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Abstract

Background: Determination of a patient’s volume status remains challenging. Ultrasound assessments of the
inferior vena cava and lung parenchyma have been shown to reflect fluid status when compared to the more
traditional static and dynamic methods. Yet, resource-limited intensive care units (ICUs) may still not have access to
bedside ultrasound. The vascular pedicle width (VPW) measured on chest radiographs remains underutilized for
fluid assessment. In this study, we aimed to determine the correlation between ultrasound assessment and vascular
pedicle width and to identify a discriminant value that predicted a fluid replete state.

Methods: Eighty-four data points of simultaneous VPW and inferior vena cava measurements were collected on
mechanically ventilated patients. VPW measurements were compared with lung comet scores, fluid balance, and a
composite variable of inferior vena cava diameter greater than or equal to 2 cm and variability less than 15 %.

Results: A VPW of 64 mm accurately predicted fluid repletion with a positive predictive value equal to 88.5 % and
an area under the curve (AUC) of 0.843, 95 % CI 0.75–0.93, p < 0.001. VPW closely correlated with inferior vena cava
diameter (Pearson’s r = 0.64, p = <0.001). Poor correlations were observed between VPW and lung comet score,
Pearson’s r = 0.12, p = 0.26, fluid balance, Pearson’s r = 0.3, p = 0.058, and beta natriuretic peptide, Pearson’s r = 0.12,
p = 0.26.

Conclusions: This study shows a high predictive ability of the VPW for fluid repletion, as compared to an accepted
method of volume assessment. Given the relationship of fluid overload and mortality, these results may assist fluid
resuscitation in resource-limited intensive care units.
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Background
Intravenous boluses of fluids are traditionally used to
resuscitate hemodynamic instability, acute oliguria, and
hyperlactatemia in the intensive care unit (ICU). How-
ever, overzealous fluid administration leads to organ
congestion, organ failure, and an increased risk of death
[1–8]. Currently, a variety of tools, such as central
venous and pulmonary capillary wedge pressures,

transpulmonary thermodilution, echocardiography and
ultrasound of the inferior vena cava (IVC) and lung
parenchyma are commonly used to gain information
about volume status and guide fluid therapy. Bedside
ultrasound to measure IVC diameter, variability with
respiration [9–21], and extravascular lung water as
determined by the presence of B lines or lung comets
[22–29] have been shown to closely correlate with the
more traditional methods of fluid assessment, such as
central venous pressure, stroke volume, and pulse pres-
sure variation. The reliability and ease of measurement
of IVC and lung parenchyma ultrasound has led to
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widespread adoption by ICU physicians to assist in bed-
side assessment of volume status.
Yet, not all physicians have access to these tools; ICUs

in resource-limited settings have to function without
many of these facilities [30–32] and may be one of the
factors contributing to inability to implement resuscita-
tion guidelines [33] and higher severity-adjusted case-
fatality rates [34, 35]. Nevertheless, the basic principles
of fluid management can still be practiced if physicians
can use the tools available to them to assess volume
status.
Chest radiographs are normally available to most phy-

sicians. The vascular pedicle width (VPW) as seen on
chest radiographs represents the mediastinal silhouette
of the central vessels. It is easily measured and has been
shown to correlate well with invasive hemodynamic
measurements [36–38]. We therefore carried out this
prospective, cross-sectional study to identify vascular
pedicle width measurements that could discriminate
fluid repletion as defined by inferior vena cava ultra-
sound measurements and fluid overload as defined by
lung water on ultrasound.

Methods
In a prospective, cross-sectional design, consecutive
adult patients on controlled mechanical ventilation ad-
mitted to the surgical and medical ICUs were included.
Patients with valvular heart disease, congestive heart fail-
ure, pulmonary hypertension, pericardial disease, and a
history of thoracic or cardiac surgery, requiring positive
end-expiratory pressures (PEEP) higher than 5 cm water,
and pregnancy were excluded. Simultaneous supine,
standardized chest radiographs, and ultrasound assess-
ments of the IVC and lung parenchyma were done. For
all patients included in the study, conventional portable,
supine, anteroposterior chest radiographs were obtained
on each patient within an hour of the ultrasound mea-
surements. The radiographic technique involved a 40-
inch source-image distance (SID), 60–70 kV peaks, and
a typical 3- to 6-mA exposure adjusted to patient body
habitus. Each radiograph was processed in a standard
rapid processor with a processor time of 45 s. We
attempted to adjust for confounding due to variation in
chest radiograph technique by limiting the inclusion to
very strictly standardized films as regards patient posi-
tioning, angle, ventilatory parameters, exposure, film dis-
tance, and the quality of film.
To eliminate interobserver variability, a single investi-

gator (IH), with training and experience in critical care
ultrasound, carried out all the ultrasound examinations.
All VPW measurements were obtained by an investiga-
tor (NS) blinded to clinical and ultrasound data.
The study protocol was approved by the institutional

research ethics committee (RAC approval no. 2141039),

and the study was performed in accordance with the
ethical standards laid down in the 1964 Declaration of
Helsinki and its later amendments. Informed consent to
participate and consent to publish was obtained from
the attendant family or designated patient representa-
tives and documented in the medical record.

Measurement of the inferior vena cava diameter, and
respiratory variation by ultrasound
Ultrasonographic assessment of the IVC was carried out
using a transthoracic, subcostal approach. The trans-
ducer was positioned just below the xiphisternum 1–
2 cm to the right of the midline, with the marker dot
pointing towards the sternal notch. After obtaining a
two-dimensional image of the IVC entering the right
atrium and verifying that the IVC visualization was not
lost during movements of respiration, an M-mode line
was placed through the IVC 1 cm caudal from its junc-
tion with the hepatic vein and an M-mode tracing ob-
tained. This placement ensures that the intrathoracic
IVC is not measured during any part of the respiratory
cycle. The M-mode tracing was recorded through three
to four respiratory cycles, the image frozen, and using
calipers, the maximum and minimum diameters of the
IVC tracing measured. IVC respiratory variation was
quantified by measuring the percent difference between
the maximum and minimum diameters on the M-mode
tracing.

Lung ultrasound and quantification of B lines: lung comet
score
Bilateral lung comet score was obtained by scanning
eight anterolateral quadrants with the probe longitudin-
ally applied perpendicular to the wall. Each hemithorax
was divided in four areas: two anterior areas and two lat-
eral areas. The anterior chest wall (zone 1) was delin-
eated from the parasternal to the anterior axillary line
and was divided into upper and lower halves, from the
clavicle to the third intercostal space and from the third
to the diaphragm. The lateral area (zone 2) was delin-
eated from the anterior to the posterior axillary line and
was divided into upper and basal halves. The sum of
lung comets (B lines) found on each scanning site (0: ab-
sence; 1: B3 lines, multiple B lines 3 mm apart; 2: B7
lines, multiple B lines 7 mm apart) yields a score from 0
to 16 (please refer to Table 1) [23].

Vascular pedicle width measurement
Vascular pedicle width was measured on standardized,
portable chest radiographs obtained in the supine pos-
ition. Ultrasound assessments were done within 1 h
period of the chest radiographs. To eliminate interob-
server variation, a senior pulmonary and critical care
consultant (NS) who was blinded to all other patient
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details measured the VPW. The vascular pedicle width
was measured by dropping a perpendicular line from the
point at which the left subclavian artery exits the aortic
arch and measuring across to the point at which the su-
perior vena cava crosses the right main-stem bronchus.
In patients with an indistinct right border of the pedicle,
the measurement was taken from the vertical, lateral
border of the superior vena cava [39]. Fluid Repletion
was defined as IVC diameter greater than or equal to
2 cm and or variation in IVC diameter less than 15 %
during the respiratory cycle.

Statistical analysis
VPW and IVC diameter, lung comet score, and 24-h
fluid balance were separately compared using scatter
plots with regression equations. R-values were deter-
mined using the Pearson coefficient. Multivariate linear
regression analysis was utilized to determine the effects
of lung comet score, fluid balance, and IVC diameter on
VPW. Standardized coefficients were obtained to com-
pare the relative effects of each variable on the VPW.
Receiver operating characteristic (ROC) curves were uti-
lized to determine the optimal cutoff value of VPW that
identified fluid repletion, as defined by a composite vari-
able of IVC diameter ≥2 cm and IVC variability ≤15 %.
Specificity, sensitivity, and predictive values were calcu-
lated. A Bland-Altman plot was generated to check for
possible bias. Analysis was performed and graphs were
generated using SPSS (IBM SPSS version 22.0, Chicago,
IL) software. Two-sided p values ≤0.05 determined
statistical significance.

Results
Eighty-four data points were collected on forty-three pa-
tients. Mean age was 54.7 ± 20 years, and 50 % patients
were female. Comorbid illnesses included cirrhosis, 21 %
(9 patients), malignancy, 37 % (16 patients), and acute
renal failure, 65 % (28 patients). Admission diagnoses
ranged from scheduled postoperative, 63 % (27 patients),

to severe sepsis or shock, 44 % (19 patients). All patients
were intubated and mechanically ventilated at time of
data collection. Mean APACHE II and SAPS II scores
were 22.4 ± 9 and 33.4 ± 22, respectively. ICU and 28-
day survival rates were 86 and 79 % (Table 2).

Table 1 Representative calculation of lung comet score

Ultrasound finding Score

Quadrant 1, right No B lines 0

Quadrant 2, right B3 lines 1

Quadrant 3, right B7 lines 2

Quadrant 4, right B3 lines 1

Quadrant 1, left B7 lines 2

Quadrant 2, eft B3 lines 1

Quadrant 3, left B7 lines 2

Quadrant 4, left B3 lines 1

Lung comet score/maximum possible score 10/16

No B lines, score = 0; B3 lines, score = 1; B7 lines, score = 2

Table 2 Clinical characteristics

n = 43

Demographics

Age years 54.7 ± 20

Female gender 42 (50 %)

APACHE II score 22.4 ± 9

SAPS II score 33.4 ± 22

Comorbid conditions

Malignancy 16 (37 %)

End-stage liver disease 9 (21 %)

Acute renal failure 28 (65 %)

Diabetes 10 (23 %)

Admitting diagnosis

Postoperativea 27 (63 %)

Severe sepsis/shock 19 (44 %)

Neurologic failureb 13 (30 %)

GI bleeding/hepatic encephalopathy 6 (14 %)

COPD exacerbation 4 (9 %)

Vasopressors 23 (53 %)

Mean arterial pressure (mmHg) 79 ± 10.3

pBNP 2743 (1800, 9253)

Serum creatinine (μM/l) 105 ± 66

Serum Lactate (μM/l) 2.2 (IQR 1.6)

SCVO2 65 ± 23.8

Net positive fluid balance +1145 ml (250, 4527)

Hourly urine output (ml/kg/h) 0.8 (0, 218)

Central venous pressure (cmH2O) 8 ± 1.7

Mechanical ventilation 43 (100 %)

Peak pressure (cmH20) 29 ± 4.1

PaO2 (mmHg) 95.4 ± 23.3

FiO2 0.41 ± 0.08

PaO2/FiO2 ratio 235 ± 66

Tidal volume (ml) 388 ± 78.3

Outcome

ICU survival 37 (86 %)

28-day survival 34 (79 %)

Data is reported as means (± SD) or medians (IQR) for skewed distributions or
as proportions
APACHE II Acute Physiology and Chronic Health Evaluation II, SAPS II Simplified
Acute Physiology Score II, pBNP pro-beta natriuretic peptide
aPostoperative cases include solid organ transplantation, major abdominal
surgery, orthopedic surgery, and head and neck surgery
bIncludes intracranial bleeds, stroke, infections
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Mean VPW was significantly different in the group
with IVC diameter <2 cm compared to the group with
IVC diameter ≥2 cm; 63.4 ± 12.6, 80.3 ± 11.1, p <0.001.
Similarly, mean VPW was significantly lower in the
group with IVC variability ≥15 % compared to <15 %;
57 ± 9.7, 74.1 ± 13, p < 0.001. No significant differences
were observed between mean VPWs of patients with
<8≥ lung comet scores, p = 0.97.

Vascular pedicle width correlations with IVC ultrasound
The VPW closely correlated with IVC diameter
(Pearson’s r = 0.64, p = <0.001) measured on ultrasound
(Fig. 1). On multivariate linear regression, standardized
coefficients demonstrated that a 0.28 (beta)-mm increase
in VPW corresponds to an increase in the mean IVC
diameter by 1 mm (Table 3).
A receiver operating characteristic curve was calcu-

lated to demonstrate the ability of VPW to discriminate
fluid repletion as compared to a composite variable of
IVC diameter ≥2 cm and IVC variability ≤15 %). A VPW
value of 64 mm had an 81 % sensitivity, 78 % specificity
for identifying fluid repletion with an area under the
curve (AUC) = 0.843, 95 % CI 0.75–0.93, p < 0.001
(Fig. 2). This VPW value had a correct classification rate
= 79.6 %, a positive predictive value = 88.5 % and a nega-
tive predictive value = 66 % to identify a fluid replete
state.

Vascular pedicle width correlations with lung comet
score, fluid balance, and pro-beta natriuretic protein
No significant correlation was observed between VPW
and lung comet score, Pearson’s r = 0.12, p = 0.26, VPW

and fluid balance, Pearson’s r = 0.3, p = 0.058, or VPW
and pro-beta natriuretic protein (pBNP), Pearson’s r =
0.12, p = 0.26 (data not shown) (Fig. 3).
A Bland-Altman plot was constructed to assess for po-

tential bias by comparing the VPW and IVC diameter
(Fig. 4). A bias of 51.1 (mean difference of VPW − IVC
diameter) was observed. Additionally, the difference and
average were not independent, suggesting that in pa-
tients with low fluid status, the VPW was relatively
higher than the IVC diameter and the converse was true
with increasing fluid status.

Discussion
In this study, we were able to demonstrate that a VPW
cutoff value of 64 mm correctly identifies a “full” inferior
vena cava and thereby fluid repletion in mechanically
ventilated patients. Our comparison of the VPW against
the gold standard of inferior vena cava diameter greater
than 2 cm and loss of variation in diameter with the re-
spiratory cycle will allow physicians in settings with no
access to ultrasound to make a confident indirect assess-
ment of fluid status. We found no relationship between
extravascular lung water (as measured by lung comet
score) and VPW, possibly since the development of pul-
monary edema is not as simplistic and is governed by
factors independent of central hydrostatic pressures,
such as increased vascular permeability.
Making an accurate assessment of fluid status remains

a daily challenge for every practicing intensive care phys-
ician. Though a myriad of tools have become available,
accessibility is varied. At the same time, volume assess-
ment is even more important because of increasing data

Fig. 1 Correlation between inferior vena cava diameter and vascular pedicle width. Pearson’s correlation coefficient r = 0.64, p = <0.001
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identifying the risks associated with both liberal fluid ad-
ministration [1–8, 40] and the real risks of underhydrat-
ing a dehydrated patient with a compromised
microcirculation. Static haemodynamic measures, such
as central venous pressure, have proved unreliable in
assessing fluid status [41] but remain the mainstay of re-
suscitation guidelines [42]. Whilst dynamic tests that
employ the interaction between respiratory mechanics
and the cardio-circulatory effect of this interaction had
been shown to have higher predictive values in predict-
ing fluid responsiveness [43], they require both resources
and expertise. In the last decade, inferior vena caval
measurement using bedside ultrasound has gained popu-
larity, as it is a non-invasive, dynamic test. A recent
meta-analysis of studies that evaluated IVC diameter
and variability demonstrated a pooled area under the re-
ceiver operating characteristic curve of 0.84 (95 % CI
0.79–0.89) in identifying fluid responsiveness in mechan-
ically ventilated patients [11].
With the widespread acceptability and description of

ultrasound to determine fluid responsiveness by IVC
and extravascular lung water by lung comets, ultrasound
is rapidly becoming the standard of care in ICUs. How-
ever, ICUs in many low- to mid-income countries may
not have bedside ultrasound available to them [30, 31].
For these resource-limited countries, it is relevant that
there should be information for how well bedside

ultrasound compares with methods they already have
available and may be using on a routine basis. Chest
radiographs are commonly done in most units, and over
three decades ago, Milne described the vascular pedicle
as measured on standard chest radiographs and
identified a “normal” value of 48 mm ±5 [44]. Since
then, the VPW has been well-described to correlate with
chest radiographic signs of pulmonary edema, cardio-
thoracic ratios, fluid balance, and echo and invasive
hemodynamic measurements. Ely et al. in 100 ICU
patients described a VPW cutoff value of 70 mm as indi-
cative of volume overload [45]. Martin [46] and Salahud-
din et al. [47] demonstrated significant associations with
fluid balance; r = 0.71, p = 0.005 and r = 0.88, p < 0.001.
Thomason et al. [48] and Wichansawakul et al. [49]
described significant correlations with pulmonary artery
occlusion pressures (PAOP), r = 0.45, p = 0.0076 and r =
0.68, p < 0.001, and cardiothoracic ratios on chest radio-
graph, r = 0.49, p = 0.0032. Iqbal [50] identified a cutoff
VPW value (53 mm) and demonstrated that a left atrial
emptying fraction >0.75 had a sensitivity of 74 % and
specificity of 94 % for diagnosing raised intravascular
volume. Aloizos et al. described a strong correlation
(0.785, 0.710, and 0.510) between the VPW and PiCCO-
derived parameters: global end-diastolic volume index
(GEDI) p < 0.001, intrathoracic blood volume (ITBV) p
< 0.001, and extravascular lung water index (ELWI) p <

Table 3 Results of multivariate linear regression demonstrating associations between inferior vena cava diameter, lung comet score,
net fluid balance, and vascular pedicle width

Unstandardized coefficients B Std. error Standardized coefficients 95 % CI for B p value

IVC diameter 0.285 0.076 0.524 0.13, 0.44 0.001

Net fluid balance 0.002 0.001 0.181 0.001.0.003 0.20

Lung comet score 0.067 0.163 0.056 −0.02, 0.39 0.6

Fig. 2 Receiver operating characteristic curve of the vascular pedicle width to identify fluid repletion shows excellent diagnostic ability at an
optimal VPW cutoff of 64 mm with area under the curve (AUC) = 0.843, 95 % CI 0.75–0.93, p < 0.001)
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0.005 [51]. In a meta-analysis of eight studies with 363
subjects, Wang et al. [36] summarized a strong correl-
ation between volume overload (described by heteroge-
neous methods such as CVP, PAOP, chest radiograph)
and VPW, r = 0.81 (95 % CI 0.74–0.86). Though this lit-
erature provides support for use of the VPW, it does not
compare with ultrasound assessment, which arguably
may be considered the current standard of care. In this
study, we provide one of the first descriptions of VPW
with bedside ultrasound.
We were unable to show a correlation between extra-

vascular lung water, as measured by lung comet score,

and the VPW. A likely explanation for this is that in crit-
ical illness, lung water reflects vascular permeability that
itself is not linearly related to increasing hydrostatic
pressure (which is what the VPW represents). Patients
with sepsis and systemic inflammatory response syn-
drome may leak fluid into the lung parenchyma and
therefore have a high lung comet score but still be intra-
vascularly “dry.” Since a majority of our patients had
postoperative major surgery, it is possible that wide-
spread capillary leak was predominant, and therefore, we
see this dissociation of the VPW and the lung comet
scores.

Fig. 3 Correlations between vascular pedicle width and lung comet score (a) and vascular pedicle width and net fluid balance (b)

Fig. 4 Bland-Altman plot comparing the difference (VPW-IVC diameter) with the average (of VPW and IVC diameter)

Salahuddin et al. Journal of Intensive Care  (2015) 3:55 Page 6 of 8



VPW measurements are simple to perform, and in a
retrospective study of 80 ICU patients, Farshidpanah et
al. [37] demonstrated that novice physicians-in-training
can reliably measure the VPW. Three independent raters
performed measurements of VPW. Kappa statistics for
inter-rater reliability showed kappa = 0.41, 0.42, and 0.85
for each pair of the three raters.
A limitation of our study is that we included patients

who had no anatomic or physiologic dysfunctions that
may affect measurements of the vascular pedicle [44,
52], i.e.,valvular heart disease, congestive heart failure,
pulmonary hypertension, pericardial disease, and a his-
tory of thoracic or cardiac surgery. Patients on high or
higher than “physiological” PEEP were excluded since
previous investigators have reported that PEEP may
affect the IVC measurement and collapsibility index [53,
54]. Another limitation is that most of our patients had
a net positive fluid balance and high median pro-BNP
values. This may have introduced a selection bias and
prevented us from assessing the performance of VPW in
volume-depleted patients.

Conclusions
This study shows a high predictive ability of the VPW
for fluid repletion as identified by IVC ultrasound, i.e., a
specified value of 64 mm accurately identifies a fluid re-
plete state as defined by an IVC diameter greater than
2 cm and loss of IVC variability with the respiratory
cycle. Therefore, the VPW may be used confidently to
discriminate fluid repletion from fluid responsiveness.
Given the relationship of fluid overload and mortality,
these results may assist fluid resuscitation in resource-
limited ICUs.
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