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Abstract The polarization operator (tensor) for planar
charged fermions in a constant uniform magnetic field is cal-
culated in the one-loop approximation of 2 + 1-dimensional
quantum electrodynamics (QED2+1) with a nonzero fermion
density. We construct the Green function of the Dirac equa-
tion with a constant uniform external magnetic field in
QED2+1 at a finite chemical potential, find the imaginary part
of this Green function, and then obtain the polarization ten-
sor related to the combined contribution from real particles
occupying the finite number of energy levels and magnetic
field. We expect that some physical effects under consider-
ation seem likely to be revealed in a monolayer graphene
sample in the presence of an external constant uniform mag-
netic field B perpendicular to it.

1 Introduction

Planar charged fermions governed by the Dirac equation with
external electromagnetic fields attract considerable interest
in connection with problems of the quantum Hall effect [1],
high-temperature superconductivity [2] as well as graphene
(see, e.g., [3–6]). In graphene, the electron dynamics at low
energies is described by the two-dimensional Dirac equation
for massless fermions [4,7–9], though the case of massive
charged fermions is also of interest [10].

It is well known [11] that every energy level of a planar
electron in an uniform magnetic field is degenerate and the
number of degenerate states per unit area is |eB|/(2π h̄c).
So, the kinetic energy of the electrons can completely be
quenched at strong magnetic fields. Moreover, the kinetic
energy per Dirac electron is of order ε ≈ vF

√
2|eB|h̄/c

(where vF is the Fermi–Dirac velocity) and is comparable
with the Coulomb energy per electron EC = e2/(ε0lB),

a e-mail: khalilov@phys.msu.ru

where lB = √
h̄c/|eB| is the so-called magnetic length and

ε0 is the dielectric constant of the medium [6]. In the two-
dimensional electron gas, this enhancing of the Coulomb
interactions between electrons in the presence of strong mag-
netic fields, probably leads to the fractional quantum Hall
effect (FQHE) [12,13]. The features of the fractional quan-
tum Hall effect in graphene were predicted, for example, in
[14–16] and the observation of the fractional quantum Hall
effect in suspended graphene was reported in [17–19].

Important physical quantities related to the vacuum polar-
ization are the vacuum charge and current densities induced
by the background field. Polarization effects in the massive
QED2+1 with a constant uniform magnetic field and with a
nonzero fermion density were studied in [20,21]. In partic-
ular, the contribution of the induced Chern–Simons term to
the polarization tensor and the effective Lagrangian with the
electron density corresponding to the occupation of n Lan-
dau levels in an uniform magnetic field were calculated in
[21].

Since the effective fine structure constant in graphene is
large, QED2+1 effects can be significant already in the one-
loop approximation. Important quantum relativistic effects
were discussed in [22] (Klein paradox) and [23–25] (Casimir
effect). The polarization operator in a strong magnetic field
perpendicular to the graphene membrane has been calculated
in [26–28]. The problem of light absorption in graphene was
investigated in [29] and the Faraday effect in a monolayer
graphene sample in a strong constant uniform magnetic field
perpendicular to it was considered in [30].

The induced vacuum current in the field of a solenoid per-
pendicular to the graphene sample was investigated in [31],
and vacuum polarization in QED2+1 with an Aharonov–
Bohm (AB) potential for massive and massless fermions
was studied in [32]. The vacuum electric current due to
vacuum polarization in the AB potential for massive case
was observed in [33] in “a quantum-tunneling system using
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two-dimensional ionic structures in a linear Paul trap”. A
very important phenomenon—charged impurity screening
in graphene due to the vacuum polarization by a Coulomb
field—was investigated in [9,34–37]. The effect of spin on
the dynamics of the two-dimensional Dirac oscillator in a
magnetic cosmic string background was considered in [38].

In this work, we have calculated the polarization tensor
of planar charged fermions in the presence of an external
constant uniform magnetic field in the one-loop approxima-
tion of QED2+1 at the finite chemical potential. We have
shown that the one-loop polarization tensor induces physical
effects, which seem to be likely to be revealed in a monolayer
graphene sample in a strong constant uniform magnetic field
aligned perpendicularly to the sample.

We shall adopt the units where c = h̄ = 1.

2 Vacuum polarization by a constant uniform magnetic
field in QED2+1

The polarization operator (PO) in a constant uniform mag-
netic field in QED2+1 is diagonal with respect to the pho-
ton three-momentum and in the momentum representation is
determined by

�μν(p) = −ie2
∫

d3k

(2π)3 tr[γ μSc(k, B)γ νSc(k − p, B)],
(1)

where Sc(k, B) is the causal Green function of the Dirac
equation with a constant uniform magnetic field B in the
momentum representation. In the coordinate representation
the Green function Sc(xμ, x

′μ, B) of the Dirac equation for
a fermion of the mass m and charge e in an external con-
stant uniform magnetic field in 2 + 1 dimensions satisfies the
equation

(γ μPμ − m)S(xμ, x
′μ, B) = δ3(xμ − x

′μ), (2)

where xμ = x0, x1, x2 ≡ t, x, y is the three-vector, Pμ =
−i∂μ −eAμ is the generalized fermion momentum operator.
It is well known [39] that the Green’s function in a constant
magnetic field is not translation invariant in the coordinate
representation; it is of a product of the non-translation invari-
ant phase and a translation invariant function.

The Dirac γ μ-matrix algebra in 2 + 1 dimensions is well
known to be representable in terms of the two-dimensional
Pauli matrices σ j ,

γ 0 = τσ3, γ 1 = iσ1, γ 2 = iσ2, (3)

where the parameter τ = ±1 can label two types of fermions
in accordance with the signature of the two-dimensional
Dirac matrices [40]; it can be applied to characterize two
states of the fermion spin (spin “up” and “down”) [41]. We

take the magnetic field vector potential in the Cartesian coor-
dinates in the Landau gauge A0 = 0, A1 = 0, A2 = Bx ; then
the magnetic field is defined as B = ∂1A2 − ∂2A1 ≡ F21,
where Fμν is the electromagnetic field tensor.

The positive-frequency Dirac equation solutions (the par-
ticle states) in the considered field corresponding to the
energy eigenvalues (the Landau levels),

E+
n ≡ En =

√
m2 + 2n|eB|, n = 0, 1, . . . , (4)

are given by [42]

�+(t, r) = 1√
2En

( √
En + τmUn(z)

−sign(eB)
√
En − τmUn−1(z)

)

× exp(−i E+t + i p2y), (5)

where the normalized functionsUn(z) are expressed through
the Hermite polynomials Hn(z) as

Un(z)= |eB|1/4

(2nn!π1/2)1/2 e
−z2/2Hn(z), z=√|eB|(x− p2/eB),

and p2 is the eigenvalue because−i∂y�+(t, r)= p2�
+(t,r).

All the energy levels except the lowest level (n = 0) with
τ = 1 for eB > 0 and τ = −1 for eB < 0 are doubly
degenerate on spin τ = ±1. This means that the eigenvalues
of the fermion energy except the lowest level are actually
spin-independent in the configuration under investigation.
For definiteness, we consider the case where eB < 0. The
negative-frequency Dirac equation solutions (the antiparticle
states) corresponding to negative energies E−

n = −En can
be constructed from (5) by means of the charge-conjugation
operation.

The exact expression for the free electron propagator in an
external magnetic field in 3 + 1 dimensions was found for the
first time by Schwinger [39]. The Green function in a constant
uniform magnetic field in the momentum representation in
2+1 dimensions was obtained in [42] in the form

Sc(p, B)

= − i

|eB|
∞∫

0

dz

cos z
exp

[
i z

|eB|
(
p2

0 − m2 − p2 tan z

z
+ iε

)]

×
[
(γ 0 p0+m) exp(iτσ3z) − (γ 1 p1+γ 2 p2)

cos z

]
, (6)

where z = |eB|s and s is the “proper time”. It is well to note
that Sc(p, B) is the Fourier transform only of the translation
invariant part of S(xμ, x

′μ, B) [42]. The main properties and
tensor structure of the PO can be obtained from the require-
ments of relativistic and gauge invariance and also from the
symmetry of the external field. In the considered external
field the PO must be diagonal with respect to the “pho-
ton” three-momentum and depend only on three independent
scalars, which can be constructed from the three-momentum
pμ and the tensor of external magnetic field Fμν :
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p2 =(p0)2 − p2, pμF
μνFνρ p

ρ ≡ B2p2, FμνFμν ≡2B2.

(7)

We introduce the orthonormalized system of the three-
vectors lμi ,

lμ1 = 1√
p2

(0,−p2, p1), lμ2 = 1√
p2p2

(p2, p0 p1, p0 p2),

lμ3 = 1√
p2

(p0, p1, p2), (8)

which satisfy the relations

gμνl
μ
i l

ν
k = gik,

∑
i,k

giklμi l
ν
k = gμν,

−(gμν − pμ pν/p2) =
∑
j=1,2

lμj l
ν
j , (9)

where gμν is the Minkowski tensor g11 = g22 = −g00 =
−1, and the nonzero diagonal components of gik are g11 =
g22 = −g33 = −1.

The vectors lμi , i = 1, 2 are not eigenvectors of the PO; the
PO eigenvalue corresponding to the eigenvector lμ3 is equal
to zero due to the gauge invariance,

pμ�μν = �μν pν = 0. (10)

As a result of the calculations, we find the PO in the fully
transversal form [21]:

�μν(p, b) = i1/2e2

8π3/2b1/2

∞∫

0

x1/2dx

sin x

1∫

−1

du[�1l
μ
1 l

ν
1

+�2l
μ
2 l

ν
2 + C × iτeμνρ pρ]

× exp

[
i x

b

(
p2

0(1 − u2)

4

−p2 sin[x(1 + u)/2] sin[x(1 − u)/2]
x sin x

−m2 + iε

)]
, b = |eB|, (11)

where

�1 = p2
0(cos ux − u cot x sin ux)

−p2 u sin x sin 2ux − 2 cos ux + cos x(1 + cos 2ux)

sin2 x
,

�2 = p2(cos ux − u cot x sin ux), C = 2m cos ux (12)

and eμνρ is a fully antisymmetric unit tensor. We note that
�μν(p) is not symmetric tensor in 2 + 1 dimensions. In (11)
the last term is the so-called induced Chern–Simons term;
using the relation eμνρ pρ = −√

p2(lμ1 l
ν
2 − lμ2 l

ν
1 ) it can be

written in another form. It should be noted that the mass term
in the considered QED2+1 model is not invariant with respect
to the operations of spatial (and time) inversion, therefore

the induced Chern–Simons term must be generated dynam-
ically by the external magnetic field; it contributes to the
vacuum polarization only in the one-loop QED2+1 approxi-
mation [43,44].

In the limit eB = 0, we obtain from (11)

�μν(p) = i1/2e2

8π3/2

∞∫

0

ds√
s

1∫

−1

du[(1 − u2)(gμν p2 − pμ pν)

− 2imτeμνρ pρ ] exp

[
is

(
p2(1 − u2)

4
− m2 + iε

)]
.

(13)

The PO (13) is a function of only one scalar p2 and its ana-
lytic properties can be studied in the complex p2 plane. It is
important that �μν(p) is a real function on the negative real
half axis p2 < 0, which allows us to perform integrations in
(13) for the domain p2 < 0 and to obtain [21]

�μν(p) = e2

4π

[
(gμν p2− pμ pν)

(
4m2 + p2

p2
√−p2

arctan

√
−p2

4m2

−2m

p2

)
− −imτeμνρ 4pρ√−p2

arctan

√
−p2

4m2

]
.

(14)

It should be noted that the free polarization operator in 2+1
dimensions was obtained in another form and without the
Chern–Simons term in [45].

The singularities of �μν(p) lie on the positive real half
axis of p2 and the point p2 = 4m2 is the branch point (the
threshold for the creation of fermion pairs), so �μν(p) is
an analytic function in the complex p2 plane with a cut
[4m2,∞); the domains p2 < 0 and p2 > 4m2 are phys-
ical domains, and the domain 0 ≤ p2 ≤ 4m2 is nonphysical
(the definition of the physical/nonphysical domain is given,
for example, in [46]). The function �μν(p) in the whole
domain of p2 can be obtained by the analytic continuation of
(14). In the domain p2 > 4m2 the free polarization operator
gets the imaginary part, which is on the upper edge of the
cut:

Im�μν(p) = − e2

4π
(gμν p2 − pμ pν)

4m2 + p2

p2
√
p2

. (15)

The imaginary part of the PO has a discontinuity 2Im�μν(p)
in going across the cut.

We can find the polarization operator for charged massless
fermions putting in the above formulas m = 0. In particular,
the free polarization operator for the case m = 0 is a real
function on the negative real half axis p2 < 0 and has the
extremely simple form:

�μν(p,m = 0) = e2

8

(gμν p2 − pμ pν)√−p2
. (16)
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The free polarization operator (16) is transverse. Now the
point p2 = 0 is the branch point (the threshold for the cre-
ation of massless fermion pairs), so �μν(p,m = 0) is an
analytic function in the complex p2 plane with a cut [0,∞).
In the domain p2 > 0 �μν(p,m = 0) is pure imaginary and
on the upper edge of the cut it has the form

�μν(p,m = 0) = −i
e2

8

(gμν p2 − pμ pν)√
p2

. (17)

In this form the polarization operator has been calculated
in [45]. In condensed matter problems, the �00(p,m = 0)

component of the polarization tensor is actual one that, for
example, at p2 < 0 has the form

�00(p,m = 0) = −e2

8

p2√
p2 − p2

0

. (18)

This formula is in agreement with that obtained for graphene
in the so-called random phase approximation in [47] (see also
[5,48]).

It is convenient to represent the polarization operator for
the case m = 0 in a weak constant uniform magnetic field as
follows:

�μν(p, eB,m = 0) = �μν(p,m = 0)

+e2(eB)2
[
π1(p)

(
gμν − pμ pν

p2

)
+ π2(p)l

μ
1 l

ν
1

]
, (19)

where the first term is the PO �μν(p,m = 0) and
π1(p), π2(p) are functions of only p. In particular, in the
domain p2 < 0 they can be estimated up to numerical con-
stants as

π1(p)≈(ap2 + cp2)/(−p2)5/2, π2(p)≈dp2/(−p2)5/2,

(20)

where 1 > a > c > d > 0.1. These formulas are in agree-
ment with results obtained in [49]. Since fermions are mass-
less, dimensionless factors eB/p2 are built with |p| in place
of m.

To calculate the main contribution in (11) in a strong mag-
netic field let us rotate the contour of integration in x on −π/2
to obtain

�μν(p, b) = e2

8π3/2
√
b
e−p2/2b(gμν p2 − pμ pν)

×
∞∫

0

x1/2dx

sinh x

1∫

−1

du(u coth x sinh x − cosh ux)

× exp

[
− x

b

(
p2

0(1 − u2)

4
− m2

)]
. (21)

Neglecting the term ∼ p2
0/b in the exponent we integrate

(21) in u and obtain

�μν(p, b) = − e2

4π3/2
√
b
e−p2/2b(gμν p2 − pμ pν)

×
∞∫

0

dx√
x

(
coth x

x
− 1

sinh2 x

)
e−xm2/b. (22)

We see that the integral is maximum atm = 0, so we can esti-
mate it puttingm = 0 in the exponent. But the integrand does
not contain b at m = 0. Therefore, the leading contribution
in b in (22) is proportional to b−1/2

�μν(p, b) = e2C

4π3/2
√
b
(gμν p2 − pμ pν), C ∼ 2. (23)

This result is in agreement with that obtained in [50]. Thus,
the polarization tensor in QED2+1 is very small (∼ |eB|−1/2)
in a large constant uniform magnetic field. This feature of the
PO in QED2+1 essentially differs from that in the massive
QED3+1, where the �33 component plays a major role and
increases in a large magnetic field as [51] �33 ∼ |eB|/m2.
Physically, this is because only electrons from the lowest
Landau level couple to the longitudinal components of the
photon at |eB| 	 m2 [50–52]. It is seen that the vectors
lμj , j = 1, 2 are spacelike if p2 > 0, but if p2 = 0, then the

only vector lμ1 is still spacelike, whereas lμ2 → pμ/
√
p2. It

means that the “first” photon mode (∼ lμ1 ) becomes almost
free in a very strong magnetic field, and the “second” photon
mode (∼ lμ2 ) therefore does not exist.

3 Green function and polarization operator
at a nonzero fermion density

Now we construct the Green function to the Dirac equation
for the case of a nonzero fermion density (the finite chemical
potential). For graphene, only the case with a fixed sign of τ

is interesting, and we hence assume that τ = 1 in this section,
without restricting the generality. The Green function with
the finite chemical potential can be obtained from the Green
function in the momentum representation (6) by shifting the
variable p0 → p0 +μ+iδsign(p0), where μ is the chemical
potential. We have

Sc(p,m, μ) = − i

|eB|
∞∫

0

dz

cos z
exp

[
i z

|eB|
([

p0 + μ

+ iδsignp0
]2 − m2 − p2 tan z

z
+ iε

)]

×
[
(γ 0(p0 + μ) + m) exp(iσ3z)

− (γ 1 p1 + γ 2 p2)

cos z

]
, δ → +0. (24)
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If μ > m, there are real particles occupying the Landau
levels, if μ < m, then there are no real particles. We also
assume μ > 0 without loss of generality. The integration
path passes below the singularities in the integrand in (24)
and the imaginary term iδsignp0 is essential near the poles
[53]; the Green function (24) has the poles at the points
p0 = ±En − μ as well as an imaginary part ImSc(p, μ)

related to the presence of real charged fermions. Rotating the
integration path over z in (24) into the lower half-plane we
can extend (24) onto the whole complex plane of p0 with the
cuts [p0+,∞), [−p0−,−∞) at the real axis. Then, as a func-
tion of p0, the Green function (24) is a limit of some analytic
function Sc(p0). Denoting the integrand in (24) as S(z), we
represent ImSc(p, μ) via the discontinuities �S at the edges
of the cuts in the form

∫ ∞
−∞ S(z)dz. For this, we apply the

method for calculation of the PO discontinuities in the pres-
ence of various external electromagnetic fields in vacuum
[51,54], which was extended to the case of a nonzero fermion
density in [21]. Finally, we obtain Sc(p, μ) in the form

Sc(p,m, μ) = − i

|eB|
∞∫

0

dz

cos z
exp

[
i z

|eB|
( [

p0 + μ

+ iδsignp0
]2 − m2 − p2 tan z

z
+ iε

)]
(γ P + M)

− 2iπ(γ P̄ + M̄), δ → +0, (25)

where

P0 = (p0 + μ) cos z + im sin z, M = m cos z + i(p0 + μ) sin z,

P = −p/ cos z,

P̄ = [m0(p0 + μ + m)/2m]δ[(p0 + μ − m)/m0]e−p2/|eB|

+mm0

∞∑
n=1

(−1)n

En
Inn(p2/|eB|) [δ[(p0 + μ − En)/m0]

+ δ[(p0 + μ + En)/m0]] ,

M̄ = [m0(p0 + μ + m)/2m]δ[(p0 + μ − m)/m0]e−p2/|eB|

+(p0 + μ)m0

∞∑
n=1

(−1)n

En
Inn(p2/|eB|) [δ[(p0 + μ − En)/m0]

+ δ[(p0 + μ + En)/m0]] . (26)

Here m0 is a parameter of the dimension of mass, we have
the Laguerre function Inn(x) = (1/n!)e−x/2Ln(x), Ln(x) is
the Laguerre polynomial, and all the differences must satisfy
the inequalities m + μ > 0, E+

n − μ > 0, and −m − μ <

0, E−
n − μ < 0.

The Green function for charged massless fermions is eas-
ily derived from Eqs. (25) and (26) to read

Sc(p, μ,m = 0) = − i

|eB|
∞∫

0

dz

cos z
exp

[
i z

|eB|
(

[p0 + μ

+ iδsignp0]2 − p2 tan z

z
+ iε

)]

×(γ P + M) − 2iπ(γ P̄ + M̄), δ → +0, (27)

where

P0 = (p0 + μ) cos z, M = i(p0 + μ) sin z,

P = −p/ cos z,

P̄ = [m0(p0 + μ)/2m]δ[(p0 + μ)/m0]|m→0e
−p2/|eB|,

M̄ = [m0(p0 + μ)/2m]δ[(p0 + μ)/m0]|m→0e
−p2/|eB|

+m0(p0 + μ)

∞∑
n=1

(−1)n

εn
Inn(p2/|eB|) [δ[(p0 + μ

− εn)/m0] + δ[(p0 + μ + εn)/m0]] , ε±
n = ±√

2|eB|n.

(28)

A massless fermion does not have a spin degree of free-
dom in 2 + 1 dimensions [55] but the Dirac equation for
charged massless fermions in an external magnetic field
in 2 + 1 dimensions keeps the spin parameter. Therefore,
all the energy levels except the lowest level, n = 0, are
doubly degenerate; the levels with n = nr , τ = 1 and
n = nr + 1, τ = −1 (where nr = 0, 1, 2 . . . is the radial
quantum number) coincide.

In graphene, the set of Landau levels in an uniform mag-
netic field aligned perpendicularly to the monolayer sample
is given by (see, for example, [6,13])

εn = ±vF
√

2|eB|n, n = 0, 1, 2, . . . , (29)

where vF is the Fermi–Dirac velocity, and the ± signs label
the states of positive (electron) and negative (hole) energy,
respectively. They play the same role as the band index for
the conduction (+) and the valence (−) band. In addition, the
states of positive and negative energy for charged massless
fermions has the same energy ε0 = 0 but opposite spins in
the ground states.

We now discuss briefly the polarization tensor (PT) related
to contributions coming from real particles. We note that the
PT contains terms with μ �= 0, B = 0 and μ �= 0, B �= 0.
Terms with μ �= 0, B = 0 are very cumbersome and we
do not give them. In the absence of a magnetic field the
�00(p, μ) component of the PT in monolayer graphene has
been studied in one-loop approximation in [56–58]. The
�00(p, μ) component mainly contributes to the PT in the
presence of a weak magnetic field and so it should be taken
into account in this case.

Here we give only the expression for the PT related to the
combined contribution from real particles and the magnetic
field. It is natural to consider that the medium contains parti-
cles, which implies μ > m and real antiparticles are absent.
We also assume that μ �= m, En , which means that all the n
Landau levels are fully filled and no levels are partly filled.
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As a result of long calculations (see [21]), one can obtain
the PT related to the above combined contribution in the form

�μν(p, μb) = e2

2π |m|
∞∫

0

dx[p2�r l
μ
2 l

ν
2 + mτCr × ieμνρ pρ]

× exp

[
i x

(
(p0 + μ)2

b
− 1

)

−p2(1 + i sin 2x − cos 2x)

2b
− εx

]
, (30)

where

�r = 1

2
sin

2m(p0 + μ)x

b
+ m

En
Ln

(
p2 sin2 x

2b

)

× sin
2En(p0 + μ)x

b

[
μ2 − m2

2|eB|
]

Cr = i

2
cos

2m(p0 + μ)x

b
+ i Ln

(
p2 sin2 x

2b

)

× cos
2En(p0 + μ)x

b

[
μ2 − m2

2|eB|
]

. (31)

Here the first terms give the contribution from the n = 0
Landau level and [(μ2−m2)/2|eB|] ≡ N denotes the integer
part of the function u = (μ2 − m2)/2|eB|, i.e. the largest
integer ≤ u. We assume that the argument of u is not equal to
an integer; otherwise the function would become ambiguous.

The part of the polarization tensor determined by the func-
tion �r is of main interest. Calculating it for the case of a
weak constant uniform magnetic field (p0 + μ)2 	 |eB|,
we obtain

�μν(p, μb) = e2

2π
p2�r l

μ
2 l

ν
2 . (32)

Here

�r = |eB|
(p0 + μ)[(p0 + μ)2 − 4m2]θ(μ − |m|)

+ 2|eB|
(p0 + μ)[(p0 + μ)2 − 4E2

N ] × Nθ(μ − E+
N ),

(33)

where θ(z) is the Heaviside function; therefore the first term
gives the contribution if the ground Landau level is occupied
and the second one contributes if the N Landau levels are
occupied. If the magnetic field is strong, (p0 + μ)2 � |eB|,
then only the ground Landau level is occupied in the massive
case and we obtain

�r = p0 + μ

|eB| , μ > m, |eB| 	 m2. (34)

For the case of massless charged fermions we must putm = 0
and replace E+

N by ε+
N in Eq. (33). In a strong magnetic field

(p0 + μ)2/|eB| � 1, we also obtain

�r = p0 + μ

|eB| θ(μ) + 2(p0 + μ)

|eB| × Nθ(μ − ε+
N ), (35)

where the first and second terms, respectively, give the contri-
butions if the ground Landau level is occupied and the N Lan-
dau levels are occupied. The main feature is that the polariza-
tion tensor (30) with a nonzero fermion density is extremely
small (∼|eB|−1) in a strong constant uniform magnetic field.

It is well to note that the chemical potential (the Fermi
energy) of noninteracting electrons is chosen to be situated
between a completely filled N and a completely empty N+1
Landau level, which corresponds to the integer quantum Hall
effect regime. The correlations between interacting electrons
in the strong-correlation limit of partially filled Landau lev-
els lead to the formation of incompressible quantum-liquid
phases, which display the fractional quantum Hall effect
[12,59].

4 Discussion

We have calculated the polarization tensor in the one-loop
approximation of 2+1-dimensional quantum electrodynam-
ics with a nonzero fermion density in a constant uniform
magnetic field. The polarization tensor contains the con-
tributions from virtual (vacuum) and real charged particles
occupying a finite number of the Landau levels. In particu-
lar, we have found that the polarization tensor in QED2+1

in a strong constant uniform magnetic field is proportional
to ∼ e2|p2|/√|eB|, |eB| 	 |p2| (contribution of virtual
particles) and ∼ e2|p2|(p0 + μ)/|eB|, |eB| 	 (p0 + μ)2

(contribution of real particles). It means that photons become
almost free in a very strong magnetic field.

It should be noted that if one, for instance, needs to inves-
tigate the propagation of electromagnetic waves in a real
graphene strip we must consider it as the three-dimensional
object of extremely small but nonzero thickness (see also
[60]).

In addition, we emphasize that the polarization tensors
(11) and (30) at nonzero fermion mass are finite in the
limit pρ → 0 because they contain antisymmetric terms
that do not vanish in this limit. The coefficient multiplying
ieμνρ pρ in (11) and (30) with pν = 0 is called the induced
Chern–Simons coefficient, and its appearance in the effec-
tive Lagrangian of QED2+1 with an external magnetic field
means that photons dynamically gain “masses”. The induced
Chern–Simons coefficient is calculated exactly and has the
form

CCS = −sign(mτ)
e2

4π
θ(|m| − μ) + sign(eB)

× e2

2π

(
1

2
δsign(eB),sign(τ )θ(μ − |m|) + Nθ(μ − E+

N ))

)
,

where the first term gives the contribution of virtual fermions.
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