
RESEARCH Open Access

Improved and weighted sum rate maximization
for successive zero-forcing in multiuser MIMO
systems
Robert C Elliott1,2 and Witold A Krzymień1,2*

Abstract

We propose an improved algorithm for optimizing the transmit covariance matrices for successive zero-forcing
(SZF) precoding in multiple-input multiple-output systems. We use a conjugate gradient projection method to
solve the optimization problem. Our algorithm improves upon the existing method twofold. First, the existing
covariance optimization method, with higher SNRs or more simultaneously supported users, can yield a lower sum
rate than when using block diagonalization (BD), when theoretically SZF should never be inferior to BD. In
comparison, our method consistently provides a higher throughput than BD. Several simulations demonstrate our
algorithm’s enhanced performance, which exceeds the existing method’s sum rate by up to 12% in the examined
cases. Second, our proposed algorithm also supports the maximization of a weighted sum rate with SZF, to
incorporate quality of service (QoS). To our knowledge, no other work in the literature considers a weighted sum
rate and/or QoS with SZF.

1. Introduction
The topic of multiple-input multiple-output (MIMO)
broadcast channels has drawn much research interest
for several years. MIMO spatial multiplexing is poten-
tially a key enabling technique to achieve increased
throughput and quality of service (QoS) in commercial
fourth-generation cellular and other future broadband
wireless networks. The downlink of a MIMO system
can be modeled as a broadcast channel (BC), where a
base station transmits different data streams simulta-
neously to several users. It is known that the capacity of
a MIMO BC can be reached through the use of dirty
paper coding (DPC) [1,2]. DPC takes advantage of non-
causal knowledge of each user’s signal at the base sta-
tion. Non-causally knowing the signal for each user, the
base station can then successively encode the signal for
each user k such that the effect of interference of the k -
1 previously encoded users is removed. The transmit
covariance matrices for the users must then be opti-
mized to minimize the remaining interference between
users.

Unfortunately, one significant drawback of DPC is that
it is highly non-linear. Due to its resulting extreme com-
plexity, its implementation will remain impractical for
the foreseeable future, even in a simplified approximate
form not requiring non-causal knowledge of transmitted
signals. For this reason, reduced complexity linear pre-
coding methods are of interest to mitigate multiuser
interference (MUI). Examples of such methods include
zero-forcing beamforming (ZFB) [3] for systems with
single-antenna users, and block diagonalization (BD) [4]
for systems with multiple-antenna users. ZFB and BD
are techniques that completely null the interference
between users by requiring that the signal transmitted
to each user falls in the null space of the channels for
all other users. Thus, all MUI is removed at the base
station. However, the nulling also imposes a constraint
that the total number of receive antennas be no larger
than the number of transmit antennas. There is, there-
fore, a reduction in both the system performance and
the number of simultaneously supportable users com-
pared with DPC.
In [5], the authors propose a scheme known as suc-

cessive zero-forcing (SZF). This scheme nulls multiuser
interference similarly to BD, but as opposed to nulling
all interference between users, it instead only
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successively nulls the interference of a given user k on
the previous k - 1 users. In a sense, it is similar in con-
cept to DPC, but with a reverse user ordering, and with
MUI removal through nulling instead of non-linear cod-
ing. It is shown in [5] that the sum-rate throughput of
SZF is no worse than that of BD, and often quite better;
thus, the complete removal of MUI as in BD is not
necessarily always beneficial. Additionally, the less strict
null space requirements mean that the transmit and
receive constraints relative to BD are relaxed, and hence
SZF can sometimes serve a higher number of users
simultaneously than BD.
The main drawback to SZF is that its resulting sum

rate is non-convex. Thus, it is difficult to find the globally
optimum transmit covariance matrices that achieve the
capacity. In [5], the authors propose a suboptimal covar-
iance method based on the duality between the BC and
the multiple access channel (MAC). This method first
solves the less-constrained BC capacity problem by
instead solving the dual MAC, which is convex, and thus
for which efficient numerical methods exist (e.g., [6]).
The BC covariance matrices can then be obtained from
the MAC results via duality transformations [2]. Finally,
SZF covariance matrices are obtained by projecting the
BC matrices into the null spaces of the users’ channels.
The primary impetus for this work was based on

observations made during our related work on schedul-
ing for BD [7] and SZF [8,9]. We found that, unexpect-
edly, the performance of our SZF scheduling algorithms
was worse than for BD at high SNR. This was eventually
found to be due to the SZF covariance method rather
than the scheduling algorithms. Additionally, the exist-
ing covariance optimization method can only be used
for sum-rate maximization. However, it is often desir-
able to be able to maximize a weighted sum rate. The
weights on each of the user rates can account for QoS
parameters to introduce more fairness into the system.
A pure sum-rate maximization can result in throughput
starvation for users in poorer channel conditions. Per-
haps the most well-known example of weighted sum-
rate maximization is the proportional fairness criterion
[10,11], where the weights are the inverse of each user’s
average throughput.
In this paper, our contributions are twofold. First, we

propose a new algorithm for optimizing the SZF covar-
iance matrices based on a conjugate gradient projection
(CGP) method. This new algorithm, while still globally
suboptimal, improves significantly upon the sum-rate
performance of the existing method. Second, our pro-
posed method also enables the maximization of a
weighted sum rate. This allows QoS parameters to be
incorporated with the SZF precoding. To the best of our
knowledge, no existing work in the literature yet

considers fairness or weighted sum rates in conjunction
with SZF.
The remainder of this paper is organized as follows.

Section 2 describes the system model and the pertinent
details of BD and SZF precoding. Section 3 describes
the SZF covariance optimization problem, the existing
method and the problems it faces in more detail, and
outlines our proposed CGP method. Simulation results
are provided in Section 4, and concluding remarks are
given in Section 5.

2. System model and overview
To begin, we outline the notation used in this paper.
Italic variables represent scalars, while lowercase and
uppercase boldface variables denote vectors and
matrices, respectively. ⌈·⌉ is the ceiling function. In
denotes the n × n identity matrix. A*, AT, and AH

denote the conjugate matrix, matrix transpose, and con-
jugate (Hermitian) transpose of A, respectively. Tr(A) is
the trace of A, while ‖A‖2F denotes the squared Frobe-
nius norm of A. For a square matrix A, |A| is the
matrix determinant, A-1 is the matrix inverse, and A-1/2

is the matrix inverse square root. A ≽ 0 denotes that A
is positive semidefinite.
In this paper, we consider the downlink of a multiuser

MIMO system. There exists a base station with MT

transmit antennas and a transmit power constraint of P.
The base station transmits to K0 users out of a pool of
K multiple-antenna users requesting service, each with
Nk receive antennas. Let Hk ∈ CNk×MT denote the down-
link channel matrix of the kth user, k = 1, 2, ..., K. We
assume that at all times, the transmitter has perfect
knowledge of the channel state information of all users
(perfect CSIT), and that each user knows its channel
perfectly. The data vector of user k, sk ∈ CNk×1, is pre-
processed at the transmitter with the precoding matrix
Wk ∈ CMT×Nk to yield the transmitted signal vector
xk ∈ CMT×1. The Nk × 1 received signal vector of the kth
user can be expressed as

yk = Hk

K0∑
j=1

Wjsj + nk (1)

where nk ∈ CNk×1 denotes zero mean additive white
Gaussian noise with E

{
nknH

k

}
= σ 2

n INk. We assume
herein without loss of generality that σ 2

n = 1.

A. Block diagonalization
The following is a quick review of BD. First consider the
aggregate channel matrix of K0 users:

H =
[
HT

1H
T
2 . . .HT

K0

]T ∈ C
∑

k Nk×MT (2)
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Then, for each user k, remove its channel matrix Hk

from H to create a set of aggregate
(∑K0

j=1,j�=k Nj

)
× MT

channel matrices H̃k:

H̃k =
[
HT

1 . . .HT
k−1 H

T
k+1 . . .HT

K0

]T (3)

Block diagonalization then removes MUI by designing
Wk to fall in the null space of H̃k, so that HjWk = 0 for all
k ≠ j and 1≤(j, k)≤K0. This gives the effective channel
matrix a block diagonal structure, thereby decomposing
the multiuser channel into parallel equivalent single-user
channels. The received signal vector (1) for each user
becomes yk = HkWksk + nk. The above implies that the
rank of the null space for each H̃k must be greater than
zero, which in turn imposes constraints on the total num-
ber of receive antennas or users that can be supported. Let

r̃k = rank
(
H̃k

)
. K0 users can then be supported using BD

if [4] max
(
r̃1, r̃2, . . . , r̃K0

)
< MT. If each user’s channel

matrix is full rank, the above constraint is then equivalent

to
(∑K0

k=1,k �=j Nk

)
< MT for all j, 1≤j≤K0. Furthermore, if Nk

= N, ∀k, this further simplifies to K0 = ⌈MT/N⌉.
Let the singular value decomposition (SVD) of H̃k be

denoted as H̃k = Ũk

(
�̃k 0

) (
Ṽ
1
k Ṽ

0
k

)H
. Then the r̃k × r̃k

diagonal matrix �̃k contains the r̃k non-zero singular

values of H̃k. Ṽ
0
k
holds the MT − r̃k right singular vectors,

which form a basis for the null space of H̃k. Construct-

ing the precoding matrix Wk with the columns of Ṽ
0
k

will satisfy the zero MUI condition. The decoupled,
non-interfering, equivalent single-user MIMO channels
can be expressed as

Hk,e = HkṼ
0
k

(4)

With the transmit power constraint P, the achievable
throughput of BD is

RBD = max
Qk:Qk�0

K0∑
k=1

log2

∣∣∣∣I + 1
σ 2
n
Hk,eQkH

H
k,e

∣∣∣∣ (5)

such that

(∑K0

k=1
Tr (Qk)

)
≤ P. Qk is the covariance

matrix for the equivalent channel of user k. The solution
of (5) is obtained by performing the water-filling power
allocation over the singular values of the block-diagonal
matrix He = diag

(
H1,e,H2,e, . . . ,HK0,e

)
for the sum-power

constraint of P [4], where Hk,e, k = 1, 2, ..., K0 is defined
by (4).

B. Successive zero-forcing
Unlike BD, SZF does not completely pre-eliminate the
multiuser interference. As the name implies, precoding

in SZF is successive, and hence a user precoding order
must be defined. For a given set of users with an order
π, for each user k Î {1, ..., K0} the received signal can be
expressed as [5]

yπ(k) = Hπ(k)

⎛⎝Wπ(k)sπ(k) +
∑
j<k

Wπ(j)sπ(j) +
∑
j>k

Wπ(j)sπ(j)

⎞⎠ + nπ(k) (6)

In SZF, the precoding matrix Wπ(k) is designed such
that it lies in the null space of the aggregate channel H̄k
of the k - 1 previously precoded users’ channels (com-
pared with all other users with BD):

H̄k =
[
HT

π(1)H
T
π(2) . . .HT

π(k−1)

]T
(7)

With this null space constraint, the third term in (6) is
cancelled. Then, (6) reduces to

yπ(k) = Hπ(k)

⎛⎝Wπ(k)sπ(k) +
∑
j<k

Wπ(j)sπ(j)

⎞⎠ + nπ(k) (8)

SZF of K0 users’ channels is possible if
MT > rank (H̄K0−1).
Let us denote the SVD of (7) as

H̄k = Ūk�̄kV̄
H
k = Ūk�̄k

[
V̄
1
k V̄

0
k

]H
(9)

where V̄k ∈ CMT×MT. V̄
0
k ∈ CMT×v̄k holds the

v̄k = MT − rank
(
H̄k
)
right column vectors, which define

a basis for the null space of H̄k. V̄
0
1
is defined as IMT

.
The precoding matrix Wπ(k) is constructed from the col-
umns of V̄

0
k.

Assuming the transmitted signal vectors to be Gaus-
sian distributed [4,5], for a given set of K0 users and a
specific ordering π = πi of those users, the maximum
achievable rate of each user is given by

Rπi(k) = log2

∣∣∣∣I +Hπi(k)

(∑k
j=1 V̄

0
j Bπi(j)

(
V̄
0
j

)H)
HH

πi(k)

∣∣∣∣∣∣∣∣I +Hπi(k)

(∑k−1
j=1 V̄

0
j Bπi(j)

(
V̄
0
j

)H)
HH

πi(k)

∣∣∣∣ (10)

where the precoder input covariance matrices Bπi(k)

and the channel input covariance matrices Qπi(k)

of the users are defined such that

Qπi(k) = Wπi(k)W
H
πi(k) = V̄

0
kBπi(k)

(
V̄
0
k

)H
.

The achievable sum rate of SZF precoding for a given
user order πi is

Rπi
SZF = max

{Qπi(k)
}
k∈{1,...,K0}:Qπi(k)

�0,
∑

kTr(Qπi(k)
)≤P

K0∑
k=1

Rπi(k) (11)
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The maximum achievable sum rate RSZF of SZF pre-
coding is then obtained by maximizing (11) over all K0!
possible user orders:

RSZF = max
πi,i=1,2,...,K0!

Rπi
SZF (12)

C. Further comments on SZF
We note that for both BD and SZF, it is possible to sup-
port additional users beyond what is described above by
not transmitting the maximum number of streams Nk to
certain users. However, due to the zero-forcing con-
straints, it is insufficient to simply reduce the number of
data streams alone. For example, say a user is to receive
data in a null space of rank two, but is only sent one
data stream. It will, in general, be optimal to send that
sole data stream using a linear combination of both null
space basis vectors rather than just using one of the vec-
tors. Thus, in such a case, the number of supportable
users would still be unchanged. Instead, the transmitter
requires some knowledge about the receive processing
at the users; this will increase the rank of the effective
null space for other users through consideration of the
effective dk × MT channel matrices Heff,k = RkHk, where

Rk ∈ Cdk×Nk is the receive-processing matrix of user k,
and dk is the number of data streams sent to user k. In
other words, the effective rank of a user’s channel would
be reduced, thus allowing further users to be scheduled.
For example, the system could use coordinated beam-
forming with joint design of the transmit precoding and
receive-processing matrices [4,12]. Research has indi-
cated that such a joint consideration is in fact necessary
to truly maximize the (weighted) sum rate of the MIMO
BC under linear precoding (see for example [13]). How-
ever, this also requires a great deal of additional com-
plexity. As mentioned, the transmitter must know how
each receiver is processing its data, or at least make
some assumption on its part regarding that processing.
For example, a receiver with linear processing may pos-
sibly use receive antenna selection [13,14], SVD-based
processing [3,14] ([15] also uses this to reduce the rank
of effective channels), or minimum mean-squared error
processing [12]. Alternately, the transmitter could calcu-
late processing matrices/filters for the receivers [16,17].
Either way, there would generally be a significant
amount of additional overhead to calculate and/or signal
this information between the transmitter and receivers,
above and beyond that required to obtain channel state
information. With a large pool of active users, this also
would increase the complexity of scheduling, as the base
station would now also have to optimize the allocation
of data streams as well as the selection of users and
their ordering. Nevertheless, the SZF optimization
method we propose later would also work in this case if

the users’ channel matrices were replaced with their
effective channel matrices, which incorporate the
receive-processing matrices.
In theory, a better overall system performance could

possibly be obtained by a general linear precoding
scheme without the zero-forcing constraints of SZF.
Those constraints do result in a restriction on the
degrees of freedom that the transmitter has to transmit
data to users. However, from a practical standpoint, we
wish to note that often when linear precoding is imple-
mented in practice, the base station may be restricted in
its choice of precoding vectors and/or covariance
matrices. For instance, the base station may have to per-
form precoding based on selections from a codebook
[18,19]. ZFB and BD are then approximated at the base
station by selecting beamforming vectors for a given
user that are aligned with that user’s channel, but are
not aligned with (i.e., near-orthogonal to) the channels
of the other scheduled users. SZF can thus also be
approximated in much the same way, with about the
same complexity. The difference is that instead of select-
ing vectors unaligned with all other users, the base sta-
tion would instead select ones that are unaligned with
only the previously considered users.
It is lastly worth noting that SZF can also be com-

bined with DPC to remove MUI. The precoding of DPC
partially removes MUI, while the zero-forcing con-
straints of SZF remove the remaining MUI. This is
referred to as SZFDPC in [5], and is a generalization of
zero-forcing DPC [20] to users with multiple receive
antennas. SZFDPC is known to asymptotically achieve
the sum rate of DPC in the low and high SNR regimes,
at low SNR with optimal ordering, and at high SNR for
any ordering. We do not consider SZFDPC in this
paper, though; we restrict our focus to just the linear
precoding of SZF.

3. SZF Covariance Optimization
Attempting to solve (10)-(12) to determine optimal cov-
ariance matrices for the SZF sum rate is quite complex.
The optimization in (11) is non-convex, unlike that of
BD, where the complete decoupling of the users’ effec-
tive channels creates a convex problem. Thus, finding a
global optimum can be difficult. In the less-constrained
case of DPC, the issue of non-convexity for the broad-
cast channel can be avoided by operating on the dual
MAC instead. The capacity region of the MAC equals
that of the BC, and the covariance matrices for one can
be found from those of the other [2]. Moreover, the
MAC capacity is convex, so the globally optimum solu-
tion for it (and thus indirectly for the BC) can be found
relatively easily. Unfortunately, the transformation does
not support the additional null space constraints in SZF.
There do exist alternative, more general MAC-BC

Elliott and Krzymień EURASIP Journal on Wireless Communications
and Networking 2011, 2011:133
http://jwcn.eurasipjournals.com/content/2011/1/133

Page 4 of 16



dualities and transformations, such as mean-squared-
error duality [21], signal-to-interference-plus-noise ratio
(SINR) duality [12,22], and rate duality [23], which also
account for linear precoding. However, the results for
these dualities indicate that even if the null space con-
straints can be accounted for in the transformations
(which is not necessarily guaranteed), the problem on
the dual MAC would still be a non-convex problem.
Thus, regardless of operating on the MAC or the BC,
finding the global optimum would remain difficult.
Finding a local optimum solution is somewhat easier,
although how far that solution is from the global opti-
mum may be uncertain.

A. Existing method
For a given user order π, the authors in [5] have pro-
posed a suboptimal DPC-based numerical technique to
solve (11). This technique makes use of the duality
between the MIMO BC and MAC. The proposed tech-
nique uses the following steps [5]:

1. Using some optimization method for the MAC,
such as the one in [6], find optimal MAC covariance
matrices Pπ(k) for the transmit power constraint P.
2. For the given order π, convert the MAC covar-
iance matrices Pπ(k) to BC DPC covariance matrices
Dπ(k) using the transformation method described in
[2] (assuming user 1 is encoded last in DPC).
3. For users π(1), π(2), ..., π(K0 - 1), where user π(1)
is ordered first in SZF, project the DPC matrices
Dπ(k) to the SZF null space constraints by

Qπ(k) = V̄
0
k(V̄

0
k)

HDπ(k)V̄
0
k(V̄

0
k )

H (13)

4. For user π(K0),
(a) Find a new Dπ(K0) by waterfilling over the
effective channel matrix

Heff =

[
I +Hπ(K0)

(
K0−1∑
i=1

Qπ(i)

)
HH

π(K0)

]−1/2

×Hπ(K0)V̄
0
K0
(V̄

0
K0
)H

(14)

with the power constraint Pπ(K0) = P −∑K0−1
k=1 Tr(Qπ(k)).

(b) Obtain Qπ(K0) from (13) with the new Dπ(K0).

We note that the sum-rate expression for DPC is
essentially the same as that for SZF, except without the
null space constraints, and for a reversed ordering.
Thus, the DPC optimization is basically a relaxation of

the SZF optimization. As noted in [5], if the projections
in (13) were unitary, the optimal SZF waterfilling solu-

tion would be obtained. Unfortunately, V̄
0
k (V̄

0
k)

H is gen-
erally not unitary.

B. Problems with existing method
The above suboptimal method performs reasonably well.
The sum rate of SZF exceeds that of BD in the simulation
results provided in [5]. However, we have found two
main deficiencies with the existing method. The first was
discovered during our related work on scheduling for BD
in [7] and SZF in [8,9]. We found in one case at high
SNR, our scheduling algorithms for SZF performed sig-
nificantly worse than the equivalent ones for BD at the
same SNR. To isolate the problem, we ran an optimal
exhaustive search scheduling algorithm. It was found that
even with optimal scheduling, the throughput for SZF
was worse than that for BD. This does not make sense;
the BD optimization problem is a more constrained ver-
sion of the SZF optimization problem. Any solution that
satisfies the BD constraints also satisfies the SZF con-
straints. Therefore, the performance of SZF must always
be no worse that of BD. With the problem lying not in
the scheduling algorithm, we were able to determine the
deficiency to be in the SZF covariance optimization
method. Subsequent work, which we shall describe later
in this paper, showed that the existing method becomes
increasingly suboptimal as the number of supportable
users K0 and/or the SNR increase. The authors in [5]
acknowledge that their method is suboptimal, and that
better methods can likely be found, but to date, we are
unaware of any results in the literature examining exactly
how suboptimal the existing method is.
The second deficiency is that the existing covariance

method only accounts for maximization of a pure
(unweighted) sum rate. However, the method cannot be
directly applied to a weighted sum-rate (WSR) maximi-
zation; i.e., to maximize

P
kwπ(k)Rπ(k), where wπ(k) is a

weight for user π(k) and Rπ(k) is as defined in (10). It
may be possible to extend the method of [5] to a WSR
by first solving a WSR maximization for the MAC, then
proceeding as normal. However, a WSR maximization
for the MAC (and thus for the BC due to duality) is
found for one specific ordering of users. Namely, it is
known that users should be decoded on the MAC in
the reverse order of the size of the weights of the users,
such that the user with the largest weight is decoded
last [24,25]. Equivalently, the user with the largest
weight should be encoded first on the BC. Because of
this, the existing method’s transformations and projec-
tions may not be the best if a different user ordering is
to be considered for the SZF WSR. Neither is it necessa-
rily the case that the same ordering that is optimal to
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maximize the WSR for SZF is the same ordering
required for the MAC/BC.
In the following section, we propose a new method for

SZF covariance optimization that addresses both of
these issues.

C. Proposed conjugate gradient projection method
We propose a CGP algorithm to optimize the covar-
iance matrices for SZF. CGP methods are particularly
useful in MIMO systems, as the solutions can be found
using gradients and functions of complex-valued matrix
variables. Some other optimization methods are only
well defined for functions of real-valued vectors, so in
those circumstances the covariance matrices and func-
tions would have to be decoupled and expressed in
terms of those vectors. CGP algorithms or gradient pro-
jection algorithms have been used for covariance optimi-
zation in other similar circumstances. For example, CGP
is used in a weighted MAC sum-rate maximization in
[25] and [26], and a gradient projection method is used
for MIMO interference systems in [27] and for the
MIMO MAC in [28]. We model our CGP algorithm
after the one in [26], which operates on transmit filter
matrices Tu instead of on the covariance matrices Qu

directly. This method has the advantage of guaranteeing
a positive semidefinite covariance matrix Qu = TuTHu
(this is a Cholesky decomposition [29]). Operating on
Qu directly would require a projection during each itera-
tion to ensure the solution is in the set of positive semi-
definite matrices (cf. [25]).
Let us rewrite and combine (10) and (11) to account

for a weighted sum rate. Without loss of generality, we
assume π(k) = k for brevity of notation:

RWSZF = max
Bk�0,

∑
kTr(Bk)≤P

K0∑
k=1

wklog2

∣∣∣∣I +Hk

(∑k
i=1 V̄

0
i Bi(V̄

0
i )

H
)
HH

k

∣∣∣∣∣∣∣∣I +Hk

(∑k−1
i=1 V̄

0
i Bi(V̄

0
i )

H
)
HH

k

∣∣∣∣ (15)

Note in the above that Tr(Qk) = Tr
[
V̄
0
kBk(V̄

0
k )

H
]

= Tr
[
Bk(V̄

0
k)

H
V̄
0
k

]
= Tr (Bk), as the columns of V̄

0
k are

orthonormal, so (V̄
0
k)

HV̄
0
k = I. Thus, there is the same

transmit power constraint on Bk as on Qk.
Let us further define Bk = TkTHk , where Tk is a

v̄k × min (v̄k,Nk) matrix. Thus, Wk = V̄
0
kTk. Defining Tk

in such a manner helps reduce the complexity of the
optimization by reducing the number of optimization
variables [5]. The power constraint can also be re-

expressed as
∑

k
‖Tk‖2F ≤ P, since ‖Tk‖2F = Tr(Bk). The

CGP algorithm that operates on Tk is described as Algo-
rithm 1 in the following.

Algorithm 1 CGP Algorithm for SZF covariance
optimization

Initialize: Tk; Sk = 0, ∀k; r = 1; a = 1.
Calculate WSR from (15).
repeat

Store Tk_old = Tk, ∀k; Sk_old = Sk, ∀k; rold = r;
WSRold = WSR.

Calculate gradients: Gk, ∀k from (16)

Normalize gradients: Ḡk =

√
P∑

k ‖ Gk ‖2F
Gk,∀k

Project gradients: Ĝk = Ḡk −
∑

kTr(T
H
k Ḡk)∑

kTr(T
H
k Tk)

Tk,∀k

Calculate Frobenius norm: ρ =
∑

k
||Ĝk||2F

Determine search directions: Sk = Ĝk +
ρ

ρold
Sk old,∀k

Step in search directions: T̂k = Tk old + αSk,∀k
Normalize transmit filter sum-power:

Tk =

√
P∑

k||T̂k||2F
T̂k,∀k

Calculate WSR from (15).
Set LoopCounter = 0.
while WSR <WSRold do
Decrease step size a.
Set Sk = Ĝk,∀k.
LoopCounter = LoopCounter + 1
if LoopCounter = LoopThresh then
Set WSRold = WSR.
Reset a to 1.

end if
Recalculate T̂k, Tk, and WSR.

end while
until desired accuracy reached

Because the SZF WSR maximization problem is not
convex, the CGP algorithm may not necessarily find the
global optimum. Furthermore, the optimal Tk is not
necessarily unique, since Bk is positive semidefinite. (For
example, multiply Tk by any unitary matrix, and the
new Tk will yield the same Bk, and thus the same WSR.)
The local optimum that the algorithm finds is also to
some degree dependent on the initial values for Tk.
Often, when optimizing covariance matrices, an initial
choice of a scaled identity matrix is used, but this in
general cannot be done here, as generally Tk is not a
square matrix. Furthermore, even if the algorithm was
operating on Bk instead of Tk, a scaled identity would
still not be an appropriate starting point, as the rank
would likely be too large; the rank of Bk would be v̄k
instead of min(v̄k,Nk). Instead, we initialize Tk by distri-
buting values of

√
P/K0/v̄k to the columns of Tk in a

round-robin fashion. This is equivalent to creating a
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min(v̄k,Nk) × min(v̄k,Nk) identity matrix, vertically
concatenating copies of the rows of that identity matrix
until there are v̄k rows, then finally multiplying by√
P/K0/v̄k. For example, if Tk was 3 × 2, entries (1,1),

(2,2), and (3,1) of Tk would be initialized to
√
P/K0/3,

while the remaining entries would be 0.
The gradient can be calculated using matrix calculus

from the partial differential of (15) with respect to THk

[30]. Specifically, ∇k = 2
∂RWSZF

∂T∗
k

= 2

[
∂RWSZF

∂THk

]T
. Since

the gradients will be normalized, leading constants can
be left off. It can be shown that the gradient for user k
is proportional to

Gk =
(
V̄
0
k

)H ( K0∑
i=k

wiHH
i

⎡⎣I +Hi

⎛⎝ i∑
j=1

V̄
0
j TjT

H
j

(
V̄
0
j

)H⎞⎠HH
i

⎤⎦−1

Hi

−
K0∑

i=k+1

wiHH
i

⎡⎣I +Hi

⎛⎝ i−1∑
j=1

V̄
0
j TjT

H
j (V̄

0
j )

H

⎞⎠HH
i

⎤⎦−1

Hi

⎞⎠ V̄
0
kTk

(16)

The above gradients seem quite complex at first
glance. However, some computational savings can be
obtained by a successive calculation of part of the gradi-

ents. To begin, the sums �i =
∑i

j=1
V̄
0
j TjT

H
j (V̄

0
j )

H can

first be calculated and stored for each i = 1, ..., K0 to
avoid calculating these sums multiple times. Next, we
can define Zk as

Zk = wkHH
k [I +Hk�kH

H
k ]

−1Hk

−wk+1HH
k+1[I +Hk+1�kHH

k+1]
−1Hk+1

(17)

Then, each gradient Gk can be calculated starting from
k = K0 downwards, using a running sum for Zk. For

example, if K0 = 4, G4 =
(
V̄
0
4

)H
(Z4) V̄

0
4T4,

G3 =
(
V̄
0
3

)H
(Z3 + Z4) V̄

0
3T3 and so on.

In [26], the authors define aggregate matrices G, S, and
T, which are the horizontal concatenation of the matrices
Gu, Su, and Tu, respectively. This primarily allows them to
avoid the summation of squared F-norms and traces in
the notation for their algorithm. For example, in the gradi-

ent normalization step,
∑

u
||Gu||2F can be represented

more compactly as ||G||2F. This notation, strictly speaking,
is not possible with our adaptation for SZF, as the gradi-
ents Gk and matrices Tk are generally of different dimen-
sions for each k. An equivalent notation could still be used
by instead defining aggregate matrices as a block-diagonal
formation of the component matrices instead of a horizon-
tal concatenation. However, this could potentially require
additional memory and computational complexity unless
the algorithm can account for the sparseness of the aggre-
gate matrices (i.e., the many matrix entries after block-

diagonalization that equal zero), and is not strictly neces-
sary in the first place.
In the “step in search directions” portion of the algo-

rithm, it is possible to find an approximately best step
size, for example via an inexact line search like Armijo’s
Rule [31]. However, we find just as in [26] that it is gen-
erally sufficient to simply reduce the step size by a fac-
tor if there is no increase in the WSR. For example, we
had good results when using equal weights of wk = 1,
∀k, by simply multiplying a by about 0.8. We did, how-
ever, notice on rare occasions when the algorithm did
not converge properlya. This is likely due to the non-
convexity of the problem; the algorithm is likely stalling
near a saddle point in these cases. Repeated decreases in
a did not result in an increase in the WSR, and often
led to a small decrease in the WSR. This may also be
due to the fact that when a non-linear function is being
optimized, an inexact line search (or lack of one, in our
case) can lead to the search not being in the correct
direction [31]. For example, if a function is being maxi-
mized, although the search should be in a direction of
ascent, the search direction may actually be in one of
descent. Thus, we implement the addition of a loop
counter to compensate for these rare cases. If the loop
counter reaches a certain threshold (we use a threshold
of 100), the previous best WSR is set to the currently
found value for the WSR, and a is resetb to 1. Since this
updated value is often smaller than the previous value,
there is a guaranteed larger value that the algorithm can
head towards. This slight decrease in WSR and resetting
of a is generally enough for the algorithm to get suffi-
ciently far enough away from wherever it has stalled to
continue finding a better solution (i.e., even better than
where it stalled). If the algorithm’s WSR still does not
increase notably at this point, then it means the algo-
rithm has found a local solution to the problem, as the
change in WSR should be less than the desired accu-
racy. Thus, the algorithm can stop and return the cur-
rent solution.
While we found that a decrease in the step size a by a

factor of 0.8 worked well for our simulations, this value
can likely be tuned depending on the specific system
parameters and/or channel experienced by the users, to
improve the convergence of the algorithm. The loop
threshold, however, is best made dependent on the step
size factor and the numerical precision of the system,
and also optionally on the desired accuracy of the WSR.
For instance, with our values of 0.8 and 100, note that
0.8100 ≈ 2 × 10-10 ≈ 2-32. Thus, when the loop threshold
is reached, the gradients would be changing around the
10th decimal place, or the 32nd bit of a floating point
representation. Further decreases in the step size would
result in changes in the gradients (and thus the WSR)
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that are quite insignificant and likely below whatever
accuracy of the solution that would be required in prac-
tice. Thus, our loop threshold of 100 is reasonably logi-
cal in conjunction with the step size factor of 0.8.
We lastly wish to note that the proposed algorithm,

like the existing method from [5], is meant to find cov-
ariance matrices for a given selection of users and their
order. The problem of user scheduling and the selection
of an order is a complicated issue in and of itself, and
for the most part outside the scope of this paper. Where
scheduling is involved herein, we generally consider an
optimal exhaustive search. The goal of this paper is
rather to provide an improved algorithm that applies to
whatever selection and order that the scheduler may
wish to examine. The capability of examining alternative
choices might be desired by the scheduler to, for exam-
ple, meet certain QoS guarantees for the users, such as
a minimum throughput.

D. Discussion of complexity
In [8,9], we calculate the complexity of the method for
calculating covariance matrices from [5] in terms of the
number of flops (floating point operations) required. It
was found that the existing method has complexity
order O(K0M

3
T), assuming all users have the same num-

ber of receive antennas N. That is also the order of find-
ing the null space basis vectors for SZF. Since our CGP
algorithm also requires these vectors, it too must have a
complexity order of at least O(K0M

3
T). This in fact is

exactly the order of complexity of the CGP algorithm,
as the other steps have no greater complexity. MT is the
largest matrix dimension encountered, but it is never
necessary to multiply two MT × MT matrices together
(with complexity O(M3

T) [32]) for all K0 users. Each gra-
dient requires a matrix inversion, but this is of an Nk ×
Nk matrix, which would have a complexity order O(N3

k )
[32]. The only other comparable order term is the mul-

tiplication of (V̄
0
k)

HZk for each user with complexity

O(v̄kM2
T), which when summed over all K0 users also

works out to O(K0M
3
T).

In fact, any precoding method that requires calculating
an SVD, a QR decomposition, or a pseudoinverse of an
M × N or N × M matrix for each of K0 users (for exam-
ple, to find beamforming vectors for the precoder) will
have complexity order O(K0M

2N), where M is the lar-
ger matrix dimension [32]. As a comparison, again
assuming all users have N receive antennas, the regular-
ized BD method of [15] performs an SVD of a (K0-1)N
× MT matrix for each user. As generally a system will be
looking to schedule as many users and/or send as many
data streams as possible, the product K0N is of the same
order as MT, so the method of [15] is also

approximately of order O(K0M
3
T). The efficient WSR

method of [16] is also technically a scheduling algo-
rithm, so there would be a factor of K in its complexity.
However, to compare it on equal terms, we will ignore
the complexity of determining the best user to allocate a
data stream to, and just assume that decision has been
made. At each step i of the method, when allocating the
ith stream, the method calculates the pseudoinverse of
an i × MT composite channel matrix to perform water-
filling. In the case where the base station transmits the
maximum of MT data streams, the total order of com-
plexity would theoretically then be

O
(∑MT

i=1
M2

Ti
)
= O (M4

T

)
. However, some complexity

savings might be possible if the pseudoinverse can be
recursively calculated as each row is added to the com-
posite channel matrixc. We are uncertain what the exact
order of complexity would be in such a case, however.
In fairness, we note that while the precoding methods

compared above scale with around the same order of
complexity as our proposed CGP algorithm, the power
allocation for those methods is of closed form instead of
the iterative power allocation of our algorithm. Thus,
there would be a smaller constant on the highest order
term for those algorithms compared with the CGP
algorithm.

4. Simulation results
In this section, we begin by presenting simulation results
comparing the performance of our proposed SZF CGP
covariance optimization method with the existing
method. For comparison, we also present the perfor-
mance when using BD, and for DPC to provide an upper
bound on the achievable performance of the MIMO BC.
We consider the case for which the transmitter has no
knowledge of the receive-processing matrices of the
users, and thus the maximum number of supported users
for both BD and SZF is K0 = ⌈MT /N ⌉. This is the same
as that considered in [5].
Later, we also compare the performance of our CGP

algorithm to other existing precoding methods, namely
the regularized BD (RBD) method and iterative RBD
(IRBD) method from [15], and the efficient WSR
method from [16]. We note, though, that RBD and
IRBD are only meant for maximizing an unweighted
sum rate, not a WSR. All three methods are capable of
serving additional users by reducing the user null spaces
with effective channel matrices when allocating data
streams to the users. Thus, for a fair comparison, we
also implement receive antenna selection (RAS) in con-
junction with our CGP algorithm. RAS also reduces the
effective rank of a user’s channel, and requires a very
small amount of extra overhead for the transmitter to
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tell certain users to switch off given antennas; only the
indices of the antennas would need to be sent. Given
the notably increased complexity of having to search
over all possible selections of antennas, we limit the
comparison to the very simple scenarios also considered
in [15] and [16]. (This increased scheduling complexity
is also partially why we do not consider receive proces-
sing for the scenarios described in the previous para-
graph, in addition to the extra signalling overhead.)
For all the simulations, we assume a spatially uncorre-

lated flat Rayleigh fading channel model, i.e., the ele-
ments of Hk are independent and identically distributed
complex Gaussian random variables with a variance of
0.5 per dimension. Quasi-static block fading is assumed,
such that the channel remains fixed for a given trans-
mission interval, and changes independently between
intervals. All users are assumed to have the same num-
ber of receive antennas. The SNR is defined as P/σ 2

n .

A. Comparison with existing method
We begin by comparing two simple cases also examined
in [5]. The average sum rate is determined through a
Monte Carlo simulation. Figure 1 shows the unweighted
sum rate (i.e., all users have a weight of 1) for BD and the
existing and proposed SZF covariance optimization
methods. In this first case, MT = 4, K = K0 = 2, and N1 =
N2 = 2. Figure 2 shows a second unweighted case with
MT = 6, K = K0 = 3, and N1 = N2 = N3 = 2. In both of
these cases, strictly speaking scheduling is not necessary,
as the number of available users K equals the number of
simultaneously supportable users K0. However, we do

still consider all possible subsets of those users, and all
possible orders of those users for SZF, to find the ordered
selection that gives the maximum sum rate.
It can be seen that at low SNR, there is essentially no

difference between our proposed CGP algorithm and
the existing SZF covariance optimization method from
[5]. However, as the SNR increases, there is an increas-
ing gain in the throughput of our proposed algorithm
relative to the existing algorithm. In Figure 1, the gains
are rather modest; the sum rate is about 0.35 bit/s/Hz
larger at 10 dB, about 0.65 bit/s/Hz larger at 14 dB, and
about 0.6 bit/s/Hz larger at 20 dB. These represent per-
centage gains of about 3.5, 5, and 3%, respectively. How-
ever, the gains are much more significant in Figure 2.
The throughput increase is about 0.75 bit/s/Hz at 10
dB, and about 2.45 bit/s/Hz at 20 dB. This is a percen-
tage gain of over 5 and 9%, respectively. More impor-
tantly, we note that the performance of the original
method is worse than that of BD above an SNR of 16
dB. This result was not visible in [5], as the graph for
MT = 6, K = 3 in that paper only went up to 16 dB. In
comparison, our proposed CGP algorithm performance
is consistently above that of BD. We can thus see that
the performance gains increase both with the number of
supported users and with the SNR.
In Figure 3, we present a somewhat more complicated

scenario more related to our scheduling work in [8,9].
In this case, we consider a larger user pool size of K =
16 with MT = 8. Each user in the pool has Nk = 2
receive antennas, so at most K0 = 4 users can be served
simultaneously. We use an exhaustive search for
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Figure 1 Average sum rate versus SNR with proposed and existing SZF covariance optimization methods and BD; MT = 4, K = K0 = 2,
N1 = N2 = 2.
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scheduling that considers all possible subsets of users
and all possible user orders for those subsets. This
decouples the effect of the specific scheduling algorithm
and allows us to focus on the performance of the SZF
covariance optimization methods.
For the existing numerical covariance optimization

method [5], the average sum rate for SZF quickly
becomes less than that of BD, at just above 10 dB. How-
ever, the average sum rate for SZF using our CGP

algorithm remains higher than that of BD at least up to
an SNR of 20 dB. The improvement in performance
over the existing algorithm is about 0.68 bit/s/Hz (about
5%) at 5 dB, about 1.5 bit/s/Hz (about 7%) at 10 dB,
and about 4.85 bit/s/Hz (about 12%) at 20 dB.
We note, though, that the gain in throughput relative

to BD starts to decrease at higher SNR. The throughput
may likely become less than that of BD at an SNR
somewhere larger than 20 dB. This would serve to
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Figure 2 Average sum rate versus SNR with proposed and existing SZF covariance optimization methods and BD; MT = 6, K = K0 = 3,
N1 = N2 = N3 = 2.
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Figure 3 Average sum rate versus SNR with proposed and existing SZF covariance optimization methods and BD, using exhaustive
search scheduling; MT = 8, K = 16, Nk = 2 for each user, K0 = 4.
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demonstrate that our CGP algorithm, though improved,
is still globally suboptimal. However, a worse perfor-
mance than BD can be avoided with our algorithm.
Rather than the round-robin initialization described in
Section 3-C, instead the matrices Tk can be initialized
based on the BD-optimal covariance matrices. For
example, at 20 dB, the difference in the average sum
rate between the round-robin initialization and the BD-
optimal initialization is about 0.01 bit/s/Hz, which is
negligible. Obtaining the BD-optimal matrices will
require some additional complexity, due to an additional
set of null space basis vector calculations and waterfill-
ing. The added complexity may be partially offset,
though, as the CGP algorithm might have to run for
fewer iterations. Nevertheless, this for the most part
should be unnecessary, as that extremely high of an
SNR (or SINR, in the case of interference-limited cellu-
lar systems) is unlikely to be seen in practice.
We have also noticed that, while the existing SZF cov-

ariance method is worse than our proposed CGP method,
the covariance matrices Qk,o provided by the existing
method sometimes provide a better starting point for our
CGP than the round-robin initialization. This is particu-
larly the case at high SNR. For example, in Figure 2, the
average throughput for our CGP at 20 dB using Qk,o for
initialization increases from about 29.3 bit/s/Hz to about
29.7 bit/s/Hz. This extra throughput represents on aver-
age about an additional 1.4% increase. However, in most
cases, this small additional throughput is likely not worth
the added computational complexity. To get that extra
percent, in effect, two optimizations must be run. The
first is on the MAC (followed by transformations and
projections) to find Qk,o, then a second with our CGP
algorithm using Qk,o for initialization.
Furthermore, as K increases, this effect seems to

essentially disappear. If we consider now the scenario
from Figure 3, there is virtually no difference in the
average sum rate between the two initialization meth-
ods. Our simulations only showed an improvement of
about 0.03 bit/s/Hz at 20 dB, which is certainly negligi-
ble and within the error margin of the simulation. It
appears that the larger user pool and scheduling have
the effect of mostly removing any initialization-based
gains. In part, this is because the larger user pool means
that the scheduled users’ channels are closer to orthogo-
nal. The larger pool also means that the scheduling
algorithm has more options to choose a different set of
users or encoding order that may negate any effect from
the different initialization point.

B. Comparison of weighted sum rate
We now consider a simple scenario for a weighted sum
rate. We examine the case where MT = 8, K = K0 = 4,
and Nk = 2, ∀k. We set the weight for each user

proportional to that user’s index, i.e., wk = k/
P

k wk.
(The sum in the denominator is just for normalization
and does not affect the rates the scheduled users
receive.) Such a scenario might arise in practice if each
user belongs to a different class of service, such as if
they are carrying different types of traffic, or they have
paid for higher average data rates. Figure 4 shows the
WSR performance of our proposed CGP method rela-
tive to a WSR using BD. All possible user subsets and
orderings are considered. Recall that there exists no
prior method for weighted SZF covariance optimization,
so we cannot compare our performance with any such
algorithm. We observe that the WSR of SZF is larger
than that when using BD. The SZF algorithm performs
better than BD in this scenario by about 0.5 dB in SNR.
Our simulations for this scenario also indicate only a

minor correlation between the best user ordering and
the relative sizes of the weights. Figure 5 shows a histo-
gram of how often each user index is ordered in a given
position for the best obtained WSR. A user index of 0
indicates that no user has been encoded in that position
(i.e., transmitting to less than the maximum supportable
number of users maximizes the WSR). It can be seen
that there is somewhat of a tendency to order the users
in the decreasing order of their weights. This trend is
strongest at lower SNRs. However, as the SNR increases,
this trend diminishes. At 20 dB, for example, it is
approximately equally likely that users 3 and 4 (with
weights 0.3 and 0.4, respectively) will be ordered first.
User 2 is ordered first about half as often as 3 or 4, but
also ordered second about half as often as 3 or 4. Thus,
there is no hard rule to determine the optimal user
ordering for a WSR for SZF. This is in stark contrast to
the MAC or when using DPC on the BC; e.g., on the
MAC users should always be decoded in the increasing
order of their weights.
We also note that even at high SNR, it is often best in

terms of maximizing the WSR to not transmit to the
maximum possible number of users. In this scenario,
with the limited user pool to choose from, it is better to
transmit to less than the maximum number about 43-
57% of the time. We made a similar observation in [8,9]
for unweighted sum rates when scheduling to small user
pools. The likelihood of scheduling the maximum possi-
ble number of users increases with the size of the user
pool K, due to multiuser diversity and the increased
chance of finding users with orthogonal channels. This
fact is unlikely to change using our proposed CGP opti-
mization algorithm here.

C. Comparison with other precoding methods
We now compare the performance of our SZF CGP
algorithm to some other precoding methods. We start
with a case considered in [15], with K = 3 users, each
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with Nk = 4 receive antennas, served by a base station
with MT = 4 transmit antennas. Without considering
receive processing, the system could only support one
user at a time with BD or SZF. However, with receive
processing, all three users could potentially be supported
at once by transmitting a single stream to each of them
(with one single user potentially receiving two streams).
We consider RBD and IRBD from [15], the WSR
method of [16] (with equal user weights of 1), and our
SZF CGP algorithm with RAS and an exhaustive search
over all user subsets, orders, and antennas. We also
include the performance with DPC as an upper bound.
The simulation results are shown in Figure 6.
It can be seen that both IRBD and the efficient WSR

methods provide very similar performance, both yielding
a throughput very close to that of DPC. IRBD is slightly
better at higher SNR by about 0.3 bit/s/Hz. The perfor-
mance of our CGP algorithm for SZF with RAS provides
a lower throughput by about 1.2 bit/s/Hz, or with a loss
of just under 1 dB in SNR. However, we note that RAS,
though simple, is also a suboptimal receive-processing
method. Were we to consider a better method of gener-
ating an effective channel matrix for the users, the per-
formance would almost certainly improve. RBD is the
worst of the methods examined by a significant margin,
as unlike IRBD, it does not iteratively optimize the
transmit filters for the users to account for their unused
channel subspaces.
Furthermore, we compare the WSR performance in a

scenario used in [16], with K = 4 users, each with Nk =
3 receive antennas, served by a base station with MT =
4 transmit antennas. Users 1 and 2 have weights of w1 =

w2 = 2, while users 3 and 4 have weights of w3 = w4 = 1.
For this scenario, we cannot compare the performance
of RBD or IRBD, since those methods do not support
the maximization of a weighted sum rate. The simula-
tion results are shown in Figure 7.
It can be seen that there is virtually no difference in

the WSR achieved by the method of [16] and our SZF
CGP algorithm with RAS in this scenario. This is
despite the suboptimality of RAS. Both precoding meth-
ods achieve a weighted sum rate reasonably close to
that of DPC, giving about 92-94% of the WSR of DPC,
or with a loss of at most about 1.3 dB in SNR.
It is lastly interesting to note that the covariance

matrices generated by the method of [16] satisfy null
space constraints for their effective channels. Thus,
those same matrices, and the selection of users and
their effective channel matrices, can also be used as an
initialization point for our SZF CGP algorithm. It is
then only necessary to find the best ordering of the
selected users for SZF. The CGP algorithm would
operate on the effective channel matrices, but would
not change the incorporated receive filter matrices,
only the transmit covariance matrices. However, such
an initialization only results in a negligible increase in
the (weighted) sum rate beyond that already provided
by the efficient WSR method. For example, in the sce-
nario of Figure 6, the sum rate increases by less than
0.1 bit/s/Hz. For the scenario of Figure 7, the increase
in WSR is less than 0.2 bit/s/Hz. We have used an
exhaustive search to find the best user order in both
cases.
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5. Conclusions
We have proposed and analyzed an improved method
based on CGP for optimizing the covariance matrices in
SZF precoding. This proposed method outperforms the
existing method from [5] by up to an additional 12% in
sum rate for the cases analyzed. It was also seen that
there is an increasing gain in the performance of our
method over the prior method both with increasing
SNR and with higher numbers of simultaneously sup-
portable users K0. Our proposed method also consis-
tently ensured a throughput larger than that when using
BD; the throughput of the existing SZF covariance opti-
mization scheme was seen to drop below that of BD at
higher SNR and K0.
Our CGP method also supports the maximization of a

WSR using SZF. Such a weighted sum rate is important
in various applications. To our knowledge, there is no
prior method for WSR maximization using SZF in the
literature. We demonstrated with a simple case that
even when considering a WSR, our proposed method
still provided a higher weighted throughput than when
using BD.
We further compared SZF employing our CGP cov-

ariance optimization method with other precoding
methods in the literature that can allocate data to
users on a per-data-stream basis. For this comparison,
we also incorporated RAS in the simulation of our
method to adjust the size of the SZF null spaces avail-
able for users to receive data in. It was seen that our
CGP algorithm provided comparable, though slightly
worse, performance to those existing methods. The

inferior performance was in part due to the suboptim-
ality of RAS compared with the receiver filters and/or
effective channel formations used in the other meth-
ods. We have also found that our CGP algorithm
scales with about the same order of complexity as the
other methods, though since those methods employ a
closed-form power allocation compared with our itera-
tive algorithm, the constant on the highest order com-
plexity term for the other methods is smaller than for
our CGP method.
The improvements on the SZF WSR we have seen

herein with our proposed method have been for a rela-
tively simple channel model of uncorrelated quasi-static
Rayleigh fading and with perfect channel knowledge.
Future work should also consider the effects of a more
realistic scenario, including imperfect channel knowl-
edge and temporal and/or spatial correlation.
Although our proposed method improves on the per-

formance of the existing method, our method is still not
globally optimal. Since the SZF optimization problem is
non-convex, finding the global optimum is very difficult.
It is thus hard to say how far away our scheme is from
the global optimum for SZF. There are a few global
optimization techniques which could find the best over-
all solution. For example, a branch-and-bound with
reformulation linearization technique such as that
described in [33,34] may assist in finding the global
optimum. However, such techniques may be extremely
complex and not meant for real-time implementation in
practical systems. Nonetheless, the global optimization
problem remains as possible future work.
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Endnotes
aDuring our simulations, these rare cases seemed to pri-
marily occur at low SNR.

bThis is similar and related in concept to the notion of
“restarting” the CGP search during non-linear optimiza-
tions, as discussed in [31].

cA similar reduction in complexity may also be possi-
ble for SZF by recursively calculating the null space
basis vectors. However, we have not investigated this
further, since the vectors only need to be calculated
once when starting the CGP algorithm, and then used
repeatedly during the iterations. Thus, any complexity
savings would be minor.
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