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1. INTRODUCTION

The problem of tracking objects over time is a complex one
in computer vision and has been an important topic of re-
search over the last few years. Such importance comes from
the fact that object tracking enables important applications
in areas such as security and surveillance (e.g., tracking peo-
ple in restricted areas using security cameras), content man-
agement (e.g., in video abstraction to automatically anno-
tate video content), content improvement (e.g., helping sta-
bilize images in handheld mobile videophones by tracking
the location of faces), human-machine interface (e.g., to au-
tomatically recognize hand gestures to automatically execute
commands), interactive gaming, and so forth. Requirement
constraints such as reliability and computational complex-
ity characterize the boundary conditions for a successful and
target-platform-suited solution.

The detection and spatial localization of objects, in par-
ticular faces, has been broadly investigated [1, 2]. While
tracking identified objects throughout uncompressed video
sequences, the objects’ spatial properties may be used (e.g.,
colour, shape, texture, etc.) since it can be expected that they
will vary a little from frame to frame. The information is
thus represented in a way suited to easily track the objects.
However, in compressed video sequences (such as MPEG-1
or MPEG-2), available information may not express directly
the objects’ spatial properties and thus, renders the tracking
procedure more difficult. In addition, the type of informa-
tion that is available actually varies from frame to frame—
for example MPEG-1 or MPEG-2 video sequences are typ-
ically comprised of I-, P-, and B-frames, each with its own

set of parameters. In this paper we describe an object track-
ing solution that uses only compressed parameters available
in MPEG-1 or MPEG-2 video sequences while performing
only the minimal decoding necessary to retrieve them from
the compressed video streams.

Few algorithms exist that are able to perform object
tracking in the compressed domain. In [3, 4] the proposed
object tracking algorithms use forward motion vectors to
track objects between a reference (I- or P-) frame and a P-
or B-frame (where this kind of motion vectors are avail-
able). In order to track an object, it is first defined as a set
of macroblocks in the reference frame. However, the for-
ward motion vectors are available only in the P- or B-frame
where the object is being tracked to. So, the object’s dis-
placement from the reference frame to the P- or B-frame
is determined by computing the mode of the forward mo-
tion vectors of the macroblocks at the same positions (in
the latter frame) as those that define the object (in the ref-
erence frame). Although simple and not at all computation-
ally complex, this solution is only reliable whenever motion
is not strong or when motion is uniform over the entire
frame.

In [5], an object is represented by a set of macroblocks
in the reference frame. Each forward motion vector in the
current (P- or B-) frame is “projected” in the reference frame
and it is determined if it does or does not “hit” any mac-
roblock that comprises the object. Afterwards, a k-means
clustering algorithm is used to determine clusters of motion
vectors that may represent possible object displacements. Al-
though robust, this technique is considerably complex and
computationally expensive.


https://core.ac.uk/display/81746756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EURASIP Journal on Applied Signal Processing

In the algorithms proposed in [6-9], objects can only be
tracked to P- and I-frames, but not to B-frames.

The object tracking algorithm proposed in this paper
performs the tracking of objects that are detected and located
throughout a group of pictures (GOP) by means of available
compressed domain data. We will describe a tracking solu-
tion based solely on the use of forward and backward motion
vectors. A smart weighting and averaging strategy of relevant
motion vectors has been proven to be sufficiently reliable for
the purpose at hand. Additionally, the solution’s computa-
tional complexity is extremely low enabling the implemen-
tation on platforms with very strict computational capacities
such as mobile and stationary consumer devices. Although
the proposed algorithm allows the tracking of generic ob-
jects, it will be described in the context of a face tracking
system where the objects being tracked correspond to faces.
Faces are detected in I-frames with a compressed domain face
detector which is also briefly described.

The organization of this paper is as follows: the next sec-
tion describes the face tracking algorithm; Section 3 evalu-
ates the algorithm’s computational complexity and the algo-
rithm’s performance; and the paper concludes with Section 4.

2. THE FACE TRACKING ALGORITHM

The face tracking algorithm proposed in this paper aims to
determine the presence and location of faces in all frames of
compressed video sequences where a specific type of com-
pressed domain data is available. Naturally, the type of infor-
mation available differs according to the type of frames where
faces are being located: while in I-frames only DCT informa-
tion is available, in P- and B-frames, the type of information
available consists mainly of motion vector information. For
this reason, the tracking procedure differs according to the
frame type.

The proposed face tracking algorithm is illustrated in
Figure 1; in the figure, the location of one face (represented
with a dark solid rectangle) is determined over a sequence of
frames in a compressed video sequence. In I-frames, where
DCT information is available, the presence and location of
faces is determined based on the frame’s colour and lumi-
nosity (as provided by the DC coefficients) and frequency
(as provided by AC coefficients) properties. In all remaining
frames, all detected faces are tracked based on the properties
of existing motion vectors.

Since in the P- and B-frames available information typi-
cally consists of motion vector information, motion-vector-
based object tracking is performed to determine the location
of previously detected faces.

2.1. Face detection in the compressed domain

The compressed domain face detection algorithm proposed
in this paper uses a feature analysis-based approach to deter-
mine the presence and location of multiple frontal and ro-
tated faces. This procedure is based purely on compressed
domain information available in I-frames of MPEG-1 or

Face location determined by the object tracker

Face location determined by the face detector

FiGure 1: The face tracking algorithm: the object’s location in P-
and B-frames is determined using FODD and BODD techniques.

MPEG-2 video sequences (or in JPEG still images). The un-
derlying assumption behind the feature analysis-based ap-
proach is that properties or features exist that are invariant
from face to face. Thus, by detecting specific features such as
skin colour and facial features, the presence and location of
faces can be determined.

The diagram in Figure 2 represents an overview of the
face detector’s architecture and each of the algorithm’s steps.
In the figure, an example of the input and output of each step
is illustrated.

The face detector’s input corresponds to some AC coeffi-
cients and to all DC coefficients taken from the compressed
image where detection is to be performed. In order to make
the face detection algorithm as robust and independent as
possible of the image or video capturing conditions, auto-
matic contrast adjustment is applied to each input DC image.
Afterwards, skin colour segmentation is applied to the DC
colour image resulting from the contrast adjustment stage
by determining the Mahalanobis distance [10, 11] between
each pixel’s value in the DC image and a skin colour model.
This skin colour model is built beforehand from the statisti-
cal properties, in the normalized RGB colour space, of a large
set of manually segmented faces. A binary closing operation
with a 3 X 3 square structuring element, followed by a hole
filling operation are applied on the binary image that resulted
from the segmentation stage; these binary morphological op-
erations are applied to ensure that in most cases a face is com-
pletely covered by a binary mask, without any holes in it. An
algorithm to label binary connected regions is then applied
in order to identify connected regions in the image.

It is known that among all facial features, the eyes/eye-
brows and the mouth are the most prominent for face de-
tection, recognition, and pose estimation [11-13]. Therefore,
a series of image processing operations are applied in order
to enhance the location of these facial features in the image
such that existing faces may be located. The facial features’
brightness properties are explored by computing grey scale
dilated and eroded images from the contrast adjusted lumi-
nosity component of the input image. On the other hand,
the facial features’ variance properties are explored using fre-
quency information provided by some AC coefficients. Tak-
ing into account the knowledge that specific sets of DCT-AC
coefficients represent certain directional variations in the im-
ages [14], AC energy maps are built to emphasize the location
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F1GURE 2: Face detector algorithm’s architecture and examples of the input and output of each of the algorithm’s steps.

of specific facial features. The vertical AC energy map, illus-
trated in Figure 2, is built from the AC coefficients indicated
in Figure 3(a) and highlights regions of the image that have
high vertical variance; on the other hand, the horizontal AC
energy map also illustrated in Figure 2 is built from the coef-
ficients indicated in Figure 3(b) and highlights regions with
high horizontal and diagonal variance.

Finally, a feature map is built calculating for each position
in the feature map matrix the following value:

dilated(x, y)

feature map(x, y) = W

(1

vertical energy map(x, y) + 1
horizontal energy map(x, y) +1°

The first fraction in (1) enhances dark locations surrounded
by bright areas (a similar equation is used in [11] to deter-
mine the location of the eyes in uncompressed images). The
second fraction enhances regions with a high vertical vari-
ance and with a low horizontal variance thus highlighting
the presence of facial features (e.g., eyes, eyebrows, mouth)
and de-emphasizing locations like the sides of the face (which
may as well have high horizontal variance).

In order to determine the location of faces that may ex-
ist in each skin colour region previously identified, the loca-
tion of facial features is first determined. Facial features are
identified directly from the feature map simply by projecting
its values on vertical and horizontal axis (a similar technique
was used in [12]). Face candidates representing possible lo-
cations of faces in the image can now be determined for each
skin colour region. These candidates are generated from the
location of the features determined from the feature map,
according to a model of typical frontal and rotated human
faces. Finally, face candidates are ranked after computing a

relevance value to determine which best represents a face.
Relevance determination will be based on the size of the face
candidate, the face candidate’s percentage of skin colour pix-
els and the face candidate’s facial features intensity in the fea-
ture map. After computing the relevance of all generated face
candidates for each individual skin colour region, the best is
determined by choosing the one with the highest relevance
for each individual skin colour region.

The face detection algorithm presented here is described
in higher detail in [15, 16].

2.2. Object tracking

As explained before, object tracking is used in the face track-
ing system to determine, in P- and B-frames, the location
of previously detected faces. This tracking procedure is per-
formed using only compressed domain information—in this
case, motion vector information available in macroblocks in
these frames.

However, a different type of motion vector informa-
tion may be available according to the type of frames the
objects are being tracked to. In fact, in P-frames only for-
ward motion vector information may be available (indicating
the prediction of the frame’s macroblocks in past reference
frames); in B-frames, both forward and backward (indicating
the prediction of the frame’s macroblocks in future reference
frames) motion vector information may be available. For this
reason, the tracking procedure varies, according to the type
of motion vector information being used: when using back-
ward motion vector information, objects are tracked using a
backward object-displacement determination technique (as
represented by BODD in Figure 1)—backward motion vec-
tors are used to determine the object’s displacement from a
B-frame to a future reference P-frame; when using forward
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FIGURE 3: Set of AC coefficients for (a) vertical and (b) horizontal and diagonal variance.

motion vector information, objects are tracked using a for-
ward object displacement determination technique (as rep-
resented by FODD in Figure 1)—forward motion vectors are
used to determine the object’s displacement from a previous
reference (I- or P-) frame to a B-or P-frame. Both techniques
are described in the following.

2.2.1. Backward object displacement determination
Defining SMB as the set of macroblocks (MBs) that comprise
the object let SM'V represent the set of backward motion vec-
tors (BMVs) corresponding to the macroblocks that define
the object,

SMV = {MVy,...,MV,}, )

where 7 is the number of macroblocks that define the object
being tracked. If this set is empty (n = 0), meaning that no
BMVs exist for the MBs that comprise the object, no object
displacement vector can be determined and the face cannot
be tracked further.

Let a motion vector be defined by its x- and y-compo-
nents, that is,

MV = (MVx,MVy). (3)

The sets SMVx and SM'V y can now be defined, representing
the set of x- and y-components, respectively, for the motion
vectors corresponding to the macroblocks that comprise the
object being tracked:

SMVx = {MVxi,...,MVx,},

(4)
SMVy = {MVy,...,MVy,}.

In order to determine the object’s displacement, a displace-
ment vector is determined from the mean information asso-
ciated with the set of the object’s backward motion vectors.
The mean backward displacement vector, DViean, is a
vector whose x- and y-components are determined as the

average! of the x- and y-components of the motion vectors
taken from the SMVx and SMV y defined before, that is,

DViean = (DVx,DVy) (5)
with
n . . "MV
DVX _ szliwvxl’ V}/ — Zl—ln }’z’ (6)

where MVx; and MV y; are the ith values of the SMVx and
SMV y sets defined before.

If the objects are not moving, the mean backward dis-
placement vector will have both components equal to zero
and the tracking algorithm will simply indicate the same
location as indicated in the previous frame—the algorithm
should not fail to track faces when they are not moving.

Although the proposed algorithm is not used to track ob-
jects to I-frames (since object—in this case, face-detection
takes place in those frames), it should be noted that the back-
ward object displacement determination technique just de-
scribed could be used to determine the object’s displacement
from a B-frame to a future reference I-frame—in case no
detection algorithms were available, the proposed solution
would be much less computationally complex than the tech-
nique proposed in [6] where block matching is needed in or-
der to extract motion features for the I-frames.

Additionally, it should be noted that the computation of
displacement vectors from backward motion vectors actually
increases the tracking algorithm’s robustness to strong mo-
tion: by allowing for an object’s position in a P-frame to be
determined from a B-frame rather than from a previous P-
or I-frame, the number of frames between the frame where
the object is being tracked from to the frame where the object
is being tracked to can be much smaller. This enhancement
will be particularly noticeable in sequences where between

! Besides the average, the mode and the median information were also com-
puted. Experiments have shown, however, that using the average will yield
the best results.
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each reference (I- or P-) frame, a relatively high number of
B-frames exist (e.g., I BB B P B B B...)—in this case, the P-
frame is distant from the previous reference frame and thus,
the motion vectors may not be able to correctly express an
object’s motion, especially if the motion is strong.

2.2.2. Forward object displacement determination

For each macroblock in a P- or B-frame, a forward motion
vector may exist to indicate the prediction of the location
of that macroblock in a previous I- or P-frame. In the pro-
posed object tracking algorithm, forward motion vectors are
used to track objects to B-frames; additionally, they can be
used to track objects to P-frames in case backward object-
displacement determination techniques are not being used
or in case no backward motion vectors exist that allow the
object to be tracked from a B-frame to a P-frame. In any case,
forward motion vectors allow for an object’s displacement
from an I- or P-frame to a B- or P-frame to be determined.

The object may be defined as a set of macroblocks in pre-
vious reference I- or P-frames. However, (forward) motion
vector information is only available for macroblocks in the
current frame. On the other hand, the object can only be
tracked from the previous reference frame to current frame
if the macroblocks—which comprise it—have some kind of
motion information that predicts in some way their location
in the current frame. Because the motion information is not
readily available, the problem of determining a displacement
vector using forward motion information is much different
from that found while determining a displacement vector us-
ing backward motion vector information (as described in the
previous section).

The displacement vector will also be determined from
a set of motion vectors. However, since motion vector
information—relating the frame where the object is being
tracked from to the frame where the object is being tracked
to—is available only in the latter, forward motion informa-
tion needs to be somehow “projected” to the reference frame.
In other words, each macroblock that defines the object in
the reference frame will need a kind of motion vector that
indicates its “backward” prediction in the current frame. For
that purpose, a forward motion vector map is built for the
reference frame, based on which the forward object’s dis-
placement vector will be determined. This forward motion
vector map consists of a set of lists, built for each macroblock
in the reference frame. Each one of these lists corresponds
to a set of inverted forward motion vectors (IFMVs) repre-
senting the backward prediction of a reference frame’s mac-
roblock in the current frame and an associated “confidence”
value for that prediction.

Following the nomenclature used in Figure 4, the for-
ward motion vector map determination procedure will now
be explained.

A macroblock i is defined by the x- and y-coordinates of
its leftmost and topmost pixel, M Bx; and MBy;, respectively

MB; = (MBx;, MBy;) (7)

MBR; (\MB!

MB;

Current
(P- or B-) frame

Past reference
(I- or P-) frame

FIGURE 4: Forward motion vector map determination.

and by its dimensions which are constant and correspond to
16 luminance pixels of both width and height.?

Let MV; represent the forward motion vector of mac-
roblock 7 in the current (P- or B-) frame,

MV,‘ = (MVX,‘,MV)/,‘), (8)

where M Vx; and MV y; are its x- and y-components, respec-
tively.

Using the forward motion vector MV; from the cur-
rent frame, macroblock i can be “projected” to the reference
frame simply by shifting that macroblock’s position by the
corresponding forward motion vector. Let MB;’ represent
the projection of macroblock i in the reference frame,

MB,‘P = (MBxi + MVX,‘,MB}/,‘ + MV)/l), (9)

and let MBR;represent a macroblock j in the reference frame
that is overlapped by the projection of macroblock #* in the
reference frame, such that

MBR; N MB # ¢ (10)

with MBR; defined by the coordinates of its leftmost topmost
pixel,

MBR; = (MBRx;, MBRy;). (11)
j j Vi

Now, let IMV; represent the inverted forward motion vector
of a current frame’s macroblock i overlapping macroblock
MBR; in the reference frame

IMV; = (IMVx;,IMVy;, OP;) (12)

2 The macroblocks’ dimensions for the chrominance components can be
different: if subsampled horizontally by 2, each macroblock’s width will
correspond to 8 pixels; if subsampled vertically by 2, each macroblock’s
height will correspond to 8 pixels.

3 A minimum of one and a maximum of four macroblocks in the reference
frame may be overlapped by the projection of a macroblock from the cur-
rent frame to the reference frame.
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FIGURE 5: (a) Projection of four current frame’s macroblocks on a past reference frame; (b) inverted forward motion vectors determined for
the reference frame macroblock indicated in (a) and its corresponding backward predictions on the current frame.

with
IMVXj = —MVx,-, IMV)/]‘ = —MV}/,‘,

13
OP; = area(MBR; N MB;?), (13)

where IMVx; and IMV y; represent the x- and y-compo-
nents of the inverted forward motion vector from mac-
roblock i and OP; represents the overlap percentage value
indicating “how much” of the projected macroblock MB;*
overlaps MBR;.

Figure 5(a) illustrates the projection of four macroblocks
from the current frame to a past reference frame; associated
with each of these macroblocks is a forward motion vector—
as can be seen, the macroblock in the reference frame indi-
cated with the black dotted square is overlapped by four pro-
jections. Figure 5(b) illustrates the list of inverted forward
motion vectors determined for that macroblock in the ref-
erence frame—since more than one projection overlapped
the macroblock (as in Figure 5(a)), more than one inverted
forward motion vector exists for that reference frame mac-
roblock; these inverted forward motion vectors thus indi-
cate an estimate of the (backward) prediction of the reference
frame macroblock in the current frame.

A complete forward motion vector map will consist of
a list of inverted forward motion vectors, like those defined
in (12), for each macroblock in the reference frame—the list
of inverted forward motion vectors for the macroblock M B
in Figure 5(b) corresponds to the set of inverted forward mo-
tion vectors and the associated overlap percentages, indicated
as SIM V.

For each of these macroblocks, the list of inverted for-
ward motion vectors may have more than one element since
more than one macroblock in the current frame could have
had a projection overlapping the same macroblock in the

reference frame. Like described before, associated with each
inverted forward motion vector, is an overlap percentage
value indicating “how much” of the macroblock was over-
lapped by the current frame projected macroblock to which
the inverted motion vector corresponded. It follows naturally
that the higher the overlap percentage value is for an inverted
motion vector, the more likely it will be that the vector in-
dicates a good backward prediction for that macroblock in
the current frame. On the contrary, a low overlap percent-
age value associated with an inverted forward motion vec-
tor will give no guarantee whatsoever about the “quality” of
the backward prediction for that macroblock in the current
frame. This overlap percentage value thus indicates a “con-
fidence” value regarding the backward prediction of a given
macroblock in the reference frame.

The displacement of an object from the reference frame
to the current frame can now be determined from the set of
inverted forward motion vectors. Defining the object as a set
of macroblocks in the reference frame, the set of inverted for-
ward motion vectors from where the object’s displacement is
computed corresponds simply to the union of the sets of in-
verted forward motion vectors, SIM Vi, for each of the mac-
roblocks that comprise the object.

Let SMB represent the macroblocks that define the ob-
ject in the reference frame. Now, let SIM V represent the set
of inverted forward motion vectors for macroblock k in the
reference frame,

SIMVi = {IMVi1, ..., IM Vi kmax }» (14)

where IMViwas defined before, in (12) and kmax corre-
sponds to the number of inverted forward motion vectors
that macroblock k has in its list in the forward motion vector
map.
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TaBLE 1: Face detection and face tracking algorithms’ complexity.
Face detection Face tracking
Resolution MIPS Mcycle/s MIPS Mcycle/s
PAL D1 7.53 20.95 9.22 25.95
VGA 5.58 15.52 6.83 19.22
SIF 1.53 4.27 1.88 5.29

A global set of inverted motion vectors for the entire ob-
ject, SIMV, can now be built from the union of the sets
SIM V. for the various macroblocks that define the object in
the reference frame,

SIMV = | JSIMV,, V., :MB,, € SMB. (15)
m

Situations may occur where no inverted forward motion vec-
tors exist in the global set SIM V. This situation occurs if the
macroblocks in the current frame have no forward motion
vectors. In this case, no forward object displacement can be
determined, the object’s location in the current frame cannot
be determined and naturally faces cannot be tracked further.

In order to determine the object’s displacement, a dis-
placement vector is determined from the mean* information
of the global set of inverted forward motion vectors, SIMV.
The mean inverted forward displacement vector, D Viyean, 1S
a vector whose x- and y-components are determined as the
average of the x and y component values from the global set
SIMV defined before, weighted by the corresponding over-
lap percentage values, that is,

IDViean = (IDVx,IDV y) (16)
with
— > IMVx, - OP,
IDVx = qmax 0 >
g1 OPq
(17)
qmax
N i1 IMVy, - OP
IDV)/ = tL qmax 24 q)
q=1 OPq

where qmax is the number of inverted motion vectors in the
global set SIMV, and IMVx, and IMV y, represent the x-
and y-components, respectively, of the gth inverted forward
motion vector in SIM V. OP, represents the overlap percent-
age value associated with the gth inverted forward motion
vector in SIMV.

As explained, the overlap percentage value provides an
indication of the “confidence” associated with the predic-
tion of a reference frame’s macroblock in the current frame.
Therefore, by weighting the average with this overlap per-
centage value, inverted forward motion vectors with higher

4 Besides the mean, the mode and the median information were also com-
puted from the set of inverted forward motion vectors. Experiments have
shown, however, that using the mean computation will yield the best re-
sults.

“confidence” will weigh more in the computation of the ob-
ject’s displacement vector whereas lower “confidence” mo-
tion vectors will influence the displacement vector’s compu-
tation less.

Again, if the objects are not moving, the mean inverted
forward displacement vector will have both components
equal to zero and the tracking algorithm will simply indicate
the same location as indicated in the previous frame—the al-
gorithm should not fail to track faces when they have stopped
moving.

3. COMPUTATIONAL COMPLEXITY AND
PERFORMANCE ANALYSIS

In order to determine the face tracking algorithm’s computa-
tional complexity, that is, the required number of instruc-
tions per second, face tracking (comprising both the face
detector and the object tracker) is considered to be applied
on an ARM9-based platform, performing real-time track-
ing across all frames of an MPEG-2 video sequence, with a
frame rate of 25 frames per second and a GOP size of 6. The
face detection (alone) and face tracking algorithms’ com-
putational complexities—measured in millions of instruc-
tions per second (MIPS) and in millions of cycles per sec-
ond (Mcycle/s)—are indicated in Table 1. As it can be eas-
ily seen, the face detection algorithm alone is extremely in-
expensive, being able to detect and locate faces in I-frames
of compressed video sequences. With a small increase (ap-
proximately 25% for PAL D1 resolution) of complexity, the
complete face tracking algorithm (face detection and object
tracking) is able to determine the location of faces in all
frames of compressed video sequences. The proposed algo-
rithms are thus extremely inexpensive and adequate for use
in low-performance CE devices, using less than 10% of an
ARMY processor’s capacity for face tracking in frames with
VGA resolution.

In order to analyse the algorithm’s tracking performance,
tests were performed on two home-video sequences—in-
doors and outdoors. The sequences were captured under dif-
ficult and heterogeneous light conditions. The subjects were
recorded with frontal and nonfrontal poses and with differ-
ent facial expressions, a variety of hairstyles, and some of the
subjects had a beard and glasses. Both sequences were en-
coded in MPEG-2 with a GOP size of 6. A face is consid-
ered to be detectable if it is tilted below an angle of 20 de-
grees, rotated below an angle of 80 degrees and if most of
the face’s colour corresponds to skin colour.

In order to evaluate the face tracking algorithm’s perfor-
mance, a loose location criterion is introduced. According to
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TABLE 2: Face detection and face tracking performance results.
Face detection Face tracking
Test Frames Faces Corr.ect Missed Fal§e Recall Precision | Frames Faces Corr.eCt Missed Fa1§e Recall Precision
sequence locations  faces locations locations  faces  locations
Indoors 736 335 311 24 68 0.93 0.82 4416 1973 1771 202 502 0.90 0.78
Outdoors 541 159 149 10 34 0.94 0.81 3246 950 868 82 230 0.91 0.79
Global 1277 494 460 34 102 0.93 0.82 7662 2923 2639 284 732 0.90 0.78

F1GURE 6: Examples of faces correctly detected with the described algorithm.

this criterion, the location of faces in each frame are manually
annotated and classified according to the following classes:

(i) a correct location is considered when the bounding box
representing the face location as determined by the
face tracking algorithm covers approximately at least
half of the face or encloses completely at least one visi-
ble facial feature;

(ii) a false location is considered when the bounding box
representing the face location does not satisfy any of
the two previous conditions, that is, when something
that is not a face is erroneously located as such;

(iii) a missed face is considered when a face appears in the
image, it is considered to be detectable but it is not un-
der the bounding box of a correct location.

The tracking algorithm’s performance, according to this
matching criterion, will be evaluated in terms of the ratio of
correct locations against the number of detectable faces, as
expressed by the recall metric,

correct

recall = (18)

correct + missed

where correct and missed correspond to the number of cor-
rect and missed locations, respectively, classified according
to the criterion defined above.

Additionally, the algorithm’s performance will also be
evaluated in terms of the ratio between the number of correct
detections and the total number of detections (i.e., correct
and false detections), as expressed by the precision metric,

correct

_ 19
correct + false (19)

precision =

where correct and false correspond to the number of correct
and false locations, respectively, classified according to the
criterion defined above. The precision metric expresses the
capability of the tracking algorithm to determine only cor-
rect locations while avoiding false alarms. Notice that the
recall metric expresses the capability to locate all the de-
tectable faces regardless of the number of false locations in-
dicated.

The performance results for both the face detection and
the object tracking algorithms were obtained after visually
analysing the detection and tracking results on each single
frame and, using the criterion defined above, counting the
number of correct and false locations and the number of
missed faces.

Table 2 indicates the detection (in I-frames) and the
tracking results (in all frames) for each of the two video
sequences. As it can be seen, the face detection algorithm
achieves a very high recall value of 93% and a slightly lower
precision value of 82%. The performance of the tracking al-
gorithm naturally depends on the performance of the detec-
tion algorithm (faces that are not detected will not be tracked
and false detections will naturally lead to false locations by
the tracking algorithm). By using only motion information
to track faces throughout each GOP, the tracking algorithm
achieves a still extremely high recall value of 90% and a pre-
cision value of 78%. The performance decreases only slightly
when compared to the detection performance. However, the
location of faces may now be determined for all frames of the
video sequences.

Figure 6 illustrates examples of correctly detected faces
with the described face detection algorithm. As it can be seen,
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FiGgure 7: Example of a face correctly tracked for the entirety of a shot comprised of 22 GOPs; for each of the indicated GOPs, two figures
are illustrated: the result of detection in the first (I) frame of the GOP (on the left) and the result of tracking at the last frame of the GOP (on
the right). (a) GOP1, (b)GOP2, (c) GOP3, (d) GOP20, (¢) GOP21, and (f) GOP22.

FIGURE 8: Example of the result of face tracking in a GOP with strong camera motion; the bounding box in the first frame, in the left,

corresponds to the result of face detection.

the detection algorithm is able to detect rotated and titled
faces.

Figure 7 illustrates an example of a correctly tracked face
for an entire shot comprised of 22 GOPs. The tracking algo-
rithm is able to cope with camera pan, zoom, and even par-
tial occlusion of the face. Figure 8 illustrates an example of a
sequence where the face tracking algorithm is not able to cor-
rectly locate the face being tracked throughout all frames of a
GOP with strong camera motion. This is due to the fact that
in this particular sequence the motion vectors are not able
to correctly express the objects’ motion, and thus, tracking is
not performed correctly. The same figure highlights another
situation where the tracking algorithm naturally fails, that is,
when a new face appears in the middle of the GOP. Naturally,
since the only faces that can be tracked are those that were de-
tected, a newly appearing face will only be tracked from the
moment it is detected in an I-frame.

4. CONCLUSIONS

This paper proposed a compressed domain object tracking
algorithm, which, combined with a face detection algorithm
that also acts in the compressed domain, allows for faces to
be tracked throughout video sequences where a specific type
of compressed domain data is available (such as MPEG-1
or MPEG-2 video sequences). Using only DCT coefficients
to detect faces in some frames and motion information as

provided by forward and backward motion vectors in the
remaining frames, the proposed algorithm offers a process-
ing power efficient, inexpensive, fast, and sufficiently reliable
solution for object tracking for various consumer electronic
applications. The solution’s processing power efficient na-
ture enables even its implementation on portable and mobile
platforms for applications such as face image stabilization for
mobile video conferencing.

The complete face tracking algorithm’s performance was
analysed after performing face tracking on two home-video
sequences. These sequences were considered to be represen-
tative of the typical content in applications for which the
developed face tracking algorithm was originally devised—
compressed home-video sequence analysis for content man-
agement in low-power CE devices. The face tracking algo-
rithm’s recall measure was found to be high (90%) while its
precision was found to be slightly lower (78%). While it was
shown that the tracking algorithm depends on the perfor-
mance of the detection algorithm, its performance was found
not to decrease significantly when compared to the latter. In
fact, with only a small increase of complexity, the location
of faces may be determined with sufficient accuracy for all
frames in compressed video sequences.

A comparison with other algorithms proposed in the
literature is hard since few face tracking algorithms exist
that perform in the compressed domain. In addition, among
those described, performance is not tested in common and
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publicly available content nor is there any publicly avail-
able code of their implementations. For future work, the
proposed algorithm’s performance will be analysed under
known video sequences and possible comparisons will be
made against existing face detection and face tracking algo-
rithms.

In conclusion, the novelty of the face tracking algorithm
proposed resides in the use of backward motion vectors to
allow tracking to be performed from B-frames to (I- or P-)
reference frames. The algorithm should thus be more robust
to strong motion than previously proposed algorithms. Be-
sides, it now allows for the tracking of objects to I-frames.

Additionally, the algorithm cleverly uses inverted motion
vectors weighted by overlap areas to track objects using for-
ward motion vectors. This strategy allows for the computa-
tion of a weighted average of inverted motion vectors, where
the weight is given by the overlap percentage value, which, as
explained, acts as an indication of “confidence.” Thus, mo-
tion vectors with higher confidences will weigh more in the
displacement vector computation. This technique has been
experimentally proven to yield better performance than the
typical mode value computation used in previously proposed
algorithms. Besides being sounder, it is much less computa-
tionally complex than existing techniques.
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