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Abstract
Background: Recently, extensive studies have been carried out on arrhythmia classification
algorithms using artificial intelligence pattern recognition methods such as neural network. To
improve practicality, many studies have focused on learning speed and the accuracy of neural
networks. However, algorithms based on neural networks still have some problems concerning
practical application, such as slow learning speeds and unstable performance caused by local
minima.

Methods: In this paper we propose a novel arrhythmia classification algorithm which has a fast
learning speed and high accuracy, and uses Morphology Filtering, Principal Component Analysis and
Extreme Learning Machine (ELM). The proposed algorithm can classify six beat types: normal beat,
left bundle branch block, right bundle branch block, premature ventricular contraction, atrial
premature beat, and paced beat.

Results: The experimental results of the entire MIT-BIH arrhythmia database demonstrate that
the performances of the proposed algorithm are 98.00% in terms of average sensitivity, 97.95% in
terms of average specificity, and 98.72% in terms of average accuracy. These accuracy levels are
higher than or comparable with those of existing methods. We make a comparative study of
algorithm using an ELM, back propagation neural network (BPNN), radial basis function network
(RBFN), or support vector machine (SVM). Concerning the aspect of learning time, the proposed
algorithm using ELM is about 290, 70, and 3 times faster than an algorithm using a BPNN, RBFN,
and SVM, respectively.

Conclusion: The proposed algorithm shows effective accuracy performance with a short learning
time. In addition we ascertained the robustness of the proposed algorithm by evaluating the entire
MIT-BIH arrhythmia database.

Background
Arrhythmia is a form of heart conduction system disease
that causes an inefficient heart beat. Typically, arrhythmia
is diagnosed through an electrocardiogram procedure.

Because arrhythmia represents abrupt and abnormal ECG
beats, physicians diagnose arrhythmia based on long-
term ECG data using an ECG recording system like the
Holter recorder. In addition, various remote and mobile
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healthcare systems that are adapting ECG recorders are
increasing in number these days, and the importance of
an automatic arrhythmia classification algorithm is being
increasingly recognized. There are many existing studies
on the classification of arrhythmia, and the algorithm is
generally composed of the pre-processing part, the feature
extraction part, and the classification part.

The pre-processing part removes noise components and
does other forms of processing for more accurate feature
extraction or classification. The main noise components
of ECG include baseline drift, power line interference, and
moving artefacts [1]. Various reports have been published
on the filtering methods for removing noise components
while preserving both ECG morphology and fast process-
ing.

The feature extraction part makes feature vectors that are
used later in the classification part. Various signal com-
pression algorithms are used to represent the signal's char-
acteristics efficiently with a small computational burden.
Many transformation methods, such as principal compo-
nent analysis (PCA), or independent component analysis
(ICA)[2], are very frequently used. The classification part
makes an arrhythmia diagnosis using acquired feature
vectors from the feature extraction part. Statistical
approaches [3], fuzzy inference approaches, and neural
network approaches [4] are the typically used methods for
ECG pattern classification. The statistical approaches clas-
sify ECG patterns by using statistical modelling, which is
acquired from the data. However, in the case of statistical
approaches, there are some difficulties in acquiring many
types of data and in selecting a model that best represents
data distribution. The fuzzy inference approaches have
less computational burden than others, but those
approaches have a subjective nature because membership
function selection is accomplished by applying the opin-
ions of experts and repeated experimentation. In addition,
the complex decision region acquired through the
machine learning approach is considered as one of the
neural network approaches. However, a huge learning
dataset, large computational burden and extended learn-
ing time are pointed out as the main shortcomings of the
neural network approaches.

There have been many studies that found ways to over-
come the weaknesses of the neural network approaches.
Most of the recent research projects on improving the
arrhythmia classification algorithm are classified into two
types of approaches. One approach involves finding a bet-
ter ECG feature extraction method, such as dimension
reduction, and the other is concerned with finding a better
classifier. Many studies on ECG feature extraction have
been reported using PCA and ICA for dimension reduc-
tion; and Fourier transform [5] and Wavelet transform

[4,6] for frequency component representation. There are
also many studies that adapted a new classifier such as a
Support Vector Machine (SVM)[7]. Some comparative
studies of various data reduction[8-10], feature extrac-
tion[10,11], and classification methods[11] were pre-
sented recently, but the size of test data set was relatively
small.

As a kind of classifier, Extreme Learning Machine (ELM)
was able to overcome the difficulties of a neural network
through a fast learning speed and high performance [12];
the problems that persisted were an extended learning
time for a gradient-based learning algorithm, the possibil-
ity of local minima converging, and a degraded perform-
ance due to overtraining. A BPNN that is typically used as
a learning algorithm on a Single Hidden Layer Feedfor-
ward Neural Network (SLFN) adjusts the weights between
layers based on propagating errors from the output layer
to the input layer. However, it was demonstrated that a
SLFN classifier that has randomly selected weights
between the input layer and the hidden layer may have
the ability to classify the data set only with the controlling
weights between the hidden layer and the output layer
[13]. Based on this research result, the ELM acquired opti-
mal weights between the hidden layer and the output
layer analytically, with randomly selected weights
between the input layer and the hidden layer.

The performance of the classification not only depends on
the classifier, but also depends on the features, and better
ECG signal processing is of great benefit to feature extrac-
tion. Thus in this study, we proposed and analyzed the
proper signal processing methods for each part of arrhyth-
mia classification algorithm: preprocessing, feature extrac-
tion, and classification part, in an effort to develop robust
algorithm. We used Morphology Filter (MF) as the pre-
processing part to remove the noise component while pre-
serving ECG morphology, and time domain features and
morphology features of ECG compressed by PCA as the
feature extraction part. For the classification part we used
ELM in order to reduce learning time while maintaining
high accuracy. We first evaluated the each component of
the proposed arrhythmia classification algorithm sepa-
rately, and made the comparative study of the perform-
ances of the algorithm using an ELM, NN, RBFN, or SVM
as the classifier. In addition, the performance of proposed
algorithm was compared with that of other researches.

Methods
The composition of the proposed algorithm is shown in
Figure 1. This paper presents MF based pre-processing to
remove high frequency noise components and baseline
drift, as well as to preserve ECG morphology. MF is a type
of filtering method which has the virtue of preserving the
sharpness of the QRS complex, and this has important
Page 2 of 12
(page number not for citation purposes)



BioMedical Engineering OnLine 2009, 8:31 http://www.biomedical-engineering-online.com/content/8/1/31
meaning for ECG. The feature vectors are made of several
descriptive parameters and compressed 250 ms QRS com-
plex morphology data by the PCA from a given ECG signal
after the MF stage. Then, ELM is trained and classified
using these feature vectors. In the evaluation stage we used
the entire MIT-BIH arrhythmia database to maintain the
robustness of the proposed algorithm.

Morphology Filtering
It was proposed a method of ECG morphological filtering
which filters baseline drift and high frequency ECG noise
with less distortion than in the original ECG signal, and
with less computational burden [14]. f0 is the ECG signal
containing noise components, and the ECG signal with-
out baseline drift, fbc, is acquired through Equation (1).

In Equation (1), '°' and '·' represent the opening opera-
tion and the closing operation, respectively. B0 and Bc are
structural elements which have zero amplitude sequence,
and are 0.2 and 0.3 times the length of the sampling fre-
quency Fs In the case of high frequency noise, the filtered
signal is defined as Equation (2).

where '⊕ ' and ' ', dilation and erosion respectively, are
morphological operators. B2 is the structural element
[0,0,0,0,0] to remove the high frequency noise. And, B1,
which is a structural element [0,1,5,1,0], compensates for
the high frequency components of the original signal,
which are removed by B2

Principal Component Analysis
As the most representative dimension reduction tech-
nique, PCA projects multidimensional data onto space
which is constructed of axes in the order of distribution.
Thus, the given data can be represented by fewer dimen-
sions in terms of the minimum mean square error. When
d dimensional original data projects onto d' dimensional
space, the error is represented by Equation (3), and the
equation is referred to as the criterion function.

As Equation (3) is the sum of the mean square error, we
can obtain optimal basis vectors by minimizing Equation
(3). And, by using a scatter matrix S, the vectors ei mini-
mizing Equation (3) are calculated by Lagrange multi-
plier. As a result of the minimization of Equation (3), we
take the Equation (4) using the Lagrange multiplier λi.

The bases from Equation (4) are eigenvectors of the scatter
matrix. To maximize distribution of projected data in d'
dimension, we have to select d' bases from Equation (4)
in the order of their eigenvalues. The scatter matrix S is
real and symmetric, thus the eigenvectors ei are mutually
orthogonal. The reduced dimensional space is made up of
selected eigenvectors.

Extreme Learning Machine

ELM makes up for the defects of gradient-based learning
algorithm by analytically calculating the optimal weights
of the SLFN. First, weights between the input layer and the
hidden layer are randomly selected to make the SLFN into
a linear equation, and then we can obtain the optimal
value for weights between the output layer and the hidden
layer by calculating the linear matrix equation. When we

have N samples of input data and  hidden neurons, the
SLFN neural network is defined as Equation (5).

where wi is the weight vector between the ith neuron in the
hidden layer and the input layer, bi means the bias of the
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Block diagram of the proposed algorithmFigure 1
Block diagram of the proposed algorithm.
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ith neuron in the hidden layer; xi is the jth input data vec-
tor; g(.) is an active function of the hidden neuron; βi is
the weight vector between the ith hidden neuron and the
output layer; and tj means the target vector of the jth input
data. When wi and bi are constant, g(wi·xj+bi) in Equation
(5) which is the output of the ith hidden neuron, can be a
constant matrix according to xi Thus, Equation (5) can be
reformulated as a matrix equation to form Equation (6)
by using that output matrix of the hidden layer H.

In Equation (6), the target vector T and the output matrix
of the hidden layer H comprise a linear system. Thus, the
learning procedure of the neural network becomes find-
ing the optimal weight matrix β between the output layer
and the hidden layer. This process can be accomplished
using the Moor-Penrose Generalized Inverse of H, as is
shown in Equation (7).

By using the Moor-Penrose Generalized Inverse of H, the

optimal β has the minimum norm least-squares solution
of the linear system. With this process we can establish
two effects. The first effect is that we can take a minimum

error condition, because obtained  is least-squares solu-

tion. In addition, optimal  is not only the least-squares

solution but also the minimum norm among these solu-
tion. Thus, ELM has a better generalization performance
than a typical BPNN [15].

Back Propagation Neural Network
BPNN is a learning algorithm for the multi-layer neural
network which adjusts the weights and the biases by prop-
agating the errors from the output layer to the input
layer[16]. The criterion function of the BPNN is expressed
as Equation (8):

where w, tk, and zk are the weight vector, the target vector,
and the output vector, respectively. BPNN is the represent-
ative gradient descent method for searching the weight
vectors w, which are initialized with arbitrary value at the

beginning, and then are adjusted according to the most
rapid decrease of J(w).

BPNN takes a long time to learn and has the risk of falling
into a local minimum, because it solves the Equation (9)
iteratively until J(w) reaches the minimum.

Radial Basis Function Network
RBFN is a kind of neural network whose hidden neurons
have a RBF activation function. RBF is a function which
depends only on the radial distance from a vector[16].
The RBFN performs the nonlinear transformation from
the input feature space, where the input patterns are not
linearly separable, to the hidden unit space, where the
transformed input patterns may be linearly separable.
RBFN is expressed as Equation (10):

where w, φ(·), and ck are the weight vector between the
hidden neuron and the output layer, the activation func-
tion, and the center of the kth activation function, respec-
tively. And x and y are the input and output vector.
Typically, the activation function uses the gaussian func-
tion or other bell-shaped functions. Thus, we had 3 kinds
of parameters to accomplish the learning process with the
given architecture, those are w, ck, and the spreads of RBF.
In this paper, ck were acquired through k-means cluster-
ing, and the spreads of RBF were chosen by the normali-
zation as Equation (11).

where dmax is the maximum distance between any 2 cent-
ers, and m is the number of centers. Finally, w are com-
puted by means of the pseudo-inverse method.

Support Vector Machine
SVM aims to achieve structural risk minimization using
the concept of margin unlike criterion functions of other
pattern recognition algorithms of which the goal is mini-
mization of empirical error[17]. SVM extends the applica-
bility of linear classifier to non-linear separable data by
using the kernel method. Non-linear SVM is considered to
solve a conditional optimization problem as Equation
(12):
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where K(A, B) is a kernel function of A and B, α means the
Lagrange multiplier, t has 1 or -1 as target value, C is the
weight factor between minimizing the error and maximiz-
ing the margin. Thus when using SVM, there are two
parameters to be decided, K(A, B) and C. In this paper, we
used a radial basis function kernel, like Equation (13), as
a kernel function and found C through a simulation.

SVM is basically a binary classifier. But in this paper, we
used a one-against-all multiclass SVM because of many
classes for each arrhythmia.

Experimental Method
The proposed algorithm was evaluated using the MIT-BIH
arrhythmia database [18]. The evaluation with the entire
MIT-BIH arrhythmia database shows the robustness of
proposed algorithm. (102, 104, and 114 ECG data files in
the MIT-BIH arrhythmia database were excluded since
those files are not recorded on Modified Lead II.) We
selected major beat types with a coverage ratio exceeding
1% in the entire MIT-BIH arrhythmia database. By doing
that, we had 6 major beat types. They are normal beats,
left bundle branch block (LBBB) beats, right bundle
branch block (RBBB) beats, premature ventricular con-
tractions (PVC), atrial premature beats (APB), and paced
beats (PB). The total of the coverage ratios of those 6
major beat types is 97.76% as is shown in Table 1.

After 6 beat types were extracted from the entire MIT-BIH
database, a randomly chosen quarter of database was used
as the training dataset, and the other three-fourths were
used as the test dataset. 4-fold cross-validation[19] was

used to estimate the classification accuracy. We used a full
three-fourths of the database as the testing dataset, but in
the case of the training dataset, we randomly selected
5000 beats from the normal beats and 1000 beats from
the other beat types, in order to prevent underestimation
of the abnormal beat types. The composition of the train-
ing dataset and the test dataset is shown in Table 1.

The constructed ECG dataset was filtered by a MF. Then,
the current RR interval (RRI), the ratio of the current RRI
against the next RRI (RRIR), the ratio of the current RRI
against the average of the latest 10 beats (10RRIR), and
the R peak amplitude (Ramp) were extracted from the fil-
tered signal as ECG descriptive features. The RRIR was
introduced to reflect the compensatory pause of the APB
and PVC, and the 10RRIR compensates for the variation in
the normal RR interval range. Besides ECG descriptive fea-
tures, morphology features were acquired from ECG data
around an R peak (250 ms, 90 samples), which is pro-
vided by the databases' annotation. The morphology fea-
tures compressed by PCA and the descriptive features were
included in the feature vectors to train and test ELM. The
evaluation was performed with Matlab R2007b and with
Intel Quad core 2.40 GHz, 2 GB RAM, Microsoft windows
XP platform.

Results
This section presents the results of the analysis of each
component. Concerning the morphology filtering com-
ponent, we compared MF with a typical filtering method
in terms of preserving ECG morphology, and for the fea-
ture extraction component we analyzed the distribution
of features in each beat type to estimate the efficiency of
the features. Finally, for the classification component, we
simulated the algorithm in terms of sensitivity, specificity,
and the accuracy basis by varying the number of principal
components and hidden neurons, in order to evaluate the
optimal ELM structure. The obtained optimal results of
the proposed algorithm were compared with those of
other existing research papers in terms of the size of the
training dataset, test dataset, and accuracy. The training
time, which is another advantage of the proposed algo-
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Table 1: Composition of the data set

Beat type Number of beats in Test data set Number of beats in Training data set Possession rate (%)

Normal 54516 5000 70.2573
LBBB 6036 1000 7.7746
RBBB 5410 1000 6.9889
PVC 5293 1000 6.8166
APB 1896 1000 2.4407
PB 2702 1000 3.4853
Total 75853 10000 97.76

Possession rate means that possession ratio of each beat type in the entire MIT-BIH arrhythmia data base. LBBB: left bundle branch block, RBBB: 
right bundle branch block, PVC: premature ventricular contraction, APB: atrial premature beat, PB: paced beat
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rithm, was also evaluated with BPNN, RBF, or SVM based
algorithm.

Result of Morphology Filtering
The advantages of MF is that it is able to filter noise com-
ponents while preserving the original ECG morphology,
and it has a small computational burden compared with
typical frequency based filtering. The Figure 2 shows the
comparison between the result signals of typical fre-
quency based filtering [20] and that of MF on a 101 file in
MIT-BIH arrhythmia DB. The typical frequency based fil-
ter composition clearly removed the high frequency noise
component, but the high frequency components of QRS
complex decreased while eliminating the EGM frequency
band (generally 35 Hz). Thus, we can see a wider QRS
complex in the result signal, in typical frequency based fil-
tering, than the complex in an original ECG signal or a
result MF signal. This characteristic creates possible confu-
sion since ventricular arrhythmia beats generally have a
wide QRS complex. As it can be seen in the result MF sig-
nal, this effect does not occur since MF is not established
on frequency bases.

Distribution of Feature Set Results
The proposed algorithm used 4 ECG descriptive features.
These are the RRI, the RRIR, the 10RRIR and Ramp. Also,

the algorithm used 30 ECG morphological features com-
pressed by PCA, which contained 99.99% of the total
amount of morphology information. The Figure 3 shows
the distribution of 4 ECG descriptive features and 4 prin-
cipal components among the morphological features. In
the cases of PVC and APB, the RRI, RRIR, and 10RRIR have
very different distributions when compared to those of
other beat types. They show reasonable distributions for
premature beats such as PVC and APB. It seems that the
RRIR is also desirable and reflects well on the compensa-
tion period. Concerning the distribution of the Ramp, PBs
have remarkably larger amplitudes than other beat types.
In the ECG beat type classification algorithm, having a
feature that can separate other beats from normal beats is
important since normal beats are 70% of the entire data-
base. As all beat types have their largest displacement at
the QRS complex, all beat types have similar distributions
in the principal component1 (PC1). However, in PC2, the
PB and RBBB are different from the normal beat. Also, in
PC3, the LBBB, PVC and Paced beats are different from
normal beats.

Results of the Proposed Algorithm
The classifier of the proposed algorithm is ELM, which has
the number of hidden neurons as the adjustable parame-
ter affecting performance. In addition, in this application

Comparison of the result signals of Morphological filtering and general frequency based filteringFigure 2
Comparison of the result signals of Morphological filtering and general frequency based filtering. (A) Contami-
nated ECG (101 file in MIT-BIH arrhythmia DB), (B) morphological filtered signal and (C) general filtered signal.
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the number of principal components also affects perform-
ance. Thus, in order to analyze the optimal ELM structure,
we evaluated the proposed algorithm with a varying
number of hidden neurons and principal components.
The criteria for evaluating the performance of the algo-
rithm were sensitivity, specificity, and accuracy, and the
formulas are as follows:

where TP, TN, FP, and FN are True Positive, True Negative,
False Positive, and False Negative, respectively.

The Figure 4 shows the results of each composition. In this
study, we considered evaluating the proposed algorithm
by changing the number of hidden neurons from 40 to
2000, and the number of principal components from 1 to
30. Performance improved as the number of hidden neu-
rons and principal components in all three criteria areas
increased. However, performance did not improve any
more in the cases in which there were more than 10 prin-
cipal components or 400 hidden neurons. In those cases

using 720 hidden neurons and 14 principal components,
the detailed beat classification results of the proposed
algorithm are shown in Table 2. Whole beat types, except
for APB and PVC, had greater than 98% sensitivity, but the
sensitivity of PVC and APB was 90.36% and 89.24%,
respectively.

The results of the learning time are shown in Table 3, 4, 5,
and 6. A comparative study was conducted to compare the
learning time of the algorithms based on ELM with that of
BPNN, RBF or SVM. The performance of BPNN is based
on the learning rate, the momentum, the number of train-
ing iterations and hidden neurons, and the number of
hidden layers used. In this simulation, the number of hid-
den layer was equal to that in the ELM case as 1, and the
learning rate, iteration number, and a number of hidden
neurons were used in the best result case. The simulation
was evaluated by varying the learning rate from 0.0005 to
0.002. When the learning rate was either under 0.0005 or
over 0.002, the accuracy of the algorithm couldn't con-
verge on over 90%. And we also changed the number of
hidden neurons from 10 to 100 with 10 steps. The per-
formance of the algorithm using BPNN showed distinct
decline when using over 50~80 hidden neurons. The ter-
mination point of the learning process was when the
training accuracy converged because the variation of the
error was very small (When the variation of the mean
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The distribution of feature vectorsFigure 3
The distribution of feature vectors. The candle bar means the distribution of each beat type's feature. The uppermost part 
of the bar means 90% of the feature distribution level, the upper side of the box means 75%, the bottom side of the box means 
25% and the bottommost part of the bar means 10%. (A) RRI: current RR interval, (B) RRIR: ratio of current RRI to next RRI, 
(C) 10RRIR: ratio of current RRI to average of late 10 beats, (D) Ramp: R peak amplitude, (E) 1st principal component, (F) 2nd 
principal component, (G) 3rd principal component and (H) 4th principal component.
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squared error between the target values and the values of
the output neuron in the consecutive epochs is less than
10-8.) or the iteration number is over 4000. The momen-
tum was fixed as 1. The Figure 5 shows the convergence
curve of the BPNN based algorithm in the best result case,
when the algorithm used the 10 hidden neurons with
0.002 as the learning rate and 4000 as the iteration
number.

In the algorithm based on RBF, we evaluated by varying
the number of hidden neurons from 200 to 2000. The
accuracy converged to 89% and showed no more
improvement after the number of hidden neurons
reached 1200. The spread of RBF was chosen by the nor-
malization as Equation (11). The performance of SVM is
based on the type of kernel and C which controls a weight
between the size of margin and the number of misclassi-
fied data. We selected the Gaussian kernel like RBF and
the sigma of Gaussian kernel is fixed as 2. The C was var-
ied between 1 and 9000, and the accuracy converged to
98% when C is over 2000.

Discussion
We evaluated the proposed algorithm in the pre-process-
ing (filtering), feature extraction and classification parts.
The proposed algorithm adapted MF as the preprocessing
part. 4 ECG descriptive features and morphology features
compressed by PCA made up the feature vectors. Since MF
is superior in performance to frequency based filtering in
terms of preserving ECG morphology, it is thought that
MF will become an attractive method concerning the ECG
arrhythmia classification algorithm. The distribution
characteristics of the proposed ECG descriptive features,

especially RRIR and some PCs, showed that they con-
tained effective information.

The proposed algorithm represented the advantages of a
fast learning speed and high accuracy in comparison with
other gradient based learning algorithms, and was evalu-
ated as having a large dataset. The ELM based algorithm
showed the most accurate performance, the SVM based
one was slightly lower, but the BPNN and RBF based algo-
rithms were fairly low in terms of accuracy based on when
the proposed algorithm and other classifiers based algo-
rithms reached the maximum accuracy with 10 principal
components. But the learning time of the proposed algo-
rithm was shorter about 290, 70, and 3 times than that of
BPNN, RBF, and SVM based algorithm.

These results demonstrate that the proposed algorithm
used more hidden neurons than did the BPNN based
algorithm. It reflected the characteristic of ELM that used
a portion of the hidden neurons among the randomly set-
ting weights between the input layer and the hidden layer.
In addition, we found a tendency for performance to
decrease when using over 1800 hidden neurons. This phe-
nomenon was caused by the minimum norm least-
squares solution of the linear system in Equation (7)
through the Moor-Penrose Generalized Inverse of H. The
minimum norm least-squares solution searches for the
least-squares solution first, and then searches for the min-
imum norm among those solutions Therefore, the accu-
racy of the algorithm concerning the training dataset
increases as the number of hidden neurons increases, but
the generalization performance decreases when too many
hidden neurons are used. Nevertheless, ELM is much eas-

Table 2: Results of the proposed algorithm with 720 hidden neurons and 14 components

Results from Proposed Algorithm Actual heart beat type

Nor LBBB RBBB PVC APB PB Total

Normal 53885 90 35 276 188 1 54475
LBBB 83 5922 2 64 5 0 6076
RBBB 65 1 5356 29 5 0 5456
PVC 104 16 1 4783 6 0 4910
APB 379 7 16 141 1692 1 2236
PB 0 0 0 0 0 2700 2700
Total 54516 6036 5410 5293 1896 2702 75853

Accuracy, Sensitivity, Specificity (%)

Beat types Nor LBBB RBBB PVC APB PB Avg.

sensitivity 98.84 98.11 99.00 90.36 89.24 99.93 98.00
specificity 97.23 99.78 99.86 99.82 99.26 100.00 97.95
accuracy 98.39 99.65 99.80 99.16 99.01 100.00 98.72

The diagonal terms of the matrix are the number of beats correctly classified. LBBB: left bundle branch block, RBBB: right bundle branch block, 
PVC: premature ventricular contraction, APB: atrial premature beat, PB: paced beat
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Performance of the proposed algorithmFigure 4
Performance of the proposed algorithm. (A) sensitivity, (B) specificity, and (C) accuracy.
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ier to decide and evaluate the structure of neural network
than BPNN.

The comparisons with other research projects and pro-
posed algorithms, in terms of the size of the training data-
set, test dataset and accuracy, are reported in Table 7. The
proposed algorithm shows a better performance than
those of other existing research projects which were eval-

uated based on a similar database size. The research
projects of Wavelet-PNN7 present higher accuracy results
than the proposed one, but it was not performed on the
entire MIT-BIH database. In comparison with our earlier
work, we have more stable results from a larger database
by using MF. The results of the proposed algorithm
showed 98.00% in terms of average sensitivity, 97.95% in
terms of average specificity, and 98.72% in terms of aver-

Table 3: Evaluation of the learning times and the testing accuracies among algorithms using ELM with 10 principle components

The number of hidden neurons 200 400 600 800 1000 1200 1400 1600 1800 2000

Training time (seconds) 0.95 3.13 7.09 13.61 22.48 35.13 50.47 70.11 94.30 123.77
Testing accuracy (%) 97.76 98.50 98.60 98.72 98.72 98.60 98.37 98.19 98.06 97.75

The bold column represents the structure of the network which shows the best accuracy.

Table 4: Evaluation of the learning times and the testing accuracies among algorithms using BPNN with 10 principle components

Learning rate η The number of 
hidden neurons

10 20 30 40 50 60 70 80 90 100

0.0005 Training time 
(seconds)

4092.19 4213.2
5

4276.5
5

4424.7
7

4455.6
9

4589.7
0

4553.0
2

4640.63 4745.1
6

4884.3
0

Testing accuracy (%) 94.77 94.00 94.16 95.32 94.74 92.62 92.52 90.28 88.77 89.91
0.001 Training time 

(seconds)
4058.33 4157.4

1
4218.0

9
4354.4

1
4408.2

3
4500.0

6
5.75* 1532.38* 2.38* 32.61*

Testing accuracy (%) 95.02 94.45 95.83 95.51 93.56 91.30 78.17 78.17 78.17 78.17
0.002 Training time 

(seconds)
4054.50 4212.8

5
4213.7

1
4385.4

0
1.11* 1.12* 1.12* 3.44* 1.17* 144.12*

Testing accuracy (%) 96.42 95.72 89.37 86.15 78.17 78.17 78.17 78.17 78.17 78.17

The bold characters represent the structure of the network which shows the best accuracy. The asterisk refers the early termination of the 
learning process, because the decrement of the error is very small.

Table 5: Evaluation of the learning times and the testing accuracies among algorithms using RBFN with 10 principle components

The number of hidden neurons 200 400 600 800 1000 1200 1400 1600 1800 2000

Training time (seconds) 46.03 220.78 290.30 392.64 461.19 852.83 972.56 1426.38 1208.97 2008.20
Testing accuracy (%) 86.00 87.81 88.61 88.24 87.40 89.16 89.36 89.31 89.21 89.37

The bold column represents the structure of the network which shows the best accuracy.

Table 6: Evaluation of the learning times and the testing accuracies among algorithms using SVM with 10 principle components

C 1 1000 2000 3000 4000 5000 6000 7000 8000 9000

Training time (seconds) 98.95 52.73 46.83 47.67 39.73 50.84 40.25 37.78 45.89 39.03
Testing accuracy (%) 88.89 97.71 98.03 98.19 98.28 98.35 98.39 98.40 98.46 98.48

The bold column represents the structure of the network which shows the best accuracy.
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The convergence curve of BPNN based algorithm with 0.002 in learning rate, 10 in hidden neurons, and 10 in principal compo-nents usedFigure 5
The convergence curve of BPNN based algorithm with 0.002 in learning rate, 10 in hidden neurons, and 10 in 
principal components used.

Table 7: Comparing the results of preceding research

Method Number of beat types
Training Data Set/Test Data Set

Accuracy (%)

ICA-BPNN[2] 8
(4900/4900)

98.37

DWT-NN[4] 13
(30293/75130)

96.79

FTNN [5] 3
(540/250)

98.0

Wavelet-PNN[6] 6
(11600/11600)

99.65

MOE [21] 4 
about (10000/49260)

94.0

Fhyb-HOSA[22] 7
(4035/3150)

96.06

BSS-Fourier[23] 5
(320/160)*

85.04

PCA-ELM[24] 7
(3450/3450)

97.45

Proposed Algorithm 6
(10000/75853)

98.72

* [23] did not use with MIT-BIH arrhythmia DB as the training and test data set.
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age accuracy, which was calculated by the weighted aver-
age sum of each beat type.

Conclusion
We proposed an arrhythmia classification algorithm using
ELM in ECG. The proposed algorithm showed effective
accuracy performance with a short learning time. In addi-
tion, we ascertained the robustness of the proposed algo-
rithm by evaluating the entire MIT-BIH arrhythmia
database. All beat types were classified with high accuracy,
but in APB the sensitivity was slightly lower than 90%.
This result was due to the characteristic of one patient in
the MIT-BIH arrhythmia database who had bradycardia
and APB at the same time. Thus, the features of that
patient's APB beat are similar to the features of other
patients' normal beats. Our future direction is to develop
a feature set to manage various situations like the one
mentioned above, and to separate the subjects included in
the training dataset or in the test dataset for better gener-
alization performance.
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