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Abstract
Background: The assignment of a point-level geocode to subjects' residences is an important
data assimilation component of many geographic public health studies. Often, these assignments
are made by a method known as automated geocoding, which attempts to match each subject's
address to an address-ranged street segment georeferenced within a streetline database and
then interpolate the position of the address along that segment. Unfortunately, this process
results in positional errors. Our study sought to model the probability distribution of positional
errors associated with automated geocoding and E911 geocoding.

Results: Positional errors were determined for 1423 rural addresses in Carroll County, Iowa
as the vector difference between each 100%-matched automated geocode and its true location
as determined by orthophoto and parcel information. Errors were also determined for 1449
60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km) outliers occurred among the
60%-matched geocoding errors; outliers occurred for the other two types of geocoding errors
also but were much smaller. E911 geocoding was more accurate (median error length = 44 m)
than 100%-matched automated geocoding (median error length = 168 m). The empirical
distributions of positional errors associated with 100%-matched automated geocoding and E911
geocoding exhibited a distinctive Greek-cross shape and had many other interesting features that
were not capable of being fitted adequately by a single bivariate normal or t distribution.
However, mixtures of t distributions with two or three components fit the errors very well.

Conclusion: Mixtures of bivariate t distributions with few components appear to be flexible
enough to fit many positional error datasets associated with geocoding, yet parsimonious enough
to be feasible for nascent applications of measurement-error methodology to spatial
epidemiology.
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Background
It is becoming increasingly common in public health
studies to use the spatial locations of study participants in
statistical analyses, for example to test for geographic clus-
tering of disease or to estimate relationships between
environmental exposures and disease. Indeed, statistical
methods for spatial epidemiology are developing rapidly,
and the growing list of book-length treatments of the sub-
ject include [1-4]. In order to utilize subjects' locations in
a spatial analysis, it is necessary, of course, to define and
ascertain these locations. Historically, the spatial location
of a person has been defined as the person's place of resi-
dence; however, recognition of human mobility and the
fact that many causative exposures occur outside the
home have generated recent attempts to expand this defi-
nition to daily activity spaces and such constructs as time
geography and pathogenic paths; for a brief review see [5].
Nevertheless, place of residence currently remains the typ-
ical representation of each subject's location in public
health studies.

The spatial coordinates of a place of residence are usually
not measured directly; rather, the residential address is
given a location reference, known as a geocode. The geoc-
ode may be defined as the latitude and longitude coordi-
nates or a point in some other coordinate system, or as a
statistical tabulation area such as a U.S. Census tract,
block group, or block. Here, unless noted otherwise, we
use the point rather than areal definition. Several distinct
methods for geocoding exist, including visiting the resi-
dence with global positioning system (GPS) receivers,
identifying the residence on orthophoto maps based on
aerial imagery, and matching the address to a digital street
map. The latter can be done in batch mode for large num-
bers of addresses and when done this way is often called
"automated geocoding." Recently, a new method of auto-
mated geocoding has been developed that matches an
address to parcel descriptions of legal property bounda-
ries developed by assessors, but this method has not yet
been widely adopted. The U.S. Census Bureau is develop-
ing such a parcel-level geocode for all U.S. addresses, but
the public does not and will not have access to these geoc-
odes. Accordingly, automated geocoding here will refer to
the widely used practice of using a geographic informa-
tion system (GIS) to match an address to a street name
and address range in a digitized street reference map and
then estimate, via interpolation, where the address is
located between the two points that define the limits of
the address range.

Automated geocoding is cheaper, more convenient, and
hence much more common than non-automated meth-
ods, but considerably less accurate. Several investigations
of the accuracy of automated geocoding have recently
been published. Some of these have measured accuracy by

the proportion of addresses for which the geocode
belongs to a correct statistical tabulation area; for exam-
ple, Yang et al. [6] and Kravets and Hadden [7] found that
only 70% to 90% of their geocoded addresses were
assigned to the correct census block. Other investigations
have measured accuracy by the Euclidean distance
between the point location ascertained by automated
geocoding and the corresponding "true" location as deter-
mined by a much more intensive and accurate method
(e.g. GPS receivers or aerial imagery) [8-13]. These latter
studies have shown that positional errors of several hun-
dred meters are incurred regularly by automated geocod-
ing, and that even larger errors are not uncommon in rural
areas. In one of the most thorough studies of automated
geocoding errors published to date, Cayo and Talbot [14]
found that 10% of a sample of rural addresses in a four-
county upstate New York study area geocoded with errors
of more than 1.5 km, and 5% geocoded with errors
exceeding 2.8 km.

An alternative method of geocoding that may have prom-
ise for public health research is E911 geocoding. E911
geocodes are usually obtained under the auspices of local
governments for the specific purpose of dispatching emer-
gency vehicles to the correct location in response to a 9-1-
1 telephone call requesting assistance. The particular
methods used to obtain the geocodes vary, but they gen-
erally are more resource-intensive than mere automated
geocoding due to the life-and-death issues at stake. For
example, some counties have used parcel address-match-
ing, while others have hired commercial firms that claim
to take a GPS measurement at or near each residence.
Every year, more counties in the U.S. develop E911 geoc-
odes, so it is possible that in the not-too-distant future,
many health researchers will be able to use these geocodes
in lieu of performing automated geocoding. Investiga-
tions of the accuracy of E911 geocodes have not yet
appeared in the scientific literature, though commercial
firms offering E911 geocoding services tout them, unsur-
prisingly, as much more accurate than geocodes obtained
via automated geocoding.

Whatever process is used to obtain geocodes of residences,
the positional errors incurred by that process introduce
location uncertainties that may adversely affect spatial
analytic methods. Specific effects of positional errors on
spatial statistical analyses include inflation of standard
errors of parameter estimates and a reduction in power to
detect such spatial features as clusters and trends [15-17].
Even relatively small positional errors can have a discern-
ible impact on local statistics for detecting clustering or
"hot spots" [18]. It is important, therefore, for researchers
to quantify these effects on their analyses, which in turn
requires them to have, or gain, some understanding of the
probability distribution of the positional errors. In fact,
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the adoption of an adequate model for the distribution of
positional errors is essential for successful implementa-
tion of existing measurement-error model methods for
spatial data analysis; see, e.g., [19-22]. Knowledge of the
error distribution also facilitates the use of multiple impu-
tation methods for adjusting spatial statistical analyses for
positional errors. These methods proceed by imputing
(simulating) locations with error from the distribution of
an observed location given its corresponding true loca-
tion. Inferences for the spatially-varying health outcome
of interest can then be made using the model for that out-
come given the true locations, but with each true location
replaced by multiple imputed realizations. Finally, gain-
ing an understanding of typical geocoding error distribu-
tions allows for the simulation of realistic positional
errors for power studies of various tests for clusters, spatial
trends, and other important spatial patterns and features.

The main purpose of this article is to formulate and fit use-
ful models for the probability distribution of positional
errors incurred by geocoding residential addresses. In par-
ticular, we will formulate models that are sufficiently flex-
ible to allow for the representation of features observed in
empirical distributions of positional errors derived from a
dataset of rural Iowa addresses, yet sufficiently simple that
the aforementioned measurement-error and multiple
imputation methodologies could be successfully imple-
mented using these models. Positional errors correspond-
ing to both automated geocoding and E911 geocoding
will be considered. Upon formulating a suitable model or
class of models for the errors, we will demonstrate how to
fit those models to the data. Although the specific features
seen in the distributions of positional errors from this pre-
dominantly rural Iowa county will not occur in all data-
sets, nor even in all error datasets derived from rural
addresses, we believe that the methods we use to formu-
late and fit the models are generalizable to a great many
datasets of positional errors incurred by geocoding.

Methods
Data
The address data upon which this investigation is based
consist of all 2516 rural residential addresses in Carroll
County, Iowa, USA, current as of 31 December 2005,
which we obtained in conjunction with a comprehensive
study of rural health in Iowa by the Iowa Department of
Public Health and other researchers at the University of
Iowa. A major objective of the study was to investigate the
possible existence of associations between various health
outcomes and exposure to environmental contaminants
produced by concentrated animal feeding operations.
Hence the focus on rural addresses, which were defined as
all residential addresses that lie outside incorporated
township boundaries.

Geocodes and positional errors
An attempt was made to obtain a geocode of each rural
address using an automated method, an E911 method,
and an orthophoto method, as follows.

Automated geocodes were obtained by matching addresses
to the U.S. Census Bureau's TIGER street centerline file for
Carroll County using the GIS package ArcGIS 9.1 [23].
This process begins with automated parsing and standard-
ization of the address list. Parsing is the process of break-
ing the address records up into distinct address
component fields such as house number and street name,
while standardization modifies these components, if nec-
essary, so that they adhere to a common United States
Postal Service standard [24]. Next, an address-ranged
street segment in the TIGER file is probabilistically
matched to each address on the basis of a "match score,"
which measures how closely each candidate address-
ranged street segment in the TIGER file matches the
address. Each field in the candidate segment is compared
with the corresponding field of the address record being
matched. The match score is a weighted composite score
over all fields, scaled to lie between 0 to 100. For this anal-
ysis the minimum match score was set at either 100%
(perfect matching) or 60%. Finally, the geocode is calcu-
lated by linearly interpolating the address number to a
point on the matched street segment between the two
points that define the limits of that segment's address
range. No offset from the street centerline was used in this
calculation so that the effect of not offsetting might show
up in the positional error distribution.

As it happened, only 26 more addresses geocoded when a
60%-match criterion was used than when a 100%-match
criterion was used, and of those additional geocodes,
eight were extreme outliers occurring in three clusters
located 12–16 km from their actual locations. A closer
look at these outliers revealed that the extremely large
positional errors were due to errors in the TIGER street
centerline file such as an incorrect zip code, an address
range for a street segment that fails to contain the house
number, or a missing street segment. As a consequence of
the automated geocoding software's matching algorithm,
these errors tended to result in geocodes corresponding to
an address with the same house number but lying on a
street segment with a different but similar "name," e.g.
"120th St" rather than "210th St," or "20th St" rather than
"260th St." Rare, gregarious outliers such as these present
a severe challenge to any modeling enterprise, including
the mixture modeling approach to be featured here. Con-
sequently, for our purposes we set these outliers aside and
considered only the geocodes of 100%-matched
addresses.
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For emergency services dispatch purposes, E911 geocodes
of all addresses in Carroll County are continually updated
and maintained by the county government so that a 911
telephone caller within the county requesting assistance
may be quickly and unambiguously located. The most
suitable geocode for this purpose in rural areas was
deemed by county officials to be the coordinates of the
location where emergency service personnel would leave
the public road and enter the private road leading to the
property from which the call was made. We obtained
these geocodes directly from the GIS coordinator of Car-
roll County, who was not able to say exactly how the con-
tractor employed by Carroll County obtained them.

Using visual identification, the third author enhanced the
E911 geocode for each address to a location centered on
the residence related to the address. This task was accom-
plished with the aid of 24 inch/pixel grayscale orthopho-
tos of the study area we obtained from the Carroll County
GIS Administrator and color infrared orthophotos (with
the same resolution) obtained from [25]. Hence we refer
to this geocode as the orthophoto-based geocode. A GIS data
layer indicating the parcel to which a particular property
belonged (and which is used by the county assessor's
office for tax assessment) was overlaid upon the ortho-
photo and E911 address layers to confirm that each geoc-
ode was assigned to the correct address.

Of the three geocoding methods, the orthophoto method
is by far the most accurate, hence the geocodes produced
by this method were taken as the "gold standard" or truth.
For each of the other two methods, the positional error
corresponding to a given address was determined as the
vector difference of the address's geocode obtained by the
method and that address's orthophoto-derived geocode.
For various reasons – most frequently the inability to
determine which of several buildings in the photograph
was the residence – a completely reliable orthophoto-
derived geocode could not be ascertained for 162 of the
addresses, so our analysis of positional errors is based on
the remaining 2354 addresses.

Mixture models for the error distribution

In seeking useful models for a distribution of positional
errors, one might first consider a bivariate normal distri-
bution or a uniform distribution on a "standard" two-
dimensional region (e.g. a circle or square). Indeed, nor-
mal and uniform distributions have been used previously
to study the effects of location errors on spatial analyses in
general, and on spatial prediction (kriging) and cluster
detection in particular [26,16,19,20]. However, to the
authors' knowledge no empirical evidence has ever been
presented to demonstrate that these distributions ade-
quately represent the probability distributions of posi-

tional errors corresponding to geocoded residential
addresses. In fact, these relatively simple distributions will
not be appropriate if, for instance, extremely large posi-
tional errors (outliers) occur more often than would be
expected for a bivariate normal or uniform distribution,
or if errors tend to cluster along more than one axial direc-
tion. It will be seen that outliers and "multi-axial cluster-
ing" both occur for the positional errors in our geocoded
data, and thus simple normal or uniform distributions
will not suffice. As alternatives, we propose the use of
finite mixture distributions [27-29]. In a finite mixture
distribution, each error can be regarded as having arisen
from a population G which is a mixture of a finite
number, say g, of subpopulations G1,..., Gg in some pro-

portions p1,..., pg, respectively, where  and pi ≥

0 (i = 1,..., g). The probability density function (pdf) of an
arbitrary positional error, x, can then be represented in the
finite mixture form,

where fi(x; θ) is the pdf corresponding to Gi; θ denotes the
vector of all unknown parameters associated with the par-
ametric forms adopted for these g component pdfs; and φ
= (p', θ')' where p' = (p1,..., pg). Furthermore, we focus on
mixtures of bivariate normal and t distributions, which
are the most commonly used mixture models for bivariate
observations and are well-suited for observations contam-
inated by outliers and exhibiting multi-axial clustering.
The t mixtures are more robust than normal mixtures to
contamination by outliers, hence they generally yield
more parsimonious models than normal mixtures for
data with outliers.

Estimation of parameters
For each of the two sets of positional errors – correspond-
ing to automated and E911 geocodes – we obtained like-
lihood-based estimates of the parameters of normal
mixtures and t mixtures for several values of g. For the nor-
mal mixtures, we estimated parameters using the method
described by Basford and McLachlan [30], which is equiv-
alent to applying the EM (expectation-maximization)
algorithm [31] to this problem. A normal mixture has the
form given by (1), with ith component pdf

where µi and Σi, are the mean vector and covariance
matrix, respectively, of the ith component distribution.
Thus, letting θ comprise p, µ1,..., µg, and Σ1,..., Σg, we find
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that the likelihood function corresponding to a random
sample x1,..., xn from G is proportional to

In this subsection the number of groups, g, is assumed to
be known; methods for choosing g are deferred to the next
subsection.

The likelihood equation,

∂ log L (φ)/∂φ = 0,  (2)

is equivalent to the equations

for i = 1,..., g, where

The  are weights such that  is an estimate of the

probability that observation j belongs to component
group i. Equations (3)-(6) can be solved iteratively upon
first making an initial assignment of observations to

groups and supplying an initial estimate of φ to (6), and
then iterating until convergence. The resulting estimate of

φ is a solution to (2) and is thus a local maximum of L(φ).
However, it is generally not a global maximum; in fact, (2)

has multiple roots, and L(φ) is unbounded so the maxi-

mum likelihood estimator of φ does not exist [32]. Never-
theless, for mixtures of univariate normals it is known that
the sequence of roots of (2) corresponding to the largest
of the local maxima is consistent, asymptotically normal,
and efficient [33], and the same result is widely believed
to hold for mixtures of bivariate normals as well. We refer
to the root corresponding to the largest of the local
maxima as the likelihood-based estimate. To increase the
prospects of finding the largest of the local maxima, it is

recommended that the iterative solution process begin
from several different initial values. The jth observation
may be given a final assignment to a group on the basis of

the maximum of the converged  across i.

The normal mixture likelihood-based estimation method
just described was carried out for the Carroll County posi-
tional error data using the FORTRAN program EMMIX
written by D. Peel and G.J. McLachlan, which can be
downloaded freely from [34]. To obtain the initial classi-
fication of the data needed for starting the estimation
algorithm, the data were partitioned randomly into g
groups 50 times, and the partition that produced the high-
est likelihood was adopted as the initial classification. The
proportion of observations belonging to the ith group in
this initial classification was taken as the initial estimate
of pi, and the sample mean vector and sample covariance
matrix of the observations belonging to the ith group were
taken an initial estimates of µi and Σi, respectively.

For the t mixture models, we obtained likelihood-based
estimates of parameters using the ECM (expectation-con-
ditional maximization) method described by McLachlan
and Krishnan [35]. The ith component pdf of a t mixture
is of the form

where Γ(·) is the gamma function, and µi and Σi are the
mean vector and covariance matrix, respectively, and vi is
the degrees of freedom parameter, of the ith component
distribution. The degrees of freedom may be viewed as a
robustness (to outliers) tuning parameter: a component t
pdf with small v has heavy tails, but as v tends to infinity
the tails become lighter and the corresponding t compo-
nent pdf tends to a normal pdf. The likelihood function
corresponding to a random sample x1,..., xn from a g-com-
ponent t mixture G is then given by

with fi(·) defined in (7) and with φ comprising p1,..., pg,
µ1,..., µg, Σ1,..., Σg, and v1,..., vg. Details of the implementa-
tion of the ECM estimation algorithm to t mixture models
are too lengthy to report here; however, they can be found
in [36]. The algorithm was implemented for the Carroll
County positional error data using the same program that
was used to fit normal mixtures, viz. EMMIX, and the
same random grouping scheme used for normal mixtures
was used to initially classify the data and obtain initial
parameter estimates.
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Choosing the number of components
In the previous subsection it was assumed that the
number of components in the mixture distribution was
known. While this assumption is appropriate for some
applications of mixture models, for example when the
subpopulations are males and females or a known
number of age classes, it is generally not appropriate for
modeling positional errors incurred by geocoding. Thus,
the number of components in a mixture distribution for
positional errors must be determined using the data at
hand. Several methods for accomplishing this have been
proposed, ranging from informal graphical techniques to
more formal hypothesis testing procedures. Here, we
choose the number of components using the BIC (Baye-
sian Information Criterion), a commonly-used model
selection method less formal than hypothesis testing but
more formal than mere graphical analysis [37]. For a
model with k parameters to be estimated, BIC is given by

BIC = -2 log L ( ) + k log n

where L( ) is the likelihood function for the n observa-

tions, evaluated at the likelihood-based estimator . BIC

combines a measure of badness-of-fit, -2 log L( ), with a

measure of model complexity, k log n. When comparing
two models, the model with the smaller BIC is to be pre-
ferred, apart from any other considerations. In the present
context, however, we value model parsimony even more
highly than usual because of the compelling need for sim-
plicity in measurement-error modeling approaches for
handling location uncertainty in spatial analyses. There-
fore, although we will use BIC as a guide for model selec-
tion, we may prefer a model with a slightly larger BIC than
another if it is considerably more parsimonious.

Mixture modeling example

We provide the following example to illustrate the effec-
tiveness of the mixture model estimation and model
selection methodology. Two hundred observations were
simulated from a bivariate normal distribution with

means µX = µY = 0 (for both variables), variances  = 

= 64, and correlation coefficient ρ = 0; and another 200
observations were simulated from a bivariate normal dis-

tribution with means µX = µY = 10, variances  =  =

400, and correlation coefficient ρ = 0.75. Each group of
observations and their superposition is displayed in Fig-
ure 1 (upper panels and lower left panel). Normal mixture
models with g = 1, 2, 3,4, or 5 components were fit to
these data using EMMIX. Values of BIC for these fitted

models were 6469, 6387, 6408, 6420, and 6442, respec-
tively. Thus, the two-component model fits best, as it
should. For the two-component model, likelihood-based
parameter estimates were as follows:

First component:  = 0.53,  = 0.3,  = -0.5,  = 55.7,

 = 60.3,  = 0.01

Second component:  = 0.47,  = 10.9,  = 11.5,  =

446.8,  = 367.9,  = 0.75.

These estimates match the true parameter values very well.
Finally, the fitted mixture model was used to generate a
new set of 400 observations, which are also displayed in
Figure 1 (lower right panel). Upon comparing this display
with that for the original set of observations, we see that
the fitted model generates data that closely resemble the
original simulated data. In this sense, then, the fitted
model has excellent predictive power.

Results and Discussion
Automated geocoding errors
Of the 2354 rural addresses in Carroll County with ortho-
photo-derived geocodes, 1423 (60.5%) geocoded using
the automated method with a 100%-match criterion. The
positional errors (which are two-dimensional vectors)
associated with these geocodes ranged in length from a
minimum of 3 m to a maximum of 2896 m, with a
median of 168 m, and are displayed as points in Figure 2.
Interestingly, the errors tend to cluster along the N-S and
E-W axial directions in such a way that the overall shape
of their distribution, apart from a few outliers, resembles
a Greek cross (Figure 2, upper left panel). More errors lie
near the center of the cross than near its extremities. More-
over, there is a distinct shift in the mean with respect to
the origin along each axial direction: along the E-W axis
many more errors occur to the east of zero, while along
the N-S axis many more errors occur to the south of zero.
Close scrutiny also indicates the existence of two parallel
"strands" of errors along each axial direction, which strad-
dle the axes and are likely due to relatively small offsets of
residences from street centerlines. Still more interesting
features become apparent upon plotting the errors for the
662 addresses on streets running mainly E-W separately
from the errors for the 761 addresses on streets running
mainly N-S (Figure 2, upper right and lower left panels).
This decomposition shows that while the errors near the
cross's center appear to be relatively isotropic, i.e. occur-
ring more or less equally often in all directions, those
errors away from the center tend to be aligned with the
axial orientation of the street on which the corresponding
address lies.
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Scatterplot of simulated data from two-component bivariate normal mixture modelFigure 1
Scatterplot of simulated data from two-component bivariate normal mixture model. The upper left panel displays 200 observa-
tions from the first component; the upper right panel displays 200 observations from the second component; the lower left 
panel is a superposition of the two upper panels; and the lower right panel displays a new simulation of 400 observations from 
the two-component normal mixture model fitted to the data from the original simulation.
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Scatterplot of positional errors (in meters) for the automated geocodesFigure 2
Scatterplot of positional errors (in meters) for the automated geocodes. The upper left panel displays the complete data; the 
upper right panel displays errors for addresses on streets aligned E-W; the lower left panel displays errors for addresses on 
streets aligned N-S; and the lower right panel is a superposition of the upper right panel and a 90-degree counterclockwise 
rotation of the lower left panel.

-3000 -2000 -1000 0 1000 2000 3000

-3
00

0
-2
00

0
-1
00

0
0

10
00

20
00

30
00

x

y

-3000 -2000 -1000 0 1000 2000 3000
-3
00

0
-2
00

0
-1
00

0
0

10
00

20
00

30
00

x

y

-3000 -2000 -1000 0 1000 2000 3000

-3
00

0
-2
00

0
-1
00

0
0

10
00

20
00

30
00

x

y

-3000 -2000 -1000 0 1000 2000 3000

-3
00

0
-2
00

0
-1
00

0
0

10
00

20
00

30
00

x

y



International Journal of Health Geographics 2007, 6:1 http://www.ij-healthgeographics.com/content/6/1/1
Manual checking of the fifty largest errors revealed that
many were attributable to street segments in the TIGER/
Line file that had correct street names but incorrect
address ranges. Others appeared to be attributable to
interpolation errors or possibly house address numbering
"errors" (i.e. deviations from the distance-from-intersec-
tion rule or some other rule that was used when the
houses were originally numbered). These database and
procedural errors, in combination with the high degree of
rectilinearity of the rural road network in Carroll County,
produce the distinctive Greek-cross shape of the empirical
distribution of positional errors. Outliers from this overall
shape appear to be due to either very large offsets (e.g.,
one house was nearly 800 m from its corresponding street
centerline), incorrect TIGER/Line file geometry, or both.

We do not have a ready explanation for the bias with
respect to the origin exhibited by the errors. However, the
fact that the mean errors are shifted to the east along E-W
streets and south along N-S streets, in tandem with the fact
that these directions of shift coincide with the directions
in which rural house numbers are ascending, suggest that
the explanation has something to do with a systematic
interpolation or house numbering procedural error. As a
follow-up, we computed the mean error for each individ-
ual street and found that these means were consistently, in
fact invariably, to the east and south. Thus the bias is per-
vasive, not merely limited to a few streets.

Owing to the Greek-cross shape of the empirical distribu-
tion of the entire set of positional errors, no single bivari-
ate normal or t distribution will fit them well, nor for that
matter will any elliptical distribution (i.e. a distribution
whose contours of equal probability are ellipses). How-
ever, the decay in frequency of points with increasing dis-
tance from a central location along each axis suggests that
a mixture of two or more normal or t distributions, of
which at least one is aligned in approximately a N-S direc-
tion and at least one other is aligned in approximately an
E-W direction, might provide an adequate fit. Conse-
quently, normal and t mixtures with various numbers of
components were fit to the errors. Values of BIC for each
mixture model are given in Table 1a. The results indicate
that a three-component mixture fits much better than a
two-component mixture, but increasing the number of
components beyond three results in marginal improve-
ment in fit. The results also show the t mixture model to
be superior to the normal mixture model. In light of these
results and taking into account the premium on simplicity
in measurement-error models, we would select the three-
component t model for these errors.

Likelihood-based estimates of the mean vector and covar-
iance matrix for the three-component t model are given in
Table 2a, and Figure 3 depicts 1423 simulated observa-

tions from the fitted model. (The number of simulated
observations was chosen to match the number of real
observations so that plots would be directly comparable.)
Upon comparing the lower right panel of Figure 3 with
the upper left panel of Figure 2, we see that the fitted
model reproduces the large-scale features of the positional
errors quite well. Furthermore, the parameter estimates
and component plots indicate that: (1) the largest compo-
nent group consists of errors which are mostly "small"
(less than 100 m), relatively isotropic, and centered at the
origin, but heavy-tailed (v = 1.6) and thus including some
outliers; (2) the other two component groups, comprising
relative proportions roughly equivalent to the relative

Table 1: Bayesian Information Criteria (BIC) for normal and t 
mixture models.

Error dataset Distribution Number of Components BIC

(a) Normal 1 48103
Normal 2 45851
Normal 3 45236
Normal 4 45124

t 1 46083
t 2 45358
t 3 45056
t 4 45042

(b) Normal 1 46422
Normal 2 44809
Normal 3 44597
Normal 4 44557

t 1 45659
t 2 44538
t 3 44516
t 4 44459

(c) Normal 1 67174
Normal 2 63174
Normal 3 62710
Normal 4 62446

t 1 62841
t 2 62345
t 3 62219
t 4 62230

(d) Normal 1 64227
Normal 2 61360
Normal 3 61101
Normal 4 61059

t 1 61092
t 2 60980
t 3 60982
t 4 60994

Models with several different numbers of components, were fitted to 
the following four error datasets: (a) automated geocoding positional 
errors; (b) automated geocoding positional errors aligned with axial 
direction of corresponding street segment; (c) E911 positional errors; 
(d) E911 positional errors aligned with axial direction of 
corresponding street segment.
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numbers of addresses on N-S and E-W streets, respec-
tively, include many errors of intermediate to relatively
large size (> 500 m), which are aligned in the N-S and E-
W axial directions, respectively, but are lighter-tailed (v =
6.5 and v = 19.6) than the first component and hence rel-
atively devoid of outliers; and (3) the means of the second
and third components are several hundred meters to the
east and south, respectively, of the origin, which is consist-
ent with the systematic bias in these directions noted pre-
viously.

The lower right panel of Figure 2 displays the "aligned
errors," i.e. the errors relative to the axial orientation of
the street segment on which the corresponding address
lies. Equivalently, the aligned errors are a superposition of
the points in the upper right panel and those resulting
from a 90-degree counterclockwise rotation of the lower
left panel of the same figure. Normal and t mixtures were
also fitted to the aligned errors. Values of BIC and likeli-
hood-based parameter estimates are given in Tables 1b
and 2b, respectively. The results suggest that a two-com-
ponent t mixture fits adequately well; that the first compo-
nent of this mixture is essentially the same as the first
component of the three-component t mixture for the orig-
inal errors; and that the second component is essentially
the combination of the third component and rotated sec-
ond component of the three-component t mixture for the
original errors.  In fact, BIC for the two-component t mix-
ture for the aligned errors is substantially smaller than BIC
for the three-component t mixture for the original errors
(Table 1), which indicates that accounting for the orienta-
tion of the street on which an address lies results in a more
parsimonious model with no reduction in model ade-
quacy.

E911 geocoding errors
The positional errors corresponding to the 2354 E911
geocodes (Figure 4) ranged in length from 2 m to 974 m,

with a median of 44 m. Thus, these errors tend to be con-
siderably smaller than their automated geocoding coun-
terparts. The upper left panel of Figure 4 shows the errors
to be arrayed in a Greek cross-like configuration that
appears even more pronounced than was the case for the
automated geocoding errors, so likewise a single normal
or t distribution will not fit well. But once again there is an
attenuation in the frequency of points with increasing dis-
tance from a central point along each axis, suggesting that
a mixture of two or more normal or t distributions might
fit the data well. Moreover, the aforementioned central
point of the distribution appears to be at or very close to
the origin; there is not a mean shift with respect to the ori-
gin along each axis as there was for the automated geoco-
ding errors. Nor do there appear to be "strands" of points
straddling, and running parallel to, each coordinate axis,
as there were for the automated geocoding errors. How-
ever, there are outliers, and there is an interesting effect of
orientational alignment: upon plotting the 1116
addresses on streets aligned mainly E-W separately from
the 1238 addresses on streets aligned mainly N-S (Figure
4, upper right and lower left panels), we observe that the
errors tend to be aligned orthogonally to the orientation of
the street on which the corresponding address lies. This is
in sharp contrast to the coincident alignment of automated
geocoding errors with the axial orientation of the street,
which we noted previously (Figure 2).

The orthogonal alignment of E911 errors occurs as a result
of offset errors of substantial magnitude, which in turn are
due to the definition of the E911 geocode in rural areas as
the coordinates of the intersection of the public road and
private road leading to the residence, coupled with the
approximate perpendicularity (in most cases) of the angle
between the public and private road. The outliers, for the
most part, correspond to those cases for which the offset
is relatively large and the private road meanders in such a
way that a hypothetical line segment connecting the resi-

Table 2: Likelihood-based parameter estimates for the best-fitting models.

Error dataset Component Proportion µX µY σX σY ρ v

(a) 1 0.571 -12.1 -10.7 61.6 54.1 -0.05 1.6
2 0.253 -4.7 -350.0 75.9 550.0 0.18 6.5
3 0.176 352.8 -12.6 540.3 84.9 -0.03 16.7

(b) 1 0.560 -0.8 -14.2 39.4 75.9 0.06 1.8
2 0.440 372.1 -6.7 523.6 90.3 -0.10 5.9

(c) 1 0.519 4.9 -5.4 62.3 60.8 -0.10 1.8
2 0.292 13.6 -35.0 289.1 54.9 -0.14 2.4
3 0.189 14.9 -10.2 62.1 354.4 0.14 2.4

(d) 1 0.700 5.9 -4.3 47.0 100.7 0.06 1.8
2 0.300 29.3 -6.2 62.1 419.5 0.16 3.0

Models and the datasets to which they were fitted are: (a) the three-component t mixture model for the automated geocoding positional errors; 
(b) the two-component t mixture model for the automated geocoding positional errors aligned with axial direction of corresponding street 
segment; (c) the three-component t mixture model for the E911 positional errors; (d) the two-component t mixture model for the E911 positional 
errors aligned with axial direction of corresponding street segment. Means are denoted by µX and µY, standard deviations by σX and σY, correlation 
coefficient by ρ, and degrees of freedom by v. Units of measurement for means and standard deviations are meters.
Page 10 of 16
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Simulated data from the fitted three-component t mixture distribution for the automated geocoding errorsFigure 3
Simulated data from the fitted three-component t mixture distribution for the automated geocoding errors. The upper left 
panel, upper right panel, and lower left panel correspond to components in order of decreasing pi; and the lower right panel is 
their superposition.
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Scatterplot of the positional errors (in meters) for the E911 geocodesFigure 4
Scatterplot of the positional errors (in meters) for the E911 geocodes. The upper left panel displays the complete data; The 
upper right panel displays errors for addresses on streets aligned E-W; The lower left panel displays errors for addresses on 
streets aligned N-S; and the lower right panel is a superposition of the upper right panel and a 90-degree counterclockwise 
rotation of the lower left panel.
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dence to the public road-private road intersection is far
from being perpendicular.

Normal and t mixture distributions with various numbers
of components were fitted to the E911 errors. Values of
BIC for these fits are listed in Table 1c. On the basis of
these values, it appears that a three-component t mixture
model provides the best fit; normal models, as well as t
models with less than three components, are inadequate.
Likelihood-based parameter estimates for the three-com-
ponent model are given in Table 2c in order of decreasing
pi, and Figure 5 displays 2354 simulated observations
from the fitted model. Note that the means of all compo-
nents lie fairly close to the origin, indicating little system-
atic bias in the errors. The estimates and component plots
reveal that the component comprising the largest propor-
tion (about 52%) consists mostly of relatively small
(standard deviation just over 60 m), nearly isotropic
errors. The other two components (comprising about
29% and 19% of the errors, respectively) correspond to
errors tending to be of larger size (standard deviations of
290 m and 354 m) lying close to the E-W and N-S axial
directions, respectively. All three components are quite
heavy-tailed, thus outliers occur in all of them. Overall,
the simulated data (Figure 5, lower right panel) again
seem to reproduce the observed data (Figure 4, upper left
panel) quite well.

The lower right panel of Figure 4, which displays all of the
E911 errors relative to the axial orientation of the corre-
sponding street segment, highlights the aforementioned
orthogonality of the errors to street orientation. Normal
and t mixtures, once again, were fitted to the errors in this
plot. Values of BIC and likelihood-based parameter esti-
mates are given in Tables 1d and 2d, respectively. Accord-
ing to these results, a two-component t mixture is best-
fitting. The component comprising the largest proportion
(70%) consists of relatively small errors that are, on aver-
age, about twice as large in the orthogonal direction as in
the coincident direction. The remaining component con-
sists of much larger errors that average about seven times
larger in the orthogonal direction than in the coincident
direction. Both components are rather heavy-tailed, indi-
cating that outliers occur regularly for both.

Conclusion
The major question motivating this investigation was
whether one could find useful models for the probability
distribution of positional errors associated with geocod-
ing, i.e. models that are sufficiently rich to adequately fit
various geocoding error datasets yet sufficiently parsimo-
nious to be practical for use as measurement-error models
for statistical analysis. The answer to this question, based
on our findings, is solidly (though not unequivocally) in
the affirmative; and the class of models that seems best

suited for the purpose is the class of mixture models of
bivariate t distributions. These models can adequately fit
such features as clustering along several axial directions,
systematic bias in any direction(s), and outliers, all of
which occurred in our data; simpler models such as uni-
form and normal distributions, which have been used
previously for positional errors in spatial data, cannot.
Moreover, t mixture models are feasible for use with
emerging applications of measurement-error methodol-
ogy to epidemiologic research [19,22], provided that they
consist of very few components. Based on our results and
the other published graphical displays of geocoding errors
of which we are aware [12,14], we conjecture that a mix-
ture of three (two) t distributions will usually be sufficient
for errors (aligned errors) associated with 100%-matched
automated geocoding and E911 geocoding, but addi-
tional investigations in other places are needed to sub-
stantiate this. Positional errors from regions with less
rectilinear road networks than Carroll County may not
require as many components, as they are less likely to
exhibit clustering in the E-W and N-S axial directions; a
case in point is displayed in [14]. In some cases a single t
distribution or, in the unlikely event of no outliers, a sin-
gle normal distribution may even suffice. In any case, if
the analyst assumes a t mixture model either with more
components than necessary or when a normal mixture
model will suffice, the BIC-based model selection proce-
dure we have described will (with high probability) point
the way to the simpler model.

The one situation we encountered in which mixture mod-
els of t distributions proved to be less than fully successful
occurred with automated geocoding errors for which an
address-matching threshold of less than 100% was used.
In this situation, a few small clusters of extremely large
errors occurred. Such errors are difficult to model parsi-
moniously and, regardless of how they are modeled, will
weaken the conclusions made from subsequent statistical
inferences using measurement-error methodology. Con-
sequently, we recommend using only 100%-matched
addresses for spatial epidemiologic analyses.

Our investigation indicated that t mixture models were
equally useful for 100%-matched automated geocoding
errors and E911 geocoding errors, despite some differ-
ences in their distinctive features. In particular, t mixtures
were able to accommodate the difference in the major axis
of error alignment relative to the alignment of the corre-
sponding street (parallel for automated geocoding, per-
pendicular for E911 geocoding). The error distributions
associated with other geocoding methods may have their
own distinctive features (see [14], for example, for a
graphical display of errors incurred by parcel address-
matching), and it remains to be seen whether t mixtures
are as successful for them.
Page 13 of 16
(page number not for citation purposes)



International Journal of Health Geographics 2007, 6:1 http://www.ij-healthgeographics.com/content/6/1/1

Page 14 of 16
(page number not for citation purposes)

Simulated data from the fitted three-component t mixture distribution for the E911 geocoding errorsFigure 5
Simulated data from the fitted three-component t mixture distribution for the E911 geocoding errors. The upper left panel, 
upper right panel, and lower left panel correspond to components in order of decreasing pi; and the lower right panel is their 
superposition.
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Further investigation is currently underway to determine
if t mixture models are as useful for positional errors cor-
responding to non-rural addresses as they appear to be for
rural address positional errors and, if so, how the compo-
nents might differ from those for rural addresses. Results
from previous studies of positional errors for datasets
combining both rural and non-rural addresses
[38,10,11,14] suggest strongly that component variances
will be smaller for non-rural addresses, but we refrain
from predicting how many components may be needed
and whether they will prove to be heavy-tailed, mean-
shifted away from the origin, etc. Future research may also
address the modeling of the probability distribution of
positional errors associated with reverse address-matching
[39].

How might the methods developed here be adapted to the
common situation in which it is not possible to obtain a
"gold standard" geocode for each address that has been
geocoded via automated geocoding? In some cases it may
be feasible to obtain the more accurate geocode for a ran-
domly selected portion of the addresses, from which the
probability distribution of positional errors associated
with automated geocoding may be estimated. This esti-
mated distribution may then, as a practical matter, be pre-
sumed to apply to the entire set of addresses. In those
cases where no sample of positional errors can be
obtained, it may still be possible to estimate parameters of
a probability distribution of positional errors, provided
that a parsimonious model for the true locations of
addresses is known (up to its unknown parameters). An
illustration of this can be found in [22], and others will be
reported elsewhere.

In focusing our attention on geocoding errors, we have
ignored the fact that for many studies, automated geocod-
ing is incomplete; that is, not all addresses can be assigned
point-level spatial coordinates by the software. In fact, it is
common in practice for 20% or even as many as 40% of
subjects' addresses to fail to geocode using standard soft-
ware and street files. For example, Gregorio et al. [40] and
Oliver et al. [41] present public health studies in which
14% and 26%, respectively, of addresses could not be
assigned a point location via automated geocoding, and
for our exclusively rural address dataset this figure was
even higher (38%). A statistical analysis based on only the
observations that geocode is subject to selection bias
[42,41]. However, there is virtually always a reliable
coarse (areal-level) measurement, e.g. a zip code, associ-
ated with each observation that fails to geocode. Coarse
locational data may be combined with the observed
point-level data to make valid statistical inferences in the
presence of geographic bias via either (a) a coarsened-data
maximum likelihood estimation procedure [43], or (b)
imputation of a surrogate point location (such as that of a

randomly selected event within the same zip code) for the
addresses that do not geocode [44]. Fully satisfactory
inference procedures for data whose point locations are
ascertained by automated geocoding may require that an
inference procedure developed for use with incompletely
geocoded data be combined with modifications to
account for positional errors.
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