III (EGFRvIII) Induce both morphological changes and anchorage-

independent growth

[126]

EGFRvIII mRNA Stimulate cancer cell proliferation [127]

Integrin Promote adhesion and migration [132]

miR-200 family Induce the mesenchymal to epithelial transition

(MET) to promote metastasis

[130]

Several miRNAs including miR-584 Activate JNK/p38 MAPK pathway and promote

tumor growth

[133]

miR-10b Promte invasion activity [134]

Several miRNAs including miR-100,

miR-222, and miR-30a

Increase survival rate [135]

miR-222 Promote invesion and motility [136]

Long non-coding RNA (lncARSR) Stimulate AXL and c-MET expression to enhance

chemoresistance

[131]
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in the expression of EGFR target genes, including vascular

endothelial growth factor (VEGF). Furthermore, EGFR-

vIII-containing EVs induce both morphological changes

and anchorage-independent growth in recipient cells.

Interestingly, EGFRvIII mRNA is also detectable in GBM-

derived EVs [127]. Given that some reports demonstrated

the heterogeneous distribution of EGFRvIII expression in

GBM tissue [128, 129], the horizontal propagation of

EGFRvIII by EVs might contribute to intratumoral

heterogeneity and the progression of GBM. Such intracel-

lular interactions by EVs between malignant tumor cells

and less aggressive tumor cells were also observed in other

types of cancer. Le et al. showed that highly metastatic

breast cancer cells could transfer the EVs contained miR-

200 family miRNAs to non-metastatic breast cancer cells

to promote lung metastasis [130]. This miR-200 transfer

induces the mesenchymal to epithelial transition (MET) by

altering the expression of genes, including zeb2 and

sec23a, in non-metastatic breast cancer cell lines. Qu et al.

demonstrated that long non-coding RNAs (lncRNAs) were

also transferred by EVs and contributed to the chemore-

sistance of renal cell carcinoma (RCC) cells [131]. This

lncRNA, termed lncARSR, acts as a competitor of miR-34/

miR-449 and stimulates AXL and c-MET expression to

enhance chemoresistance in drug-sensitive RCC cells.

From these reports, cancer-derived EVs play a crucial role

in the acquisition and transfer of the malignant trait by

horizontal propagation of oncogenic molecules.

Interaction between non-tumoral epithelial cells
and cancer cells via EVs

Competitive cell interactions represent a basic biological

process to maintain homeostasis [137]. In particular, during

cancer initiation, aberrant cells bearing genetic or epige-

netic mutations will conflict with the surrounding non-

aberrant normal cells to eliminate them from the cell

population [137, 138]. If these aberrant cells eliminate

normal cells from tissue, it may lead to cancer formation

and progression. Therefore, it is conceivable that normal

cells require an eradication system for aberrant cells to

prevent tumor initiation. Normal prostate epithelial cell

lines secreted EVs to transfer the tumor suppressor miR-

143 into cancer cells [85] (Table 6), resulting in the

induction of growth inhibitory signals in prostate cancer

cells. These results suggest that EVs may contribute to the

maintenance of normal growth and prevent cancer initia-

tion. In contrast, cancer cells also utilize EVs to overcome

this cell competition with non-tumoral epithelial cells

during the cancer initiation step. Breast cancer-derived EVs

are capable of inducing anchorage-independent growth and

survival in mammary epithelial cells [139] (Table 6).

Similar to this report, high metastatic hepatocellular car-

cinoma cell lines also transfer the oncogenic molecules to

the non-tumoral immortalized hepatocytes and promote

invasive activity of the immortalized hepatocytes [140].

Therefore, cancer-derived EVs contribute to the expansion

of cancer cells by transforming non-aberrant normal cells.

From these reports, it is conceivable that EVs play an

important role in cell competition between cancer cells and

non-tumoral epithelial cells. Further investigation will

advance our understanding of the progression mechanisms

of competitive cellular interaction between cancer cells and

epithelial cells.

Conclusion

The precise mechanisms of intercellular communication in

the tumor microenvironment remain obscure because there

are many important pathways that modulate multiple non-

EV factors, such as growth factors, cytokines, and che-

mokines. However, as described above, the rapid

development of EV research elucidated the novel mecha-

nism underlying the intrinsic intercellular communication

networks during cancer initiation and progression. EVs

possess impressively diverse functions in the intercellular

communication networks in the tumor microenvironment.

Cancer cells secrete EVs and dictate the phenotypes of

surrounding cells to promote cancer progression. Against

such ‘‘education,’’ non-tumoral cells utilized EVs to sup-

press cancer initiation and progression. Understanding the

precise mechanisms of EVs in cancer biology may provide

a breakthrough in the diagnostic and prognostic tools and

therapeutic strategies of cancer.

Table 6 EV interaction between cancer cells and epithelial cells

Cell types of EV

donor

Cell types of EV

recipient

EV components Functions References

Positive regulation of extracellular vesicles on cancer progression

Cancer cells Epithelial cells Tissue transglutaminase

(tTG)

Induce anchorage-independent growth and

survival

[139]

Epithelial cells Cancer cells miR-143 Induce growth inhibitory signals [85]
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