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Abstract Cardiac resynchronization therapy (CRT) has
shown benefits in patients with end-stage heart failure,
depressed left ventricular (LV) ejection fraction (≤ 35%),
and prolonged QRS duration (≥ 120 ms). However, based
on the conventional criteria, 20% to 40% of patients fail to
respond to CRT. Studies have focused on important
parameters for predicting CRT response, such as LV
dyssynchrony, scar burden, LV lead position, and site of
latest activation. Phase analysis allows nuclear cardiology
modalities, such as gated blood-pool imaging and gated
myocardial perfusion single photon emission computed
tomography (GMPS), to assess LV dyssynchrony. Most
importantly, GMPS with phase analysis has the potential of
assessing LV dyssynchrony, scar burden, and site of late
activation from a single acquisition, so that this technique
may provide a one-stop shop for predicting CRT response.
This article provides a summary on the role of nuclear
cardiology in selecting patients for CRT, with emphasis on
GMPS with phase analysis.
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Introduction

Heart failure (HF) is widely prevalent (> 5 million cases)
and rapidly growing (> 0.5 million new cases annually) in
the United States [1]. Hospital discharges rose from
approximately 400,000 in 1979 to over 1 million in 2004.

Based on 44-year follow-up of the National Heart, Lung,
and Blood Institute’s Framingham Heart Study, 80% of
men and 70% of women under 65 years of age who have
HF will die within 8 years; in people diagnosed with HF,
sudden cardiac death occurs at six to nine times the rate of
the general population. The 2004 overall total death rate for
HF was 52.0% [2]. In 2008, the estimated total cost of HF
in the United States was $34.8 billion [2].

Cardiac resynchronization therapy (CRT), provided by
multisite pacing of the right and left ventricles, showed
benefits in patients with end-stage HF. The benefits include
improved HF symptoms, exercise capacity, quality-of-life
score, and left ventricular (LV) function [3-8], as well as
mortality benefits, in patients with advanced drug-refractory
HF [9, 10]. The American College of Cardiology/American
Heart Association/Heart Rhythm Society guidelines rec-
ommend CRT in patients with end-stage drug-refractory
HF of New York Heart Association (NYHA) class III or
IV severity, depressed left ventricular ejection fraction
(LVEF; ≤ 35%), prolonged QRS duration (≥ 120 ms), and
sinus rhythm as a class I indication with level of evidence A
[11]. However, using these conventional criteria for
selecting patients for CRT, 20% to 40% of patients fail to
respond to CRT [6, 7, 12-15]. It was suggested that
electrical dyssynchrony represented by prolonged QRS
intervals is not necessarily related to mechanical dyssyn-
chrony, which may explain why 20% to 40% of the
patients in the above trials did not respond to CRT [16-
18]. It is also possible that some patients who would have
benefited from CRTwere not included in the trials, such as
patients with wide QRS complex who do not exhibit LV
dyssynchrony and patients who have narrow QRS complex
but who have LV dyssynchrony [17].

Echocardiography techniques, in particular two-dimensional
echocardiography using color-coded tissue Doppler imaging
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(TDI), have been most widely used to measure LV dyssyn-
chrony. These techniques have shown that LV mechanical
dyssynchrony is an important predictor of response to CRT
[13, 19, 20]. However, reliable TDI measurements require
expertise to obtain reproducible results. Because of high
intraobserver and interobserver variability, the PROSPECT
(Predictors of Response to Cardiac Resynchronization
Therapy) trial found that under “real-world” conditions the
current available echocardiography techniques are not ready
for routine practice to clinically predict CRT responses [21].
These results prompted the search for a more reproducible
method of measuring LV dyssynchrony. Besides LV dyssyn-
chrony, location and extent of viable or infarcted myocardium
[22-24] and LV lead position [25, 26] were shown to be
related to success of CRT.

Phase analysis allows nuclear cardiology modalities, such
as gated blood-pool imaging and gated myocardial perfusion
single photon emission computed tomography (SPECT;
[GMPS]), to assess LV dyssynchrony. Phase analysis using
GMPS (SyncTool, Emory University, Atlanta, GA) has
evoked special interest because this technique has the
potential for comprehensive assessment of multiple parame-
ters (eg, LV dyssynchrony, myocardial scar burden and
location, and site of latest activation) that influence response
to CRT. This article provides a summary of the role of nuclear
cardiology for selecting CRT candidates, with emphasis on
GMPS with phase analysis.

Gated Blood-Pool Imaging and Ventricular
Dyssynchrony

Phase analysis was first introduced with planar gated blood-
pool ventriculography for evaluating the contraction pattern
of the left ventricle [27-32]. Planar gated blood-pool images
are acquired from one left anterior oblique view in different
time frames, ranging from 16 to 64 frames per cardiac
cycle. Regions of interest (ROI) are drawn on the planar
images for left and right ventricles to generate time-activity
curves, representing the variation of the ventricular volumes
over the cardiac cycle. These time-activity curves are
characterized by amplitude (height or depth of fitted curve)
and phase angle (timing of contraction of a particular
region). The standard deviation of the phase angles of the
pixels in each ventricular ROI represents intraventricular
dyssynchrony. The difference between the means of the
phase angles of both ventricular ROI represents interven-
tricular dyssynchrony. Toussaint et al. [30] evaluated the
value of intraventricular and interventricular dyssynchrony
measured from gated blood-pool ventriculography in 34
patients with end-stage HF undergoing CRT. All patients
underwent gated blood-pool ventriculography at baseline
and 6-month follow-up. Improvement of interventricular

and intraventricular dyssynchrony was observed after CRT.
Moreover, the combination of a baseline LVEF greater than
15% with significant interventricular dyssynchrony were
the best predictors for improvement in LV systolic function
after 6 months of CRT.

Themajor limitations of gated blood-pool ventriculography
are overlap between adjacent structures and poor anatomic
localization. In gated blood-pool SPECT, similar principles of
phase analysis are used for detecting intraventricular and
interventricular dyssynchrony. The gated blood-pool SPECT
data are analyzed in three dimensions, resulting in better
separation of adjacent structures and superior localization
compared with gated blood-pool ventriculography [33-35]. A
study including 19 patients with idiopathic dilated cardio-
myopathy showed correlations between the clinical outcomes
and the presence or absence of interventricular and intraven-
tricular dyssynchrony, as measured by phase analysis of
gated blood-pool SPECT [36]. This study also showed the
improvement of interventricular and intraventricular dyssyn-
chrony for patients with HF after CRT [36].

Gated Myocardial Perfusion SPECT with Phase
Analysis and LV Dyssynchrony

Technical Essentials

Figure 1 shows the phase analysis of GMPS. The input to
this tool is the standard gated SPECT short-axis image. At
first, regional maximal count detection is performed in
three dimensions for each temporal frame. Based on the
partial volume effect [37], the variation of the regional
maximal counts is proportional to the regional wall
thickening over the cardiac cycle. The linear relationship
was demonstrated in a phantom study [38]. Then, the first-
harmonic Fourier function is used to approximate the
discrete sample points into a continuous wall-thickening
curve. For each region, the wall-thickening curve provides
a phase angle that represents the onset of mechanical
contraction of the region. Once the phase angles of all
regions (> 600 regions over the entire left ventricle) are
obtained, a phase distribution is generated that provides
information on the degree of mechanical dyssynchrony for
the entire left ventricle. The phase distribution can be
displayed in polar map and in a histogram, as shown in
Fig. 1. For a normal subject, the entire left ventricle starts
contraction almost at the same time, so that the phase polar
map is uniform and the phase histogram is narrow and
highly peaked. Five quantitative indices are automatically
calculated from the phase distribution: peak phase (the peak
of the phase histogram), phase standard deviation (the
standard deviation of the phase distribution), histogram
bandwidth (the range of 95% of the phase angles),
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skewness (positive skewness means that the phase histo-
gram is skewed to the right), and kurtosis (peakedness of
the phase histogram) [39]. Among the five indices,
histogram bandwidth and phase standard deviation (stan-
dard deviation of the phase distribution) are well studied for
assessing LV dyssynchrony.

The phase analysis tool is largely automatic. Intra-
observer and interobserver reproducibility of this technique
have been evaluated in a study using 10 consecutive
subjects with LV dysfunction (LVEF≤35%) and 10 normal
control subjects [40••]. For phase standard deviation and

histogram bandwidth, intraobserver correlation coefficients
were both 1.00, and interobserver correlation coefficients
were both 0.99. The superior reproducibility of phase
analysis is an advantage over echocardiography that may
improve prediction of CRT response.

GMPS studies are often perceived to have a low
temporal resolution, as the data are usually acquired using
8 to 16 frames per cardiac cycle. Because the discrete
points of regional maximum counts are transformed into the
continuous wall-thickening curves by the first-harmonic
Fourier approximation, the actual temporal resolution of the

Fig. 1 Phase analysis of gated myocardial perfusion single photon
emission computed tomography (GMPS) images. The inputs to phase
analysis are the standard GMPS short-axis images. Three-dimensional
(3D) sampling is performed on each temporal frame to detect the
regional maximum counts. The variation of regional maximum counts
over the cardiac cycle is proportional to wall thickening of the region.
The points shown in the plots are the regional wall-thickening data.
The first-harmonic Fourier function is used to approximate the wall-
thickening data (solid line) to calculate a phase angle for each region.
Once the phase angles of all regions are obtained, a phase distribution

is generated and displayed in a polar map or in a histogram. Two
examples are shown in this figure (a nonresponder and a responder to
cardiac resynchronization therapy [CRT]). Both patients had New York
Heart Association (NYHA) class III, depressed left ventricular (LV)
ejection fraction (< 35%), and prolonged QRS duration (> 120 ms). LV
dyssynchrony was not present in the nonresponder, but present in the
responder. Six months after CRT, the nonresponder deteriorated in
NYHA class from III to IV, whereas the responder improved from class
III to II
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phase analysis technique is greatly enhanced. A phantom
simulation study demonstrated that with image quality
achieved during routine clinical GMPS (≥ 10 counts/pixel),
the phase analysis tool was able to detect a minimum phase
delay of 5.6°, representing 1/64 of a cardiac cycle [41••].

Clinical Validations

GMPS with phase analysis was evaluated in a study
comparing consecutive patients with LV dysfunction
(LVEF<40%; n=120), left bundle branch block (n=33),
right bundle branch block (n=19), ventricular paced
rhythms (n=23), and normal control subjects (n=157) to
demonstrate its feasibility to detect LV dyssynchrony [42].
Phase standard deviation and histogram bandwidths were
significantly different between the patient cohorts and the
normal control subjects. Another study including 125
consecutive patients with LVEF less than 35% showed that
patients with prolonged QRS duration, on average, had
significantly more LV dyssynchrony than patients without
prolonged QRS duration [43]. However, the correlation
between QRS duration and phase analysis results (phase
standard deviation and histogram bandwidth) was weak.
This finding confirmed that electrical dyssynchrony is not
necessarily related to mechanical dyssynchrony, as was also
suggested by an echocardiography study [44].

Henneman et al. [45••] reported on the agreement
between GMPS and two-dimensional echocardiography
using TDI for the detection of LV dyssynchrony in 75
patients undergoing CRT. Good correlations were found
between LV dyssynchrony measured with TDI and histo-
gram bandwidth (r=0.89, P<0.0001) and phase standard
deviation (r=0.80, P<0.0001) measured with GMPS.
GMPS with phase analysis has also shown good correlation
with three-dimensional (3D) echocardiography for assess-
ing LV dyssynchrony [46, 47]. In 40 consecutive patients
with HF, good agreement was found between standard
deviation of time-to-peak systolic velocity (Ts-SD) on 3D
echocardiography and histogram bandwidth (r=0.77, P<
0.0001) and phase standard deviation (r=0.74, P<0.0001)
measured with phase analysis of GMPS. Patients with
substantial LV dyssynchrony (Ts-SD≥33 ms) on 3D
echocardiography showed significantly higher histogram
bandwidth (186°±52° vs 74°±24°; P<0.0001) and phase
standard deviation (55.3°±13.6° vs 25.1°±7.6°; P<0.0001)
compared to patients without substantial LV dyssynchrony
(Ts-SD<33 ms).

Henneman et al. [48••] evaluated whether GMPS with
phase analysis can predict clinical response after 6 months
of CRT in 42 patients with end-stage HF. Based on the
improvement of ≥ one NYHA functional class, 30 patients
were classified as responders and the other 12 patients as
nonresponders. Both histogram bandwidth (175°±63° vs

117°±51°; P<0.01) and phase standard deviation (56.3°±
19.9° vs 37.1°±14.4°; P<0.01) were significant higher in
responders compared with nonresponders. Moreover, the
optimal cutoff values of histogram bandwidth (135°) and
phase standard deviation (43°) for predicting CRT response
were derived by receiver operating characteristic curve
analysis. With these optimal cutoff values, GMPS with
phase analysis showed sensitivity/specificity values of 70%
and 74%, respectively, in predicting clinical response to
CRT. Figure 1 shows an example of phase analysis in a
nonresponder and a responder to CRT. Both patients had
NYHA functional class III, depressed LVEF (< 35%), and
prolonged QRS duration (> 120 ms). LV dyssynchrony as
measured by GMPS with phase analysis was not present in
the nonresponder, but present in the responder. Six months
after CRT, the nonresponder deteriorated in NYHA func-
tional class from III to IV, whereas the responder improved
from class III to II.

Phase analysis was recently implemented in the Quan-
titative Gated SPECT (Cedars Sinai Medical Center, Los
Angeles, CA) software. Preliminary results for predicting
CRT responses are similar to those detailed above [49, 50].

Predictors of CRT Response in Addition to LV
Dyssynchrony

Myocardial Scar Burden and Location

The presence, location, and extent of myocardial scar from
prior myocardial infarction have been shown to influence
CRT response. Adelstein and Saba [24] studied the
relationship between scar burden and CRT response. Fifty
patients with end-stage drug-resistant HF and angiograph-
ically proven coronary artery disease were enrolled. At
baseline, all patients had echocardiography and myocardial
perfusion SPECT. Six months after CRT, all patients had
echocardiography to evaluate cardiac reverse remodeling.
CRT response was defined as a decrease of ≥ 15% in LV
end-systolic volume from the pre-CRT to post-CRT
echocardiography measurements. Among the 50 patients,
28 showed response to CRT and had lower perfusion defect
score (18.8±11.3 vs 33.7±11.1; P<0.01) and scar density
near the LV lead (0.70±0.91 vs 1.64±0.82; P<0.01) than the
other 22 nonresponders. An inverse relationship was ob-
served between global scar burden and absolute (r=-0.63,
P<0.01) or relative (r=-0.53, P<0.01) increase in LVEF
after 6 months post CRT. Moreover, the presence of
myocardial scar tissue adjacent to the LV lead position
was negatively correlated with increase in LVEF at
6 months post CRT. Similar results were reported by
Ypenburg et al. [23] in 52 patients with ischemic HF and
substantial LV dyssynchrony undergoing CRT.
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Bleeker et al. [22] reported the relationship between the
location and transmurality of myocardial scar and CRT
response in 40 patients with moderate-to-severe HF,
LVEF≤35%, prolonged QRS duration (> 120 ms), and
coronary artery disease. Patients with transmural infarction
adjacent to the LV lead position (mostly the posterolateral
region) showed a significantly lower response rate to CRT
compared to patients without transmural scar tissue adja-
cent to the LV lead position.

Site of Latest Activation

The benefits of CRTare primarily based on synchronization of
the myocardial contraction pattern, resulting in an improve-
ment of LV systolic function. One important issue that may
influence CRT response is the relationship between LV lead
position and the site of latest activation. The site of latest
activation in the left ventricle can vary substantially, and
patients with an LV lead positioned away from the site of latest
activation had suboptimal or no response to CRT [25].
Ypenburg et al. [26] evaluated echocardiographic and clinical
outcome after 6 months post CRT in a large cohort of
patients with ischemic or dilated cardiomyopathy. A total of
153 (60%) patients had LV lead positioned at or adjacent to
the site of latest activation based on chest radiographs. These
patients showed a significant decrease in LV end-systolic and
end-diastolic volumes along with an increase in LVEF after
6 months post CRT. The other 40% of the patients did not
have concordant LV lead position and site of latest activation,
and demonstrated no evident improvement in LVend-systolic
and end-diastolic volumes and LVEF post CRT. This study
also showed that mortality rate was significant lower in
patients with concordant LV lead position and site of latest
activation compared to patients without concordant LV lead
position and site of latest activation at 24 months of follow-
up (15% vs 21%, P=0.048).

GMPS with Phase Analysis: A Potential One-Stop Shop

Phase analysis is a mathematical algorithm that applies to
conventional GMPS data and does not need additional
acquisition. This characteristic allows integrated analysis of
multiple predictors of CRT response from a single GMPS
study. Currently, phase standard deviation and histogram
bandwidth are validated as the quantitative indices of global
LV dyssynchrony. Because GMPS with phase analysis
produces a phase distribution containing more than 600
regions over the left ventricle, it is possible to measure
regional contraction delays and detect the site of latest
activation. Then, the viability of the detected site of latest
activation can be analyzed using the same perfusion image,
so that an optimal LV lead position for the patient may be

derived. Therefore, conceptually, GMPS with phase analysis
has the potential of providing a one-stop shop for predicting
CRT response by assessing LV dyssynchrony, myocardial
scar burden and location, and site of latest activation.

Conclusions

Nuclear cardiology modalities, such as gated blood-pool
imaging and GMPS, are promising alternatives for measur-
ing LV dyssynchrony and predicting CRT response. Most
importantly, GMPS with phase analysis has the potential for
assessing LV dyssynchrony, myocardial scar burden and
location, and site of latest activation from a single GMPS
acquisition. Integrated analysis of these parameters, once
validated, can be a viable clinical approach to consistently
and reproducibly predict CRT response in patients with HF.
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