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Abstract

Background: Killer Immunoglobulin-like Receptors (KIRs) are surface receptors of natural killer cells that bind to their
corresponding Human Leukocyte Antigen (HLA) class I ligands, making them interesting candidate genes for
HLA-associated autoimmune diseases, including type 1 diabetes (T1D). However, allelic and copy number variation in
the KIR region effectively mask it from standard genome-wide association studies: single nucleotide polymorphism
(SNP) probes targeting the region are often discarded by standard genotype callers since they exhibit variable cluster
numbers. Quantitative Polymerase Chain Reaction (qPCR) assays address this issue. However, their cost is prohibitive
at the sample sizes required for detecting effects typically observed in complex genetic diseases.

Results: We propose a more powerful and cost-effective alternative, which combines signals from SNPs with more
than three clusters found in existing datasets, with qPCR on a subset of samples. First, we showed that noise and
batch effects in multiplexed qPCR assays are addressed through normalisation and simultaneous copy number calling
of multiple genes. Then, we used supervised classification to impute copy numbers of specific KIR genes from SNP
signals. We applied this method to assess copy number variation in two KIR genes, KIR3DL1 and KIR3DS1, which are
suitable candidates for T1D susceptibility since they encode the only KIR molecules known to bind with HLA-Bw4
epitopes. We find no association between KIR3DL1/3DS1 copy number and T1D in 6744 cases and 5362 controls;
a sample size twenty-fold larger than in any previous KIR association study. Due to our sample size, we can exclude
odds ratios larger than 1.1 for the common KIR3DL1/3DS1 copy number groups at the 5% significance level.

Conclusion: We found no evidence of association of KIR3DL1/3DS1 copy number with T1D, either overall or
dependent on HLA-Bw4 epitope. Five other KIR genes, KIR2DS4, KIR2DL3, KIR2DL5, KIR2DS5 and KIR2DS1, in high linkage
disequilibrium with KIR3DL1 and KIR3DS1, are also unlikely to be significantly associated. Our approach could
potentially be applied to other KIR genes to allow cost effective assaying of gene copy number in large samples.
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Background
Killer Immunoglobulin-like Receptors (KIRs) are trans-
membrane glycoproteins expressed by natural killer cells
and subsets of T cells. The KIR region lies in a 150 kb gene
cluster located within the 1Mb Leukocyte Receptor Com-
plex on chr19q13.4. The region exhibits great haplotype
and copy number diversity, which has prevented complete
assessment of the KIR genes in standard genome-wide
association studies (GWAS), despite their strong can-
didacy for immune-related traits. Targeted quantitative
Polymerase Chain Reaction (qPCR) assays have been used
to detect presence or absence of individual KIR genes and
more recently, determine copy numbers [1]. Nevertheless
these remain expensive and labour intensive compared to
SNP arrays.
We show that SNPs often discarded in GWAS, because

they exhibit non-typical number of genotype clusters, can
be informative of KIR gene copy numbers. By applying
supervised classification, we are able to use qPCR results
in a modest number of samples to impute copy num-
bers into a larger sample for which SNP array signals
are available. We illustrate this method by applying it to
two genes in the KIR complex, KIR3DL1 and KIR3DS1,
which are suitable candidates for T1D association due
to their interaction with HLA class I molecules. Specif-
ically, the KIR3DL1 protein is known to interact with
the HLA class I allotypes that contain the HLA-Bw4
serological epitope [2,3], whereas the protein encoded
by KIR3DS1, which shares 97% sequence similarity to
KIR3DL1, is thought to bind the more restrictive HLA-
Bw4-80I epitope subset [4]. The grouping of HLA-A and
HLA-B alleles according to HLA-Bw4 serological epitope
[5] is given in Additional file 1: Table S1 and includes sev-
eral HLA class I alleles which are associated with T1D
risk after conditioning on the major HLA class II effects
[6,7]. To date, KIR3DL1/3DS1 association with T1D has
only been studied using qPCR assays in limited sample
sizes, which assess presence or absence of each KIR gene
[8].
We used qPCR copy number calls in 1474 samples as a

training set, and imputed copy number in a further 12106
samples from raw genotyping signals in SNP array probes
targeting the KIR region. We thus tested association of
KIR3DL1/3DS1 copy number with T1D, either directly,
or through interaction with HLA-Bw4. To the best of our
knowledge, the sample size of our study is twenty-fold
larger than any previous study of KIR3DL1/3DS1 in T1D,
and the first to test copy number variation rather than
simply presence or absence [8].
The hybrid method we advocate, leverages the infor-

mation available from targeted qPCR assays in modest
samples to the level of sample coverage required for mod-
ern, well-powered genetic studies. It has the potential to
be applied to other genes in the KIR region or, indeed,

to other chromosome regions that exhibit similar copy
number variation and sequence complexity.

Methods
Subjects
DNA was available from 12106 individuals: 6744 cases
(age of diagnosis less than 17) from the Genetic Resource
Investigating Diabetes (GRID) cohort, and 5362 con-
trols from the British 1958 Birth Cohort (1958BC). All
subjects were of white European ancestry with writ-
ten informed consent and Ethics Committee/Institutional
Review Board approval. The GRID cohort was approved
by the Cambridgeshire 4 Research Ethics Committee,
study title “Developing targets for Diabetes prevention
by the study of the genetics of Type 1 diabetes” (ref
00/5/044). The 1958BC cohort was approved by the
North West Ethics Committee, study title “1958 Birth
Cohort Tissue Bank” (ref 09/H1010/12). The use of
these samples was approved by the Cambridgeshire 2
Research Ethics Committee, study title “Investigating
Genes and Phenotypes associated with Type 1 Diabetes”
(ref 08/H0308/153).
Ancestry was confirmed by PCA analysis of earlier

GWAS data in these samples [9]. The DNA for the cases
and controls was prepared using the same protocols in
Cambridge and in Bristol respectively. All samples were
cell-line derived.
HLA genotypes were available on a subset of 5603

individuals, 2922 cases and 2681 controls. HLA-A and
HLA-B genes were typed at four-digit allele resolution
using Dynal RELI SSO assays (Invitrogen, Paisley, U.K.)
(Additional file 1: Table S3). The epitope classification
of HLA-A and HLA-B alleles is given in Additional
file 1: Table S1. All 12106 samples have been genotyped
using ImmunoChip, a custom Illumina 200K Infinium
high-density SNP array [10], according to the manufac-
turer’s protocol, processed at the University of Virginia
in Charlottesville, USA. A random subset of 1629 sam-
ples, 816 cases and 813 controls, for which HLA genotype
was available, were selected for qPCR. These samples were
arrayed on bespoke 96-well plates, randomised half cases,
half controls. The source plates were chosen as those con-
taining samples with the most HLA typing available at the
time (2009).

Design of multiplexed qPCR KIR3DL1/3DS1 copy number
assay
The qPCR platform used was the LightCycler 480 Real-
Time PCR Instrument on which we ran eighteen 384-
well plates and four repeated plates. The 1629 samples,
816 cases and 813 controls, selected for qPCR were
arrayed evenly, half-cases, half-controls, across the plates.
On the four repeated plates, 310 samples were arrayed
(Additional file 1: Figure S3). On each plate, every sample
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was replicated across four neighbouring wells, resulting in
a maximum of 96 samples per plate. All plates, except for
one, contained four repeated calibrator samples of known
KIR3DL1/3DS1 copy number that included, two samples
with KIR3DS1-KIR3DL1 copy number 1-2 and two sam-
ples with KIR3DS1-KIR3DL1 copy number 2-1. These
are represented in Additional file 1: Figure S2 as black
points. To detect contamination, each plate also included
one water well. Four plates were analysed in dupli-
cate in order to assess reproducibility (Additional file 1:
Figure S3).
The qPCR probes and forward/reverse primers were

carefully designed, in collaboration with Jiang et al. [1], to
target and amplify most known KIR3DL1 and KIR3DS1
alleles, as well as the reference gene STAT6, known
to always be present in two copies. The probe and
primer sequences are summarised in Additional file 1:
Table S2.
Each qPCR well was multiplexed, so that the copy num-

bers of KIR3DL1, KIR3DS1 and STAT6 were simultane-
ously assayed as part of the same qPCR reaction. To allow
for this, the probes were conjugated with three distinct
dyes: Fam for KIR3DS1, Cy5 for KIR3DL1 and DFO for
STAT6.
Each qPCRwell reaction was prepared with 2μl of DNA

at 5 ng μl−1 and 5μl of Quantifast Multiplex PCRmaster-
mix (0.25μl primer mix, 0.045μl probe mix and 4.705μl
of water). The qPCR conditions were 95°C for 5 min, fol-
lowed by 40 cycles at 95°C for 15 s and 66°C for 50 s. Data
was collected at 66°C.

Quality control and normalisation of the qPCR data
The experiment files exported from the LightCycler gave
us three crossingpoint (Ct) values per well, one for each
of the dye-DNA conjugates. The Ct value is represen-
tative of the number of qPCR cycles required for the
dye-DNA conjugate to be sufficiently amplified for the flu-
orescence to cross the detection threshold. Hence a larger
Ct value usually implies a smaller underlying copy num-
ber. For each well, by subtracting the Ct of Fam-KIR3DL1
and Cy5-KIR3DS1 from the Ct value of the DFO-STAT6,
the reference dye-DNA conjugate, we obtained the base-
line relative �Ct value for KIR3DS1 and KIR3DL1. Then
for each sample, we took the median over the four repli-
cate wells to obtain per sample, KIR3DS1 and KIR3DL1
�Ct values (Additional file 1: Figure S1a.b). However,
certain wells did not yield a STAT6 Ct value since the
detection threshold was not crossed within the 40 PCR
cycles. We found 64 samples that did not yield a DFO-
STAT6 Ct reading in all four well replicates and these
were excluded in the first step of our quality control (QC).
Visual inspection of the KIR3DL1 and KIR3DS1 �Ct dis-
tributions by plate led us to drop plate 22 (highlighted in
Additional file 1: Figure S1a.b) as it appeared to contain

numerous outliers. This resulted in a further 91 samples
being dropped as part of our QC. Following QC, we were
left with 1474 unique samples, 747 cases and 727 controls,
over 17 plates.
Individual distributions of KIR3DS1 and KIR3DL1 �Ct

were not aligned between plates (Additional file 1:
Figure S1.c.d), this prevented pooling of all plates for copy
number calling. To align the �Ct distributions across
the 17 plates, we first applied the k-medoids algorithm
within each plate to the �Ct KIR3DS1 and KIR3DL1
separately to identify the location of the most distin-
guishable copy number groups, one and two copies.
We then normalised across plates by a linear trans-
formation so that the median �Ct of the two groups
mapped to 1 and 2 across all 17 plates (Additional file 1:
Figure S1.e.f ). After normalisation, negative �Ct values
were assigned to zero to reflect their expected copy num-
ber state.
Following QC and normalisation, samples which were

repeated across different plates showed good repro-
ducibility (Additional file 1: Figure S3). These were sum-
marised by the median of their repeated value.

Copy number calling andmultiple imputation in the
subset of samples with qPCR data
Samples with three or more missing Fam-KIR3DL1 or
Cy5-KIR3DS1 Ct values out of the four well replicates,
were assigned to zero copies of KIR3DL1 or KIR3DS1
respectively.
For the remainder of the samples, copy number call-

ing was done jointly on KIR3DL1 and KIR3DS1 using
unsupervised clustering with a finite mixture model. We
called copy number groups by fitting a mixture of eight
bivariate Gaussian distributions to exploit the notable cor-
relation between the normalised KIR3DS1 and KIR3DL1
�Ct values (Additional file 1: Figure S2). We allowed
for eight KIR3DS1-KIR3DL1 copy number groups: three
common groups of two copy numbers (0-2, 1-1, 2-0) and
five rarer groups of lower or higher copy numbers (2-1, 1-
2, 0-1, 1-0, 3-0) (Figure 1). The mixture was fitted using
an EM algorithm [11] with initial parameters calculated
from the clusters returned by k-means with centers set to
the eight expected locations of the copy number groups.
After fitting the mixture model, each sample was assigned
eight posterior probabilities of belonging to each of the
eight copy number groups, allowing for uncertainty in
copy number calling. These posterior probabilities were
used to simulate ten plausible KIR3DS1-KIR3DL1 copy
number datasets. These ten multiply imputed datasets
allowed for statistical analysis to be conducted in paral-
lel and inference to be combined across datasets using
the methods described by Little and Rubin (1987) [12]
and implemented in the mitools and mice R packages
[13,14].
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0-2 444 59.44 446 61.35 890 60.38
1-1 229 30.66 207 28.47 436 29.58
2-0 26 3.48 28 3.85 54 3.66
2-1 15 2.01 16 2.20 31 2.10
1-2 13 1.74 14 1.93 27 1.83
0-1 13 1.74 11 1.51 24 1.63
1-0 4 0.54 3 0.41 7 0.47

3-0 3 0.40 2 0.28 5 0.34

KIR3DL1 cases ccontrols total
2 457 61.18 460 63.27 917 62.21
1 257 34.40 234 32.19 491 33.31
0 33 4.42 33 4.54 66 4.48

KIR3DS1 cases ccontrols total
0 457 61.18 457 62.86 914 62.01
1 246 32.93 224 30.81 470 31.89
2 41 5.49 44 6.05 85 5.77
3 3 0.40 2 0.28 5 0.34

747 100 727 100 1,474 100

Figure 1 Bivariate copy number calling of KIR3DL1/3DS1 from qPCR�Ct. On the left, the median normalised �Ct values for KIR3DS1 and
KIR3DL1 are shown with the results of clustering into the eight copy number groups coloured according to the group with the highest posterior
probability. The three most common KIR3DS1-KIR3DL1 copy number groups are the ones with a total copy number of two: 0-2 (dark green), 1-1
(pink) and 2-0 (dark blue). The ellipses delimit the 95th percentile. On the right, the counts of the most probable copy number groups are shown for
cases and controls.

Figure 2 Overlay of ImmunoChip and qPCR samples for R and θ at SNP rs592645. Samples are coloured by the most likely KIR3DS1-KIR3DL1
copy number group according to the qPCR analysis (see Figure 1). It should be apparent that R is representative of the total copy number whereas θ

relates to the ratio of copies of KIR3DL1 to KIR3DS1. The first and second row split the samples on the availability of qPCR data, and the third row is
the overlay of the samples from the first and second row. The first and second column split the samples by case-control status and the third column
is the overlay of the samples from the first and second column.
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Copy number imputation into the extended samples
We extended our sample size by using the subset of
samples common between the qPCR and SNP datasets,
747 cases and 727 controls, to train a k-nearest neigh-
bour (knn) classifier to predict KIR3DL1/3DS1 copy
number using the R and θ signals from ImmunoChip
SNPs.
Illumina arrays, such as the ImmunoChip, have two

fluorescent probes which differ on one base and allow dis-
crimination of biallelic SNPs. The fluorescent intensities
are X and Y, from which are derived the sum, R = X + Y ,
and the ratio, tan(θ) = X

Y .
Each of 30 SNPs lying within theKIR3DL1/3DS1 region,

were assessed for association with either KIR3DL1 or
KIR3DS1 copy number in individual linear regression of
copy number against R and θ (Additional file 1: Table S4).
Nineteen SNPs out of 30 were associated (p-value <

0.05), nine of which would have failed ImmunoChip QC
(Additional file 1: Table S4), with rs592645 the most
strongly predictive (Figure 2). We compared running knn
with all predictive SNPs or on various subsets, and found
rs592645 alone, with k = 8, minimised the mean leave-
one-out cross-validation (LOOCV) error rate over ten
multiply imputed qPCR datasets (Figure 3). In each mul-
tiply imputed qPCR dataset, all samples were assigned a
single imputed copy number group. We also explored the
effect of varying the size of the training data set by setting
KIR gene copy numbers to missing for a randomly chosen

subset of samples and imputing them in the remaining
samples (Figure 4).

Testing for association of KIR3DL1/3DS1 copy number with
T1D
We tested for association of T1D with the predicted copy
numbers from the qPCR and SNP datasets using logis-
tic regression. We allowed for uncertainty in the copy
number call when estimating individual odds ratios by
using the ten multiply imputed datasets generated from
the qPCR posterior probabilities [15], and averaging the
estimates over those with the R mitools package [13].
We allowed for statistical interaction with HLA-Bw4 by
repeating the association test in the subsets of carri-
ers of the target ligand HLA-Bw4 epitopes, HLA-Bw4
for KIR3DL1 and the putative ligand HLA-Bw4-80I for
KIR3DS1. We directly tested for interaction with a more
powerful case-only χ2 test [16,17].

Results and discussion
Bivariate clustering enables accurate copy number calling
in qPCR data
Before normalisation, �Ct distributions varied across
plates preventing simple visual copy number assignment
(Additional file 1: Figure S1). After normalisation, sam-
ples repeated across different plates showed good repro-
ducibility (Additional file 1: Figure S3). Furthermore,
bivariate clustering, on both the KIR3DS1 and KIR3DL1

Figure 3 Leave-one-out crossvalidation error rate for k-nearest neighbour prediction. Leave-one-out cross validation error rates obtained
from k-nearest neighbours (knn) prediction of KIR3DL1/3DS1 copy numbers from the R and θ signals of SNP rs592645. Each point shows the
proportion of samples for which the knn predicted copy number did not match the qPCR call, averaged over ten multiply imputed qPCR call
datasets (using the posterior probabilities from Figure 1). Error bars show the minimum and maximum error rates over the ten multiply imputed
datasets. Knn was run in parallel for cases only, controls only and on all samples together. The minimum error rate is achieved for k = 8 when the
prediction uses both cases and controls.
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Figure 4 Error rate of k-nearest neighbour prediction from R and θ of rs592645 in random subset of samples. Each panel shows the LOOCV
error rates of KIR3DL1/3DS1 copy number prediction from R and θ of rs592645 in the remaining unlabeled samples when using a different size
subset of the training data. The percentage of the complete training data set and the size of the subset is given in the title of each panel. Each point
represents the LOOCV error rate averaged over ten multiply imputed qPCR call datasets (using the posterior probabilities from Figure 1). Smoothing
lines show the average over 25 independent random subsets of training data. The black dashed line represent the observed error rate in the
complete sample. As the size of the training dataset increases the error rate becomes less sensitive to the choice of the parameter k. Only 295
samples are required to achieve LOOCV error rates < 5% and 590 for error rates < 2.5%.

�Ct, enabled 1474 samples to be confidently assigned to a
single copy number group. Over 99% of all qPCR samples
were classified with a posterior probability of copy num-
ber group membership greater than 99%. Further, samples
of known copy number, the black points in Additional
file 1: Figure S2 corresponding toKIR3DS1-KIR3DL1 copy
number 2-1 and 1-2, were assigned to the correct copy
number group. We allowed for the limited uncertainty
in copy number calling, which mostly stems from distin-
guishing 2-0 from 3-0 (Figure 1), by means of multiple
imputation of ten datasets as described in the Methods.

Imputation into extended samples by integration of SNP
and qPCR data
SNP signals, R and θ , showed strong association with indi-
vidual copy numbers of KIR3DL1/3SD1 for 19 of 30 SNPs

in the KIR3DL1 region (Additional file 1: Table S4). The
strongest example is shown for SNP rs592645 in Figure 2,
in which clusters can be discerned that correspond closely
with qPCR derived KIR3DL1/3SD1 copy numbers.
This figure also illustrates a number of important

points regarding using SNP signals for imputation. Firstly,
θ corresponds to the ratio of copies of KIR3DL1 to
KIR3DS1, while R corresponds to the total copy num-
ber. Secondly, some clusters overlap, particularly along
the R axis, making them hard to identify without the
qPCR data. Consequently, a large proportion of samples
were misclassified when we attempted unsupervised clus-
tering using bivariate finite mixture model approaches,
first with PlatinumCNV [18], then with our own, mix-
ture of beta-Gaussian distributions, approach. Finally, the
clusters are in slightly different positions in cases and
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controls, reflecting the known sensitivity of genotyping
chips to subtle differences in DNA preparation and stor-
age conditions since they were prepared and processed
in two different centers [19,20]. Instead, we used the
qPCR copy numbers as training data to perform super-
vised classification with knn on the SNP signals, which
does not explicitly rely on the identification of distinct
clusters.
We first explored the validity of our imputation

approach by means of LOOCV in the samples with qPCR
data.We examined using all 19 predictive SNPs, or various
subsets, and found optimal knn imputation was achieved
with the single most predictive SNP, rs592645 (LOOCV
rate = 2.0%). By varying the size of the training data,
we suggest that only 295 samples are required to achieve
LOOCV error rates < 5% and 590 for error rates < 2.5%
(Figure 4).

No evidence of association of KIR3DL1/3DS1 copy number
with T1D
Finally, we tested for association of KIR3DL1/3DS1 copy
number with T1D status. We found no significant evi-
dence of association, in the qPCR data (747 cases and
727 controls), nor in the extended SNP data (6744 cases
and 5362 controls), either overall or with any single copy
number group (Table 1).
By expanding to these large samples, which would be

infeasible to genotype directly with qPCR, we are able to
exclude odds ratios outside of the range [.92; 1.08] for the
common copy number groups with 95% certainty.
We also repeated the association tests in the subset of

individuals, carriers of the HLA-Bw4 epitope, and again
detected no significant association (Table 2). A disadvan-
tage of subsetting by HLA-Bw4 is that we lose power by
greatly reducing the sample size. A more powerful test

Table 1 Association with T1D tested in the joint copy number group KIR3DS1-KIR3DL1 (a), and in themarginal KIR3DL1
(b) and KIR3DS1 (c) copy number groups

a) qPCR SNP

KIR3DS1-KIR3DL1 Case:control Total OR 95% CI p-value Case:control Total OR 95% CI p-value

0-2 444:446 890 1.00 4094:3222 7316 1

1-1 229:207 436 1.11 0.88-1.40 0.3673 2050:1628 3678 0.99 0.92-1.07 0.8349

2-0 26:28 54 0.92 0.52-1.61 0.7713 229:225 454 0.79 0.65-0.96 0.0193

2-1 15:16 31 0.94 0.46-1.93 0.8695 121:101 222 0.92 0.7-1.2 0.5246

1-2 13:14 27 0.93 0.43-2.01 0.8587 98:74 172 1.04 0.77-1.42 0.7822

0-1 13:11 24 1.19 0.53-2.68 0.6794 116:77 193 1.19 0.89-1.59 0.2535

1-0 4:3 7 1.34 0.30-6.02 0.7031 25:21 46 0.94 0.52-1.68 0.8255

3-0 3:2 5 1.52 0.27-8.62 0.6369 11:14 25 0.74 0.3-1.82 0.518

Overall 747:727 1474 0.9842 6744:5362 12106 0.3552

b) qPCR SNP

KIR3DL1 Case:control Total OR 95% CI p-value Case:control Total OR 95% CI p-value

2 457:460 917 1.00 4192:3296 7488 1

1 257:234 491 1.11 0.89-1.38 0.3702 2287:1806 4093 0.99 0.92-1.07 0.8883

0 33:33 66 1.01 0.61-1.66 0.9795 265:260 525 0.8 0.67-0.96 0.0151

Overall 747:727 1474 0.6651 6744:5362 12106 0.0506

c) qPCR SNP

KIR3DS1 Case:control Total OR 95% CI p-value Case:control Total OR 95% CI p-value

0 457:457 914 1.00 4210:3299 7509 1

1 246:224 470 1.10 0.88-1.37 0.4096 2173:1723 3896 0.99 0.91-1.07 0.7785

2 41:44 85 0.94 0.60-1.47 0.7787 350:326 676 0.83 0.71-0.97 0.0212

3 3:2 5 1.24 0.21-7.28 0.8084 11:14 25 0.74 0.3-1.82 0.5119

Overall 747:727 1474 0.8044 6744:5362 12106 0.1494

No evidence of a significant, joint or marginal, effect was detected in the qPCR dataset, 747 cases and 727 controls, nor in the SNP dataset, 6744 cases and 5362
controls. Case-control counts shown are derived from the most likely copy number assignment across the ten multiply imputed qPCR and SNP datasets. Statistical
inference for association is derived from the multiply imputed datasets using the Rmitools package [13]. The last row of each table contains the pooled p-value for
each association test using the Rmice package [14].
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for interaction between unlinked genes is a case-only test
[16]. If there were an interaction between KIR3DL1/3DS1
and HLA-Bw4 then this should be detectable as a differ-
ence in KIR3DL1/3DS1 copy number frequencies across
HLA-Bw4 strata in the cases. However, we found no
significant evidence for association in either the qPCR
or SNP data sets, before or after summarising the KIR
copy number by presence/absence to increase power by
reducing the degrees of freedom (Table 3).

Conclusion
Regions with great allelic and copy number variation are
difficult to properly assess using GWAS. While genome-
wide SNP arrays are typically cost effective ways to assay
common genetic variation, very polymorphic regions can
make the design of SNP probes that bind uniquely to their
target region, difficult or impossible. This has resulted in

low SNP coverage in the KIR region for the common SNP
arrays. The SNPs that do exist on arrays are often dis-
carded during the QC phase of any GWAS because they
do not exhibit the expected three clusters. On the other
hand, assaying individual genes can prove expensive. For
example, the qPCR assays used here to target KIR3DL1
and KIR3DS1 cost £12 per sample.
Further, qPCR derived data, despite careful design and

multiplexing, remain subject to noise (plate 22 Additional
file 1: Figure S1). We ameliorated this through QC and
normalisation across plates, and then jointly clustering
KIR3DL1 andKIR3DS1, to exploit the correlation between
the �Ct values. The advantage of joint clustering is
demonstrated in qPCR plate 10, where noisy cases
(Additional file 1: Figure S1.f ) are difficult to assign as one
or two copies based solely on their KIR3DL1 �Ct, but are
much more clearly distinguishable when we also consider
their KIR3DS1 �Ct value (Additional file 1: Figure S2).

Table 2 Association with T1D conditional on the presence of the respective HLA-Bw4 epitope, tested in the joint copy
number group KIR3DS1-KIR3DL1 (a), and in themarginal KIR3DL1 (b) and KIR3DS1 (c) copy number groups

a) HLA-Bw4 subset qPCR SNP

KIR3DS1-KIR3DL1 Case:control Total OR 95% CI p-value Case:control Total OR 95% CI p-value

0-2 259:286 545 1.00 1027:1157 2184 1

1-1 123:128 251 1.06 0.79-1.43 0.6976 555:582 1137 1.08 0.93-1.24 0.3119

2-0 16:15 31 1.22 0.58-2.57 0.5985 59:88 147 0.76 0.54-1.07 0.1133

2-1 7:13 20 0.59 0.23-1.51 0.2754 34:40 74 0.93 0.58-1.48 0.7529

1-2 8:8 16 1.10 0.41-2.98 0.8450 24:33 57 0.85 0.5-1.45 0.5502

0-1 10:7 17 1.58 0.59-4.20 0.3621 36:24 60 1.69 1-2.85 0.0491

1-0 2:1 3 2.21 0.20-24.50 0.5187 7:4 11 1.97 0.58-6.76 0.2793

3-0 3:0 3 5:0 5

Overall 428:458 886 0.8978 1747:1928 3675 0.2173

b) HLA-Bw4 subset qPCR SNP

KIR3DL1 Case:control Total OR 95% CI p-value Case:control Total OR 95% CI p-value

2 267:294 561 1.00 1051:1190 2241 1

1 140:148 288 1.04 0.78-1.38 0.7787 625:646 1271 1.09 0.95-1.26 0.1975

0 21:16 37 1.45 0.74-2.83 0.2822 71:92 163 0.88 0.64-1.21 0.4181

Overall 428:458 886 0.5563 1747:1928 3675 0.2586

c) HLA-Bw4-80I subset qPCR SNP

KIR3DS1 Case:control Total OR 95% CI p-value Case:control Total OR 95% CI p-value

0 159:187 346 1.00 649:733 1382 1

1 93:83 176 1.32 0.92-1.90 0.1370 383:366 749 1.18 0.99-1.41 0.0628

2 12:14 26 1.01 0.45-2.24 0.9842 61:75 136 0.91 0.64-1.3 0.607

3 2:0 2 3:0 3

Overall 266:284 550 0.5209 1096:1174 2270 0.2416

Association is tested in the subset of individuals carriers of an HLA-Bw4 epitope for the joint KIR3DS1-KIR3DL1 (a) and marginal KIR3DL1 (b) copy number groups and,
also tested in the subset of individuals carriers of the HLA-Bw4-80I epitope for the marginal KIR3DS1 (c) copy number group. Case-control counts shown are derived
from the most likely copy number assignment across the ten multiply imputed qPCR and SNP datasets. Statistical inference for association is derived from the multiply
imputed datasets using the Rmitools package [13]. The last row of each table contains the pooled p-value for each association test using the Rmice package [14].
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Table 3 Case-only χ2 test for interaction between KIR3DS1-KIR3DL1 and HLA-Bw4, across the tenmultiply imputed qPCR
and SNP datasets

a) qPCR SNP

HLA-Bw4- HLA-Bw4+ HLA-Bw4- HLA-Bw4+

KIR3DS1- KIR3DL1+ 183 269 739 1063

KIR3DS1+ KIR3DL1- 12 21 40 71

KIR3DS1+ KIR3DL1+ 113 138 396 613

p-value = 0.4094 p-value = 0.4235

b) qPCR SNP

HLA-Bw4- HLA-Bw4+ HLA-Bw4- HLA-Bw4+

KIR3DL1- 12 21 40 71

KIR3DL1+ 296 407 1135 1676

p-value = 0.5144 p-value = 0.3609

c) qPCR SNP

HLA-Bw4-80I- HLA-Bw4-80I+ HLA-Bw4-80I- HLA-Bw4-80I+

KIR3DS1- 293 159 1153 649

KIR3DS1+ 159 107 673 447

p-value = 0.4922 p-value = 0.0353

Counts in each contingency table are derived from the most likely copy number assignment across the multiply imputed datasets. To reduce the degrees of freedom
and improve power, we summarise copy numbers higher or equal to one by presence (+) and zero by absence (-). The pooled p-value of each χ2 test, across the
multiply imputed datasets, is given in the last row of each contingency table. We find no significant association with HLA-Bw4, within cases, in either the joint (a) or
the marginal (b)(c) KIR3DS1-KIR3DL1 distributions.

As receptors for HLA class I molecules, KIR genes are
important candidates for T1D and other diseases that
associate with HLA variation. However, researchers have
been unable to fully assess their candidacy due to lack
of coverage in GWAS and the complexity and expense
of KIR gene-specific assays. So far, KIR association stud-
ies for T1D have involved small samples sizes and have
probed for presence/absence of multiple KIR genes whilst
ignoring the respective copy numbers of these genes,
with mixed results and no consistent pattern of associa-
tion emerging. However, copy number variation in KIR
could be important, as it is a mechanism which gives
rise to a large diversity of haplotypes [1]. Our hybrid
approach, as outlined in Additional file 1: Figure S4,
allowed us to perform the (twenty-fold) largest study of
KIR3DL1/3DS1 copy number in T1D to date, and to
test for association in eight of the most frequent copy
number groups (Additional file 1: Table S5). In 12106
samples, we found no association of KIR3DL1/3DS1 copy
number with T1D, alone or conditional on presence of
the HLA-Bw4 epitope. Our results suggest that, despite
the association of certain HLA-A and HLA-B alle-
les with T1D and the established biological interaction
between HLA-Bw4 and KIR3DL1, copy number varia-
tion in KIR3DL1/3DS1 is unlikely to have a significant
effect on the risk of developing T1D. Other KIR genes
that are in high linkage disequilibrium with KIR3DL1 and
KIR3DS1 are also unlikely to be associated. According

to the Allele Frequency Net database [21], these include
KIR2DS4 (97%) and KIR2DL3 (86%), for KIR3DL1 and,
KIR2DL5 (81%), KIR2DS5 (84%) and KIR2DS1 (92%),
for KIR3DS1 (http://www.allelefrequencies.net/kir6010a.
asp). Thus, copy number variation in KIR3DL1/3DS1 or
neighbouring genes is unlikely to be an important risk
factor in T1D.
In order to better understand why rs592645 is the

best SNP for predicting copy number variation in
KIR3DL1/3DS1, we used BLAT [22] to match the probe
sequences of rs592645 on ImmunoChip against the allelic
sequences of all KIR genes available from the Immuno
Polymorphism Database [23]. Interestingly, we found that
the SNP probes do not target KIR3DL1/3DS1 but instead
bind uniquely to the fifth intron of KIR2DL4, a neigh-
bouring framework gene. Examining the KIR2DL4 alleles
matched by the rs592645 probes, we discovered that the
SNP probes are in fact picking up copy number varia-
tion of KIR2DL4*005, an allele of KIR2DL4 that under-
goes copy number variation along with KIR3DL1/3DS1
[24]. This explains the small but persistent misclas-
sification error rate of 2% since our imputation is
based on linkage disequilibrium between rs592645 and
KIR3DL1/3DS1 rather than on perfect discrimination
between our target genes. We have identified 27 sam-
ples, which we believe, are consistently misclassified due
to imperfect linkage disequilibrium (Additional file 1:
Table S6).

http://www.allelefrequencies.net/kir6010a.asp
http://www.allelefrequencies.net/kir6010a.asp
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We have observed other SNPs with more than three
clusters that may correlate with copy number of other KIR
genes and, given the availability of qPCR results, could be
imputable in a similar manner.

Additional file

Additional file 1: Supplementary figures and tables.
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