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establishing a critical linkage to multiple levels of mito-
chondrial functioning. Hyperglycemia-mediated enhance-
ment of mitochondrial ROS/superoxide production in vas-
cular endothelial cells has been functionally linked to the 
shunting of glucose into the HBP with resultant long-term 
activation of pro-inflammatory signaling processes. Addi-
tionally, exposure of cultured cells to hyperglycemic con-
ditions resulted in enhanced HBP-mediated inhibition of 
protein subunits of mitochondrial respiratory complexes I, 
III, and IV, intimately associated with normative cellular 
bioenergetics and ATP production.
Conclusions Convergent lines of evidence link chronic 
hyperglycemic conditions to aberrant expression of AGEs/
RAGEs and HBP signaling pathways in relation to the 
pathophysiological formation of ROS and pro-inflamma-
tory processes on the functional dysregulation of mitochon-
drial bioenergetics.

Keywords Mitochondria · Glucose · Hyperglycemia · 
Diabetes · ATP · Aerobic glycolysis · Advanced glycation 
end-products · Receptor for advanced glycation end-
products · Hexosamine biosynthetic pathway · Hexosamine 
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Introduction

The severity of untreated or refractory diabetes mellitus 
has been functionally linked to elevated concentrations of 
free plasma glucose, clinically defined as hyperglycemia. 
The pathophysiological presentations of prolonged hyper-
glycemia may be operationally characterized within insu-
lin-dependent and insulin-independent, type 1 and type 2, 
diabetic phenotypes, respectively. Accordingly, a relatively 
broad spectrum of long-term hyperglycemia-associated 

Abstract 
Purpose The severity of untreated or refractory diabetes 
mellitus has been functionally linked to elevated concentra-
tions of free plasma glucose, clinically defined as hypergly-
cemia. Operationally, the pathophysiological presentations 
of prolonged hyperglycemia may be categorized within 
insulin-dependent and insulin-independent, type 1 and type 
2 diabetic phenotypes, respectively. Accordingly, major 
areas of empirical biomedical research have focused on the 
elucidation of underlying mechanisms driving key cellular 
signaling systems that are significantly altered in patients 
presenting with diabetes-associated chronic hyperglycemia.
Methods Presently, we provide a translationally oriented 
review of key studies evaluating the aberrant effects of 
hyperglycemia on two major signaling pathways linked to 
debilitating cellular and systemic effects via targeted dis-
ruption of mitochondrial bioenergetics: (1) advanced gly-
cation end-products (AGEs)/and their cognate receptor for 
advanced glycation end-products (RAGEs), and (2) the 
hexosamine biosynthetic pathway (HBP).
Results In preclinical models, cultured vascular endothe-
lial cells exposed to hyperglycemic glucose concentrations 
were observed to produce enhanced levels of reactive oxy-
gen species (ROS) functionally linked to increased for-
mation of AGEs and expression of their cognate RAGEs. 
Importantly, inhibitors of AGEs formation, mitochondrial 
complex II, or un-couplers of oxidative phosphorylation, 
were observed to significantly reduce the effects of hyper-
glycemia on ROS production and cellular damage, thereby 
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cellular and metabolic insults has observed in diverse 
peripheral organ systems and central nervous tissues [1]. 
Mechanistically, the biomedical literature has focused on 
the elucidation of key cellular signaling systems that are 
significantly altered in patients presenting with diabetes-
associated chronic hyperglycemia. For example, in both 
type 1 and type 2 diabetic patients, macro- and microvas-
cular complications may arise from prolonged exposure 
to high glucose levels via the intracellular formation of 
advanced glycation end-products (AGEs), which enhance 
coordinate expression of the cognate receptor for advanced 
glycation end-products (RAGE) [2]. Chronic hyperglyce-
mia has been functionally linked to aberrant signaling pro-
cesses mediated by selective enzymes of the hexosamine 
biosynthetic pathway (HBP), thereby promoting posttrans-
lational modification of key cellular regulatory enzymes 
and membrane proteins [3]. Additional hypotheses have 
emerged on the underlying mechanisms of hyperglycemic-
induced diabetic complications, including altered expres-
sion and signaling by protein kinase C isoforms [4] and 
increased flux through the aldose reductase pathway [5]. 
An overriding or unifying mechanism of diabetic patho-
physiology may involve hyperglycemia-driven mitochon-
drial tricarboxylic acid (TCA) cycle dysregulation leading 
to respiratory complex III dysfunction and the production 
of high levels of reactive oxygen species (ROS) in the 
form of superoxide [6]. Presently, we coordinate parallel 
and convergent published studies evaluating the effects of 
hyperglycemia on AGEs/RAGEs, and HBP expression in 
relation to the pathophysiological formation of ROS, into 
a working hypothesis centering on dysregulated mitochon-
drial bioenergetics and oxidative stress (Fig. 1). 

Hyperglycemia, AGE formation, and reactive 
oxygen species

Non-diabetic and diabetic cells by their nature experience 
significant differences in glucose metabolism and adeno-
sine 5′-triphosphate (ATP) production. In normal cells, 
initial processing of glucose to triose phosphate interme-
diates takes place within the cytosolic glycolytic pathway, 
proceeds with decarboxylation of pyruvate to form acetyl-
coenzyme A (Ac-CoA) to fuel the mitochondrial TCA 
cycle, and terminates with transport of reducing equivalents 
by membrane-associated respiratory complexes I–IV [7]. 
The intra-mitochondrial availability of molecular oxygen 
as the ultimate electron acceptor drives the evolutionar-
ily fashioned chemiosmotic production of ATP as a high-
efficiency biological process [8] catalyzed by F1Fo ATPase 
complexes [9].

Diverse molecular forms of AGEs arise non-enzy-
matically from the well-characterized Maillard reaction 

involving a reducing sugar and a primary amino group via 
Amadori rearrangement intermediate products or second-
ary addition to Schiff base condensation products [10]. 
As an example, the prominent AGE glucosepane mediates 
sustained damage to the extracellular matrix in diabetic tis-
sues, thereby contributing to accelerated sclerotic injury in 
arteries, kidneys, and other organ systems [11].

In preclinical models of diabetic vascular damage, cul-
tured vascular endothelial cells exposed to hyperglyce-
mic glucose concentrations produce enhanced levels of 
superoxide, which is functionally linked to increased for-
mation of AGEs and expression of their cognate RAGEs 
[12]. Because activated vascular endothelial cells release 
pro-inflammatory cytokines and adhesion molecules, 
the debilitating increases in oxidative stress mediated by 
AGEs and RAGEs are also associated with microvascu-
lar retinal, glomerular, and nerve lesions in experimental 
diabetic animals. Importantly, inhibitors of AGEs forma-
tion, mitochondrial complex II, or un-couplers of oxidative 
phosphorylation, were observed to significantly reduce the 
effects of hyperglycemia on ROS production and cellular 
damage [12]. Subsequent work linked mitochondrial super-
oxide formation as a debilitating ROS species facilitating 
hyperglycemia-associated cellular damage, an effect that 
was reversed by overexpression of manganese superoxide 

Fig. 1  Multiple signaling pathways underlying hyperglycemic cel-
lular damage. As diagrammed, diabetic cellular complications may 
arise from prolonged exposure to high glucose levels via the intra-
cellular formation of advanced glycation end-products (AGEs), the 
cognate receptor for advanced glycation end-products (RAGE), and 
activation of the hexosamine biosynthetic pathway (HBP). Addi-
tional signaling mechanisms involved in the induction of hypergly-
cemia-induced diabetic complications include aberrant phosphoryla-
tion events selectively mediated by protein kinase C isoforms and 
increased flux through the aldose reductase or polyol pathway. A 
unifying mechanism of diabetic pathophysiology involves hypergly-
cemia-driven mitochondrial dysfunction and the production of high 
levels of ROS in the form of superoxide
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dismutase (MnSOD) [13]. Combined in vitro and in vivo 
studies confirmed the functional role of cytosolic ROS in 
the generation of mitochondrial superoxide at the level of 
complex I via sustained production of NADH [14]. Inter-
estingly, pharmacologic inhibition of AGE-RAGE-induced 
mitochondrial permeability transition markedly abrogates 
the production of mitochondrial superoxide, thereby con-
firming the pivotal role of AGE-RAGE-induced cytosolic 
ROS production in the development and progression of dia-
betic nephron pathologies [14].

Pro-inflammatory mechanisms of action mediated by 
RAGEs, following stimulation by AGEs, have centered on 
enhanced expression of the key transcription factor nuclear 
factor-kappa B (NF-kB) and its targeted genes [15]. Sub-
sequent debilitating cellular processes involve activated 
monocytes and increased endothelial permeability to mac-
romolecules via inhibition of constitutive NO and enhance-
ment of ROS production and release [15]. Interestingly, 
RAGE is a member of the immunoglobulin superfamily of 
cell surface receptors differentially expressed by diverse 
cell types. Previous work has demonstrated that the pro-
moter region of the RAGE-encoding gene contained three 
putative NF-kB-like binding sites, thereby linking tran-
scriptional activation and enhanced cellular expression of 
RAGE to the mediation of severe pro-inflammatory pro-
cesses [16]. Subsequent work suggests that AGEs them-
selves are capable of activating RAGE gene expression via 
NF-kB-mediated processes, resulting in the exacerbation of 
diabetic microvascular damage [17]. Interestingly, the epi-
genetic signature of the promotor region of the NF-kB sub-
unit gene RelA/p65/NF-kB3 from peripheral blood mono-
nuclear cells isolated from patients with type 2 diabetes 
was functionally associated with enhanced transcription of 
pro-oxidant/inflammatory genes and subsequent vascular 
damage [18]. The epigenetically mediated upregulation of 
RelA/p65/NF-kB3 was subsequently linked to the deleteri-
ous effects of increased plasma levels of intercellular cell 
adhesion molecule-1 (ICAM-1) and monocyte chemoat-
tractant protein-1. Similar effects were observed in cultures 
of human aortic endothelial cells incubated in the presence 
of hyperglycemic concentrations of glucose [19]. In these 
studies, the hyperglycemia-induced upregulation of prolyl-
isomerase (Pin1) gene expression was functionally associ-
ated with nuclear translocation of RelA/p65/NF-kB3 and 
subsequent enhanced ICAM-1 production. As a validating 
measure, selective deletion of the RelA/p65/NF-kB3 gene 
in the livers of transgenic was functionally associated with 
improved insulin sensitivity [20]. In contrast, overexpres-
sion of RelA/p65/NF-kB3 gene activity was associated 
with enhanced energy expenditure and diminished adipose 
tissue growth, thereby suggesting that NF-kB-mediated 
inflammatory processes may have preemptive effects on 

insulin resistance by eliminating lipid accumulation by adi-
pose tissues [21].

Finally, cell surface expression of RAGE by mast cells 
has been functionally linked to AGE-mediated apoptotic 
mechanisms [22]. In an in vitro model, knockdown of mast 
cell RAGE expression was observed to markedly inhibit 
AGE-induced apoptosis by blocking mitochondrial Ca(2+) 
overload and superoxide release. Thus, AGE-induced mast 
cell apoptosis may contribute to debilitating pro-inflamma-
tory conditions associated with hyperglycemic stress [22].

In summary, a wide array of investigational compounds 
have been evaluated for their inhibitory activities against 
diabetes-associated AGE production and/or cellular RAGE 
expression. For example, aminoguanidine inhibits intramo-
lecular lysyl-arginine cross-linking involved in glucosepane 
and other AGE formation [11]. Blockade of RAGE-medi-
ated signal transduction has been proposed as a potentially 
valuable therapeutic strategy for the prevention of hyper-
glycemia-associated cellular and vascular damage [23]. 
Notably, a genetically engineered soluble form of RAGE, 
designed as an AGE-targeted surrogate, inhibits the devel-
opment of micro- and macrovascular complications arising 
from chronic diabetic conditions [24].

Reactive oxygen species, hexosamine biosynthetic 
signaling pathway, and aberrant mitochondrial 
function

Dysregulated mitochondrial function has been function-
ally linked to the etiology and persistence of major meta-
bolic, metastatic, and neurodegenerative disorders [25–32]. 
Within the HBP, enzymatic formation of O-β-glycosidic 
linkages of β-N-acetylglucosamine (GlcNAc) to serine and 
threonine side chains represents a novel posttranslational 
protein modification of key signaling enzymes and mem-
brane proteins that appears to present strong physiologi-
cal antagonism to normative signaling processes involving 
protein phosphorylation [3]. O-GlcNAcylation of proteins 
appears to be is a dynamic regulatory process mediated by 
two HBP signaling enzymes O-GlcNAc transferase (OGT) 
and O-GlcNAcase (OGA), respectively [33]. Accordingly, 
these regulated enzyme activities are proposed to determine 
temporally defined intramolecular concentrations of modi-
fied signaling proteins via competing processes of addition 
and removal of O-linked GlcNAc residues [33]. Hypergly-
cemia-driven posttranslational O-GlcNAc modification of 
major signaling proteins involved in normative glucose and 
lipid metabolism has been documented in the biomedical 
literature, as discussed below [3].

Hyperglycemia-mediated enhancement of mitochon-
drial superoxide production in vascular endothelial cells 
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is functionally linked to the shunting of glucose into the 
HBP with resultant long-term activation of pro-inflamma-
tory signaling processes [6]. A key biochemical study has 
presented empirical evidence supporting the role of hyper-
glycemia-induced mitochondrial superoxide production 
as a strong activator of the HBP via inhibition of glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) activity 
within the terminal stages of the cytosolic glycolytic path-
way in cultured bovine endothelial cells [34]. Operation-
ally, the functional diversion of the upstream hexose phos-
phate intermediate fructose-6-phosphate from glycolytic 
metabolism to the essential substrate N-acetylglucosamine 
(GlcNAc) by the rate-limiting enzyme glutamine: fructose-
6-phosphate aminotransferase (GFAT1) [3], has been pro-
posed as a determining factor in the hyperglycemia-medi-
ated activation of the HBP [34]. The molecular sequelae 
of aberrant HBP-mediated signaling processes have been 
linked to enhanced O-GlcNAcylation of transcription fac-
tors that subsequently promote expression of genes such as 
transforming growth factor beta 1 (TGF-B1) and plasmino-
gen activator inhibitor-1 (PAI-1) that have been previously 
established as contributing factors to the pathogenesis of 
diabetic tissue damage [34]. Finally, in these same stud-
ies, decreased GAPDH activity and enhanced HBP activ-
ity were reversed by prior addition of an electron transport 
complex II inhibitor, an un-coupler of oxidative phospho-
rylation, a MnSOD mimetic, or addition of azaserine, an 
inhibitor of the rate-limiting enzyme in the HBP, thereby 
providing essential controls [34].

The putative role of altered HBP signaling and selec-
tive O-GlcNAcylation of mitochondrial proteins has been 
explored in a preclinical model of diabetic hyperglyce-
mia utilizing cultured cardiac myocytes [35]. Exposure 
of cultured cells to hyperglycemic conditions resulted in 
enhanced O-GlcNAcylation of protein subunits of respira-
tory complexes I, III, and IV, intimately associated with 
normative cellular bioenergetics and ATP production. 
These observations were consistent with the demonstration 

of diminished cellular ATP levels and mitochondrial 
Ca(2+) loading [35]. Importantly, increased expression 
of OGA reduced O-GlcNAc modification of respiratory 
complex protein subunits functionally linked to enhanced 
activities of complex I, III, and restoration of normal cel-
lular ATP concentrations. It was concluded that hypergly-
cemia-driven O-GlcNAcylation of selective mitochondrial 
proteins is functionally linked to impaired mitochondrial 
function in diabetic cardiac myocytes. A recent study has 
demonstrated that perturbations of normative HBP-medi-
ated cycling of O-GlcNAc-linked regulatory and functional 
mitochondrial proteins profoundly affect cellular bioener-
getics as well as mitochondrial morphologies [8]. Utilizing 
preclinical models of both OGT- and OGA-overexpressing 
cells, significant diminutions of mitochondrial proteins 
functionally involved in electron transport processes, oxi-
dative phosphorylation, and the TCA cycle were observed. 
Interestingly, both cellular respiration/O2 consumption and 
glycolysis were reduced in OGT/OGA-overexpressing cells 
(Fig. 2). 

Hypoxia and hyperglycemia

The etiology and persistence of major metabolic disor-
ders afflicting diverse human populations are functionally 
associated with a pathophysiological coupling of systemic 
pro-inflammatory processes and tissue hypoxia, indicat-
ing that ischemic/hypoxic perturbations in oxygen delivery 
represent significant physiological challenges to the overall 
viability of multiple organ systems. Reciprocal triggering 
of multiple ischemic/hypoxic and pro-inflammatory events, 
if not corrected, will promote pathophysiological processes 
leading to a deleterious cascade of bio-senescent cellu-
lar and molecular signaling pathways, which converge to 
markedly impair mitochondrial bioenergetics and requisite 
ATP production.

Fig. 2  Hyperglycemia-induced 
enhancement and biological 
consequences of AGEs produc-
tion. Advanced glycation end-
products (AGEs) are formed 
from oxidation and derivatiza-
tion of glucose and fructose. 
Elevated levels of cellular 
AGEs are functionally linked 
to induction of their cognate 
receptor for advanced glyca-
tion end-products (RAGE). The 
deleterious biological amplifica-
tion of AGEs/RAGE actions are 
described in the text

AGE Biogenesis

Hyperglycemia Glucose Fructose

Amadori Products α oxyaldehydes

AGE

1. RAGE ac�va�on

2. NFkB induc�on

3. S�mula�on of diverse pro-inflammatory events
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6. Insulin Resistance

7. Synergis�c hypoxic damage 
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In light of the above, reciprocal pathophysiologi-
cal states of hyperglycemia and hypoxia are proposed 
to induce significant comorbidities in human metabolic 
diseases. We have recently provided critical discussion 
on the significance of early hypoxic events on long-
term alteration of normative mitochondrial processes in 
relation to the emergence of pathological states [27, 28, 
36–38]. As an example, careful examination of the patho-
genicity of diabetic foot ulceration, characterized by poor 
wound healing, will yield mechanistic links between 
hypoxic and hyperglycemic conditions and chronic mito-
chondrial dysfunction [39]. In this regard, increased 
hypoxic conditions leading to impaired wound healing 
in diabetic foot ulcerations are functionally associated 
with impaired hypoxia-inducible factor-1 (HIF-1) expres-
sion, an established key regulatory factor in cellular O2 
homeostasis that mediates the adaptive cellular responses 
to hypoxic challenges. Furthermore, HIF-1 signaling has 
been demonstrated to be downregulated in diabetes due 
to hyperglycemia-induced HIF-1α destabilization linked 
to functional inhibition [39]. In sum, hyperglycemic-
induced “hypoxia” fits into a broadly based pathophysi-
ological scheme with convergent debilitating effects on 
mitochondrial function. Interestingly, whereas certain 
cell types have the ability to revert to earlier evolution-
ary phenotype as an adaptive strategy to hypoxic condi-
tions, these integrative multicellular processes may not 
be attainable over extended periods of time [28]. To date, 
advanced mitochondrial targetted therapies have not been 
forthcoming to address the severe hyperglycemia in con-
cert with chronic hypoxia present in patients afflicted 
with type 2 diabetes.

Dietary considerations

The primacy of glucose derived from photosynthesis as an 
existential source of chemical energy across plant and ani-
mal phyla is universally accepted as a core principle in the 
life sciences. In mammalian cells, initial processing of glu-
cose to triose phosphate intermediates takes place within 
the cytosolic glycolytic pathway and terminates with the 
temporal transport of reducing equivalents derived from 
pyruvate metabolism by membrane-associated respiratory 
complexes in the mitochondrial matrix. The intra-mito-
chondrial availability of molecular oxygen as the ultimate 
electron acceptor drives the evolutionarily fashioned che-
miosmotic production of ATP as a high-efficiency biologi-
cal process. The mechanistic evolutionary bases of diabetes 
have demonstrated the profound alteration of normative 
mitochondrial function, notably deregulated respiratory 
processes leading to the initiation of hypoxia-induced cel-
lular events.

Dietary interventions to counteract debilitating pro-
inflammatory and oxidative stress-related cellular events 
induced by chronic hyperglycemia have received wide-
spread attention in the biomedical literature. Notably, sup-
plementation with omega3-polyunsaturated fatty acids 
(Ω3-PUFAs) has been proposed as an adjuvant dietary 
strategy to reduce oxidative stress and lipid peroxida-
tion in obese and diabetic patient populations [40–42]. 
Accordingly, in rodent models of obesity with or without 
comorbid diabetes, dietary enrichment with Ω3-PUFAs 
was observed to reduce triglyceride concentrations, lipid 
peroxidation levels, and concentrations of AGEs in the liv-
ers of treated rats [43]. Dietary supplementation of phos-
pholipid enriched in the Ω3-PUFA eicosapentaenoic acid 
was observed to partially restore insulin sensitivity and 
reduce hepatic steatosis in concert with a reduction of 
pro-inflammatory cytokines in obese [44] or transgenic 
diabetic mouse models [45]. Furthermore, dietary enrich-
ment with fish containing diverse mixtures of Ω3-PUFAs 
was observed to promote similar restorative effects on 
mitochondrial bioenergetics from skeletal muscle of obese/
diabetic rodents [46, 47]. Finally, in a relatively recent 
Japanese clinical study, a reduction of circulating levels of 
Ω3-PUFAs was functionally associated with higher insulin 
resistance in cohorts of type 2 diabetic patients [48].

In contrast to the widely reported ameliorative effects 
of dietary supplementation with Ω3-PUFAs, several lines 
of investigation have registered concern over the poten-
tial pro-inflammatory properties of PUFA metabolites, 
notably certain molecular species of oxylipins [40, 42, 
49]. Oxylipins formed via the action of 12-lipoxygenase 
on PUFAs to produce pro-inflammatory oxygenated lipid 
intermediates have been observed to mediate debilitat-
ing effects on normative pancreatic β-cell function [49, 
50]. Furthermore, oxylipins derived from omega6- poly-
unsaturated fatty acids (Ω6-PUFAs) in comparison with 
those derived from Ω3-PUFAs appear to promote a higher 
degree of cellular damage in obesity-related comorbidities 
that include insulin resistance, adipose tissue inflamma-
tion [42], and non-alcoholic fatty liver disease [40, 41]. In 
sum, long-term nutritional supplementation with selective 
PUFAs should be approached with a significant degree of 
caution with regard to modulation of hepatic and white adi-
pose PUFA content and the potential development of pro-
inflammatory processes linked to insulin resistance and 
hepatic dysfunction.

Conclusions

Prolonged periods of hyperglycemia mediate major disrup-
tions of normative mitochondrial functions, resulting in 
chronic exacerbations of pathological conditions affecting 
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many cellular and organ systems. As reviewed, the damag-
ing micro- and macrovascular cellular effects of hypergly-
cemia are driven by mitochondrial ROS production linked 
to activation of parallel, but functionally convergent, AGE/
RAGE and HBP signaling pathways. In this regard, we 
speculate that subtle alterations of metabolic homeostasis 
and its associated pathological abnormalities may have 
arisen as a result of the evolutionary pressure of unbridled 
photosynthetic activities within the biosphere with resultant 
high O2 production and abundant levels of glucose which 
can be consumed by both plants and animals. Furthermore, 
with the exponentially expanded biological capture of solar 
energy in the chemical form of reduced carbon molecular 
species, the evolutionarily fashioned liberation of stored 
energy linked to reciprocal formation of cellular ATP via 
the mitochondrial electron transport system was engineered 
over the course of 1–2 billion years. In the last 5000 years, 
organismic handling of excessive energy demands has 
become more pronounced with the advent of modern agri-
culture. As cognitively driven higher organisms, humans 
process abundant sources of glucose into “focused comfort-
reward” foods, thereby generating an even greater depend-
ence on carbohydrate energy metabolism with potentially 
dire metabolic consequences [51].
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