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Abstract This work investigates the data quality issue for

synchrophasor applications, and pays particular attention to

synchronization signal loss and synchrophasor data loss

events. First, the historical synchronization signal loss

events are analyzed and the potential reasons and solutions

are discussed. Then, the scenario of a small amount of

synchrophasor data loss is studied and a Lagrange inter-

polating polynomial method is used to adaptively estimate

the incomplete and missing data. The performance of

proposed method is demonstrated with simulation results.

Specifically, the proposed method considers the trade-off

between the estimation accuracy and the hardware cost,

and could be efficiently employed in reality.
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1 Introduction

In the past decade, an increasing number of syn-

chrophasor systems have been employed around the world,

and a variety of synchrophasor applications have been

implemented in power grids [1]. These synchrophasor

systems and applications make use of advanced informa-

tion and communication technologies (ICTs), such as the

global positioning system (GPS), phasor measurement unit

(PMU), phasor data concentrator (PDC), and high-speed

dedicated communications as shown in Fig. 1, with the aim

of enabling wide-area monitoring, protection and control

and enhancing the overall performance of power grids. To

realize these great potentials, efficient measurement and

communication systems are demanded [1–6].

However, the actual measurement and communication

systems inevitably involve data quality issues. For

instance, a measurement device may cause a data accuracy

issue because of device errors or timing signal loss [7], and

a communication link may induce data loss and latency

issues due to unintentional reasons (e.g., equipment mal-

functions and communication infrastructure limits) or

intentional cyber-attacks [8, 9]. These data quality issues

may impact or even disable certain application function-

alities. Consequently, a great deal of research effort in

academia and industry has been devoted to addressing the

data quality issue, especially the data accuracy, latency,

and loss issues.

First, the data accuracy issue primarily derives from

measurement equipment and devices, such as instrument

transformers and PMUs. Conventional instrument
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transformers have inherent limitations on high-voltage

measurement and isolation; while classic PMUs using

discrete-Fourier-transform algorithms have a low compu-

tational burden but their accuracy degrades in the presence

of frequency offsets and dynamic conditions. Accordingly,

advanced instrument transformers like electronic instru-

ment transformers [10, 11] and alternative PMUs using

sophisticated measurement algorithms [12–14] have been

developed. Those approaches greatly improve the syn-

chrophasor measurement accuracy under both steady-state

and dynamic conditions.

Second, for the data latency, the previous researches

primarily focus on three aspects 1) modeling the commu-

nication delay in theoretical and statistical perspectives,

such as constant modeling, stochastic modeling, and

bounded modeling [8, 15], 2) developing special protection

schemes and control strategies with the consideration of

latencies [15–19], and 3) optimizing the communication

infrastructure, like communication architecture, medium,

and protocols, and restricting the communication delay to

an acceptable range [20–25]. Those design and approaches

have been selectively used in wide-area protection &

control and other advanced applications.

Further, for the data incompleteness and missing,

numerous researches work on reducing the risk of data loss,

such as the ones enhancing communication performance in

terms of communication architecture, bandwidth, and

redundancy [21–27]. In addition, some researches deal with

the data loss issue in a positive way. For example, a pre-

dictive control strategy for wide-area damping control was

presented in [28] with the consideration of data loss and

other physical constraints, and a data reconstruction

method using the low-rank matrix completion approach

was provided in [29], in which way the lost data could be

partially recovered at a control center.

This work studies the data quality issue for syn-

chrophasor applications. In Part I, the data quality issue is

reviewed in a comprehensive way and in Part II the

potential reasons and solutions for the data quality issue are

investigated. Specifically, Part II pays particular attention

to synchronization signal loss and synchrophasor data loss

events. For the former, the historical timing signal loss

events are analyzed and the potential reasons and solutions

are discussed. For the latter, the synchrophasor data loss,

especially the scenario of a small amount of synchrophasor

data loss, is studied, and the possible estimation methods

like substitution, interpolation, and forecasting methods are

examined. The estimation methods can improve the accu-

racy and availability of synchrophasor measurements, and

mitigate the effect of data loss on synchrophasor

applications.

2 Synchronization signal loss

Accurate and reliable synchronization signals play a

critical role in synchrophasor systems. They provide the

common timing reference for data measurement and syn-

chronization, and largely determine the accuracy and

availability of synchrophasor data. However, according to

the statistics in Part I, a large number of PMUs and FDRs

experienced timing signal loss (i.e. GPS signal loss). The

potential reasons and solutions are explored in this section.

2.1 Potential reasons

Theoretically, the GPS signal availability, especially the

strength, might be affected by two factors: the weather and

the surrounding of GPS antennas.

The weather events primarily refer to the ionospheric

scintillation and solar radio burst, which can degrade GPS

signal performances [30]. In particular, the strongest scin-

tillation normally occurs at the equatorial regions. This

means more interference signals will be applied to the GPS

antenna located in the low latitude [31].

In order to investigate the impact of weather events on

GPS signal loss, two studies are performed. First, the

average yearly GPS-signal-loss events of the FDR from

2010 to 2012 are counted. As shown in Fig. 2, the GPS-

signal-loss events of all FDRs across North America are

depicted in the spatial manner, while no clear geological

PDC ApplicationsPMUs 

Regional networks Backbone networks Control centerGPS

Fig. 1 A typical synchrophasor system

Fig. 2 Spatial distribution of GPS signal loss in North America
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pattern is identified from the historical data. Second, the

average monthly GPS-signal-loss events of the FDR from

2010 to 2012 are calculated as shown in Fig. 3, and the

historical solar activities from 2010 to 2012 are reviewed

(it is reported that the largest solar activity happened on

March 7, 2012 00:24 UTC - the sun unleashed an X5.4-

class solar flare) [32]. By comparing the trend in Fig. 3 and

the trend in reference [32], no obvious relationship between

GPS signal loss and solar radio bursts is found. These two

studies imply that the overall GPS signal availability is not

significantly affected by the weather.

In addition, the GPS signal availability is also affected

by the surrounding of GPS antennas [33]. For example, an

FDR is usually installed indoor with a directional GPS

antenna instead of an omnidirectional GPS antenna. The

performance of the antenna or antenna reception may be

affected by the surrounding. For instance, whether the

antenna is installed near a window with an open view to the

sky, and whether the antenna reception is located nearby

the buildings or obstacle that frequently reflect or block

GPS signals.

2.2 Potential solutions

To improve the accuracy and availability of GPS sig-

nals, the performance of GPS receivers should be consid-

ered first. For instance, if a PMU uses an on board GPS

receiver, the PMU can parse the GPS signal strength

information, e.g., the number of locked satellites from a

GPS receiver, and further track the GPS signal strength;

and if a PMU uses GPS signals as synchronization signals,

the GPS signal strength can be enhanced through installing

omnidirectional antenna on the roof with the open sky.

Note that the antenna type will impact the GPS signal

availability. Directional antennas transmit and receive

signals in a particular direction, so they are generally

subject to a particular reception pattern (e.g., they would

lower the signal availability when the directional path is

affected). In contrast, omnidirectional antennas transmit

and receive signals in all horizontal directions, enabling

users to use the GPS antenna without concerning the

antenna’s reception pattern. Therefore, omnidirectional

antennas can improve reception in such terrains where

directional path would be affected.

Some emerging data analytics solutions can also

improve the timing accuracy of synchrophasor measure-

ments. For the lost or drifted timing signals, the context

data in the time range with available and accurate timing,

or the data from other units, can help reconstruct the

missing information. Data interpolation and data realign-

ment tools also provide the possibility to patch the times-

tamp or shift the data back to its correct position [34].

Moreover, since the availability of GPS signals is dif-

ficult to be guaranteed, some backup synchronized timing

sources can be used, such as network time protocol (NTP),

e-Loran, and chip scale atomic clock (CSAC). Several

backup synchronized timing technologies have been

employed for synchrophasor measurement. It is demon-

strated that they provide ultra-high timing accuracy and

reliability to meet IEEE Standards [7], [35–37].

3 Synchrophasor data loss

As discussed in Part I, a number of synchrophasor

applications (e.g., Class-A applications) prefer accurate

and complete synchrophasor data. The data loss issue may

lower and even disable the performances of certain syn-

chrophasor applications [4]. The incomplete or missing

data can make the power grid unobservable and vulnerable,

and even aggravate the cascading effects in large-scale

blackouts [28], [38]. PMU Application Requirements Task

Force at North American Synchrophasor Initiative

(NASPI) has been working on standardizing and quanti-

fying the requirements of synchrophasor applications

[39].

To address the data loss issue, several advanced data

recovery techniques were proposed in the literature

[25, 29]. Those data recovery techniques are applicable for

off-line applications but indeed costly for the majority of

real-time applications. Moreover, as discovered in Part I,

about 95% data loss events involve only one to three lost

packages and a large amount of data loss is a small prob-

ability event. Hence, this paper focuses on the scenario of a

small amount of package losses, and examines a set of

estimation methods to mitigate the corrupted and missing

data, including substitution, interpolation, and prediction.

3.1 Lagrange interpolating polynomial method

Currently, there is no standardized method to address

the issue of synchrophasor data loss. Most commercial
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Fig. 3 Temporal distribution of GPS signal loss from 2010 to 2012

Data quality issues for synchrophasor applications… 355

123



PDCs use the substitution method, in which the lost data

are simply set to zero. Obviously, this method will lower

the data accuracy and completeness. One alternative

method is interpolation, and a Lagrange interpolating

polynomial method is presented below [40].

In general, the Lagrange polynomial L(x) passes through

a set of given data points (x1, y1) = f(x1), (x2, y2) = f(x2),

…, (xn, yn) = f(xn), and other points can be approximatively

calculated with

LðxÞ ¼
Xn

j¼1

yj � ‘jðxÞ ¼
Xn

j¼1

yj �
Yn

k¼1
k 6¼j

x� xk

xj � xk
ð1Þ

where ‘jðxÞ is the coefficient in the Lagrange

polynomial.

Considering the trade-off between algorithm accuracy

and hardware-cost, n is selected as 3 and (1) can be

rewritten as the quadratic interpolation in (2).

LðxÞ ¼ y1
ðx� x2Þðx� x3Þ
ðx1 � x2Þðx1 � x3Þ

þ y2
ðx� x1Þðx� x3Þ
ðx2 � x1Þðx2 � x3Þ

þ y3
ðx� x1Þðx� x2Þ
ðx3 � x1Þðx3 � x2Þ

ð2Þ

The first case assumes only one synchrophasor package

is lost. The simple lost data can be estimated with the

quadratic interpolation in (2). Also, since only three points

are required in the estimation, the lost data can be further

estimated with the weighted interpolation. For instance, the

lost point v4 as shown in Fig. 4a can be calculated with (2)

in the following ways

v̂4j1;2;3 ¼ v1 � 3v2 þ 3v3 ð3Þ

v̂4j2;3;5 ¼ � 1

3
v2 þ v3 þ

1

3
v5 ð4Þ

v̂4j3;5;6 ¼
1

3
v3 þ v5 �

1

3
v6 ð5Þ

v̂4j5;6;7 ¼ 3v5 � 3v6 þ v7 ð6Þ

v̂4 ¼ c1v̂4j1;2;3 þ c2v̂4j2;3;5 þ c3v̂4j3;5;6 þ c4v̂4j5;6;7 ð7Þ

where c1, c2, c3 and c4 are the coefficients in the weighted

interpolation. The average weights are used here since their

practicality and simplicity.

The special condition as depicted in Fig. 4b is consid-

ered, in which the first or last package in a dataset is lost. In

this case, the estimates can be calculated with the poly-

nomial extrapolation in (8) and (9), respectively.

v̂1 ¼ 3v2 � 3v3 þ v4 ð8Þ
v̂7 ¼ v4 � 3v5 þ 3v6 ð9Þ

The second case considers the continuous package loss

and the lost data can be estimated with the extrapolation as

well. For instance, the three points as shown in Fig. 4c are

lost and they can be recursively estimated as follows

v̂4 ¼ v1 � 3v2 þ 3v3 ð10Þ
v̂5 ¼ v2 � 3v3 þ 3v̂4 ð11Þ
v̂6 ¼ v3 � 3v̂4 þ 3v̂5 ð12Þ

Note that the extrapolation assumes the data are smooth

and performs poorly for the dramatically changing data.

Also, a maximum package loss amount is normally preset

in power system engineering, and an alarm will arise when

the actual package loss number exceeds the maximum

amount.

In addition, the practical synchrophasor package may be

lost discontinuously and randomly, and they can be com-

pensated with the interpolation and extrapolation collec-

tively. A simple example is presented in Fig. 4d and the

discontinuous points can be calculated as follows

v̂3 ¼
1

3
v2 þ v4 �

1

3
v5 ð13Þ

v̂6 ¼ v̂3 � 3v4 þ 3v5 ð14Þ
v̂7 ¼ v4 � 3v5 þ 3v̂6 ð15Þ

Here, the 3nd point in Fig. 4d can be further estimated

with the weighted interpolation, in which the estimation

accuracy is expected to improve. Also, the estimation

errors in above estimations are unavoidable and can be

expressed as

EðxÞ ¼ f ðxÞ � LðxÞ ¼ f ðnÞðnÞ
3!

�
Y3

k¼1

ðx� xkÞ ð16Þ

Further, for the current and voltage with harmonics as

vk ¼ v0 þ
P1

h¼1

vhsinðhxt þ uhÞ the related estimation error

can be written as

k1 2 3 4 5 6 7

k1

v(k)

2 3 4 5 6 7

k1

v(k)

2 3 4 5 6 7

k1

v(k)

2 3 4 5 6 7

v(k)

(a) (b)

(c) (d)

Fig. 4 Synchrophasor data loss with different conditions
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EðtÞ� x3

3!

X1

h¼1

ðvhh3Þ
Y3

j¼1

ðt � tjÞ
�����

����� ð17Þ

Typically, for the rate of change of frequency (ROCOF)

or frequency measurement, its accuracy is evaluated with

absolute errors (e.g., frequency error Hz or ROCOF error

Hz/s), while for the phasor measurement, its accuracy is

evaluated with the total vector error (TVE) as

TVEðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX̂rðnÞ � XrðnÞÞ2 þ ðX̂iðnÞ � XiðnÞÞ2

ðXrðnÞÞ2 þ ðXiðnÞÞ2

s

ð18Þ

where Xr(n) and Xi(n) are the sequences of theoretical

values of the input signal at the instant of time (n), and

X̂rðnÞ and X̂iðnÞ are the sequences of estimates. The TVE of

P class and M class PMUs is required to be less than 1% in

steady-state in IEEE Standard C37.118.

3.2 Forecasting method

In addition to the substitution and interpolation, the

prediction is also widely used in data estimation [41, 42].

Here, the synchrophasor data are viewed as an observed

time series driven by a stochastic process and represented

by a state equation and a measurement equation as follows:

xkþ1 ¼ Akxk þ Bkxk ð19Þ
yk ¼ Ckxk þ Dkvk ð20Þ

where xk?1 is the state that characterizes the measurement

yk; it is a variable of the time series determined by the

previous state xk and the noise term xk introduced at each

k. Ak, Bk, Ck and Dk denote the corresponding

coefficients.

The unknown system parameters hk = {Ak, Bk, Ck, Dk}

and states {xk} can be estimated through a finite set of

received signal measurement data {y1, y2, …}. Also, the

parameters in (19) and (20) are estimated using the pre-

diction error minimization (PEM) algorithm here, with the

objective of minimizing prediction errors. The PEM

updates the measurement set every time when the new

measurement comes in, such that the whole model is

updated with the new measurement set to keep up with

time-varying parameters [42]. The PEM algorithm esti-

mates the system parameters by minimizing a least square

cost function as follows:

min JN ¼ min
1

N

XN�1

k¼0

kyk � ŷkk
2
2 ð21Þ

When the lost synchrophasor data are treated as the

synchrophasor data in future, they can be recursively

predicted on the basis of the previous states and estimated

parameters. In particular, the PEM algorithm employs a

finite number of stored measurements for the next

prediction where the store size can be chosen as small as

the algorithm has a solution. Thus, different from the

widely used artificial neural networks based prediction

approaches which require large historical data for data

modeling and training [43], the presented prediction

method results in acceptable hardware cost and it is

applicable for the data estimation of on-line applications

[4, 9, 39].

4 Simulation results

In order to demonstrate the performance of the proposed

methods, the simulation with MATLAB is performed here.

Because the power system data may vary regularly in

normal operation but dramatically change in a fault or

disturbance, the real PMU data in a fault event are used as

inputs as shown in Fig. 5. Because of the limited space,

three groups of twenty samples are selected from the pre-

fault, in-fault, and post-fault states in Fig. 5 and further

used as the test data as shown in Fig. 6.

4.1 Substitution and interpolation based estimation

The substitution and the interpolation based estimation

methods are tested. First, three sets of twenty samples in

Fig. 6 representing the different conditions in power grids

are used as test inputs. Then, the 5th, (5th, 6th), (5th, 6th,

7th), …, (5th, …, 14th) samples are manually set lost, and

the proposed weighted interpolation method with different

times of estimation (e.g., two times and three times of

estimation) is applied to estimate the lost data. The corre-

sponding simulation results are presented in Fig. 7.

Note that this paper focuses on the scenario of a small

amount of synchrophasor data loss and the simulation

studies the scenario of one to ten continuous package los-

ses. The twenty samples are good enough for the maximum

continuous package losses.

For the substitution, the lost sample is treated as ‘‘zero’’

and its TVE sharply increases to 100%. Hence, the
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continuous data loss will lower the accuracy of syn-

chrophasor data and even lead to the malfunction of certain

synchrophasor applications [4].

For the interpolation, it is observed that in the pre-fault

and post-fault states, the lost data can be efficiently esti-

mated (TVE \1%), whereas in the faulty state, the esti-

mation error is acceptable only in the scenario of one or

two continuous package losses.

Moreover, the estimation accuracy is improved by the

weighted interpolation, e.g., the three times estimation

generally presents lower TVE than the one time estimation.

The estimation accuracy is also affected by the nature of

synchrophasor data, e.g., the TVE of the scenario of nine

continuous data loss in Fig. 7b suddenly drops to 1% since

the data changes gently in this field. Therefore, the pro-

posed interpolation method can adaptively estimate the

missing data in different conditions, and the estimation

results are acceptable in the scenario of the small amount

of data loss.

Further, the proposed Lagrange interpolating polyno-

mial algorithm only includes simple addition and multi-

plication as shown in (2)–(15), which can be embedded in a

lookup table. Thus, the proposed interpolation method can

be efficiently employed in a PDC in practice.

4.2 Prediction based estimation

The perdition method with the same inputs in Fig. 6b, c

is tested as well. It is observed from the simulation results

in Figs. 8 and 9 that the prediction method can estimate the

lost data with high accuracy, while a bit high prediction

error still exists in the scenario of continuous data loss and/

or dynamic data changes.

For example, for the voltage angle values in Fig. 8b, d,

the high prediction accuracy is obtained for the voltage

angle varying in a small range whereas the high prediction

errors happen to certain voltage angles dynamically

changing.
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According to the above analysis, a brief review of the

three estimation methods is provided in Table 1. The

interpolation method presents comparable estimation

accuracy as the prediction method but requires less hard-

ware cost. Therefore, the interpolation method achieves the

trade-off between accuracy and complexity. It is favorable

for the estimation of the corrupted and missing syn-

chrophasor data.

5 Conclusions

A number of synchrophasor applications prefer accurate,

complete, and timely data, and their performances may be

impacted or even disabled due to data quality issues. This

paper investigates the data quality issue for synchrophasor

applications and pays particular attention to the synchro-

nization signal loss and synchrophasor data loss events.

First, the historical synchronization signal loss events

are analyzed, and the potential reasons and solutions are

discussed. It is found that a large number of PMUs and

FDRs experienced GPS signal loss, and this issue might get

worse under the bad weather and surrounding. It is

advantageous to optimize the location of GPS antennas and

deploy advanced ICTs and backup schemes.

Second, the issue of synchrophasor data missing and

incomplete is studied. For the off-line applications, the

missing data can be processed in the control center with

advanced information recovery techniques; while for the

real-time applications, the incomplete data normally are

directly delivered to the applications, which is unfavorable

for certain applications.

Further, it is observed from the statistics in Part I that

about 95% data loss events involve only one to three lost

packages. Hence, this paper focuses on the scenario of a

small amount of synchrophasor data loss and proposes the

estimation method with Lagrange interpolating polynomial

algorithms. Compared with the substitution and the pre-

diction methods, the interpolation method can estimate the

lost data in diverse conditions adaptively and achieve the

trade-off between accuracy and complexity. Moreover, the

interpolation method requires simple calculations only, and

thus can be embedded in a lookup table and employed

efficiently in a practical PDC.

Table 1 Brief review of the three estimation methods

Estimation method Substitution Interpolation Prediction

Accuracy Low High High

Speed Ultra-fast Very-fast Fast

Complexity Low Medium High
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Fig. 8 Simulation results of the prediction method
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Future works may include the optimization of the

interpolation method (e.g., the coefficients) and the

implementation of the data estimation method in real

PDCs.
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