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Abstract We propose that quantitative structure–activity

relationship (QSAR) predictions should be explicitly rep-

resented as predictive (probability) distributions. If both

predictions and experimental measurements are treated as

probability distributions, the quality of a set of predictive

distributions output by a model can be assessed with

Kullback–Leibler (KL) divergence: a widely used infor-

mation theoretic measure of the distance between two

probability distributions. We have assessed a range of

different machine learning algorithms and error estimation

methods for producing predictive distributions with an

analysis against three of AstraZeneca’s global DMPK

datasets. Using the KL-divergence framework, we have

identified a few combinations of algorithms that produce

accurate and valid compound-specific predictive distribu-

tions. These methods use reliability indices to assign pre-

dictive distributions to the predictions output by QSAR

models so that reliable predictions have tight distributions

and vice versa. Finally we show how valid predictive dis-

tributions can be used to estimate the probability that a test

compound has properties that hit single- or multi- objective

target profiles.
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Introduction

Models of quantitative structure-activity relationships

(QSARs) are widely used throughout the pharmaceutical

industry to predict the pharmacological properties of vir-

tual compounds and to guide the selection of compounds

for synthesis [1]. However, it is impossible for a drug

discovery scientist to know the extent to which a QSAR

prediction should influence a decision in a project unless

the expected error on the prediction is explicitly and

accurately defined [2, 3]. A QSAR model can only be

expected to provide reliable predictions for test compounds

that fall within the model’s Applicability Domain (AD),

although the AD is often a difficult property to define. The

OECD guidelines for QSAR modeling recognize that typ-

ically there is no absolute boundary between reliable and

unreliable predictions, and that setting a model’s AD

requires a tradeoff between the constraints of the model

and the accuracy of its predictions [4]. The AD can

therefore be thought of as a gradual property of the model

space, and estimations of expected error that are provided

with QSAR predictions should reflect the degree to which

the test compounds fall into the AD.

A number of different reliability indices have been

proposed for the definition of ADs [5]. Distance-to-model

metrics are the most extensively studied and represent

some measure of the distance between a test compound

and the compounds used in the model’s training set [6–9].

Test compounds with high similarity to the training set
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compounds are assumed to produce more accurate pre-

dictions than dissimilar test compounds. Alternative

approaches involve defining regions of the descriptor space

with different levels of reliability [10, 11], or assessing the

sensitivity of a model’s predictions to small changes in the

input data, either by perturbing the input descriptors or

with a process known as bootstrap aggregating [12]. These

reliability indices generally serve as proxies to prediction

errors and can either be used to indicate when predictions

should not be trusted [12], or preferably, can be mapped

onto a quantitative estimation of error that allows easy

interpretation by the model users [7, 9, 12, 14].

Given that QSAR predictions should consist of both a

point prediction and a quantitative estimation of error, in our

opinion QSAR predictions should be explicitly defined as

probability distributions. A ‘Predictive Distribution’ is a

representation of a QSAR prediction that describes the

probability that a test compound has a particular property

value across a range of possible values. There are a number of

advantages to representing QSAR predictions as predictive

distributions: errors are intrinsic to predictive distributions

and must be explicitly defined; it is straight forward to derive

confidence intervals from predictive distributions, which are

probably the most intuitive representation of errors for drug

discovery scientists; and predictive distributions can be used

to estimate the probability that an untested compound has

properties that match a target property profile.

Sahlin et al. [15] recently summarized approaches

towards the definition of Predictive Distributions used in

the field of QSAR. Most approaches assume that the dis-

tribution of prediction errors has a functional form, for

example, a Gaussian distribution. In work describing

QSAR models for environmental toxicity, Tetko et al. [9]

assumed Gaussian prediction errors and assigned different

error variances to prediction queries according to distance-

to-model criteria. Probabilistic modeling approaches, such

as conditional density estimators and Bayesian models,

output explicit probability distributions, and Gaussian

Process Regression is one example of a Bayesian approach

that has been applied to QSAR [16–18]. Probabilistic

approaches have otherwise received little attention within

the field of QSAR, perhaps because they are computa-

tionally intensive and unsuitable for datasets of the size

frequently considered by pharmaceutical companies.

Most pharmaceutical assays have a non-negligible

measurement error, and the experimental measurements

used to generate and test QSAR models should therefore

also be treated as probability distributions. If both the

experimental data and the QSAR predictions are repre-

sented in this way, the quality of a test set of predictive

distributions obtained from a QSAR model can be assessed

with Kullback–Leibler divergence: an information theo-

retic measure of the distance between two probability

distributions [19, 20]. In this paper we outline a framework

for assessing predictive distributions output by QSAR

models. Using this framework, we have assessed a range of

different machine learning algorithms and error estimation

methods against three of AstraZeneca’s global datasets:

Caco2 Permeability, Human Plasma Protein Binding and

LogD7.4. We report the results of these studies, and we

demonstrate how the predictive distributions output by the

models can be used to calculate the probability that a

compound has properties that hit both single- and multi-

objective target profiles.

Methodology

Our framework for assessing QSAR predictions as proba-

bility distributions is based upon KL divergence. As an

initial step, we have assumed that all prediction and

experimental measurement errors are Gaussian distributed,

although it should be emphasized that this is not a funda-

mental requirement for the approach. Under the Gaussian

assumption, all data points are represented by two param-

eters l and r, where l represents the traditional data point

values used in QSAR analyses and r represents the

standard deviation of the (predictive) error distribution.

A QSAR model must therefore comprise a model that

provides the prediction values (l) and a method that

assigns quantitative error estimates (r) to the predictions.

In this paper we will refer to the models that provide

prediction values as models, and the methods for estimating

prediction errors as error estimation methods. The combi-

nations of model and error estimation method that are

required to produce the predictive distributions are referred

to as Predictive Distribution (PD) methods.

Kullback–Leibler divergence

The Kullback–Liebler (KL) divergence is a fundamental

property in information theory that quantifies the distance

of a modeled or hypothesized probability distribution, Q,

from a true, underlying probability distribution, P. It is the

inverse of Boltzman entropy and is a natural criterion for

model selection within a maximum likelihood framework

[19]. It therefore forms the basis of a wide range of

information criteria for the selection of parsimonious

models, including the Akaike or Bayesian information

criteria (AIC or BIC) [21, 22]. While there are numerous

alternative methods for assessing the distance between

probability distributions [23], we have chosen to use KL

divergence because of its fundamental role in maximum

likelihood theory and because it is probably the most

widely used metric for comparing probability distributions.

Within the field of cheminformatics, Nisius et al. [24] used
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KL divergence to reduce the dimensionality of molecular

fingerprints for similarity searching. For probability dis-

tributions P and Q of a continuous random variable x, the

KL divergence is calculated with Eq. 1, where p(x) and

q(x) are the densities of P and Q at point x.

DKL P;Qð Þ ¼
Z1

�1

p xð Þ ln p xð Þ
q xð Þ dx ð1Þ

For QSAR validation studies, given a test set of compounds

with associated measurements that are represented as

probability distributions, KL divergence can be used to

quantify the information content of a set of predictive

distributions [20]. Each experimental measurement, with an

associated error, represents the true probability distributions,

P, and a predictive distribution represents the modeled

probability distribution, Q. Given two Gaussian shaped

probability distributions—a true distribution, P = N(lq, rq),

and a model distribution, Q = N(lq, rq)—KL divergence is

calculated with Eq. 2.

DKL P;Qð Þ ¼ 0:5
lp � lq

� �
r2

p

þ ln
r2

p

r2
q

þ
r2

q � r2
p

r2
q

( )
ð2Þ

The divergence is minimized when the mean of the model

distribution equals the mean of the true distribution (lp = lq)

and when the variance of the model distribution equals the

variance of the true distribution (rp = rq). It should be noted

that because our experimental measurements represent the

‘true’ probability distribution, predictive distributions from a

QSAR model are penalized when they are more accurate and

precise than the corresponding experimental measurements.

This is because, within the KL framework, a predictive

distribution represents the likely result of an experimental

measurement, rather than the intrinsic property value for the

molecule. In this sense, a model cannot predict an

experimental result more precisely than the error on the

measurement. As a practical step, we have set a lower bound to

the prediction errors: if an error estimation method suggests

an error that is lower than experimental error, it is re-assigned

a prediction error that is equal to the experimental error.

Given a test set of N predictive distributions, SQ ¼
lqi
; rqi

� �N

i¼1
, and an associated set of experimental mea-

surement distributions, SP ¼ lpi
; rpi

� �N

i¼1
, the mean of the

divergences provides a measure of the total entropy (or inverse

information) of the set of predictive distributions (Eq. 3).

KLAVE SP; SQð Þ ¼ 1

N

XN

i¼1

DKL SPi
; SQi

ð Þ ð3Þ

When comparing sets of predictive distributions output

by different models applied to a common test set, the

model with the lowest KLAVE can be considered to have

maximized information and should be used to make any

future predictions on unseen examples. A model that results

in a low KLAVE has delivered predictive distributions that

are accurate and that properly represent the uncertainty

associated with the predictions. Conversely if the predictive

distributions output by the model are inaccurate,

inappropriately precise or unnecessarily imprecise, this

will be reflected by a higher KLAVE score. KL divergence

has some advantages over metrics derived from residual

errors such as Root Mean Squared Error (RMSE) or Q2. For

example, the two, often competing modeling objectives of

(1) accuracy of predictions and (2) accuracy of error

estimates become a single objective: the information content

of the predictive distributions output by a model. This avoids

the need for subjective decisions on which of these two

objectives is of greatest importance when comparing

candidate models with differing attributes.

Figure 1 provides a demonstration of the calculation for

a single test compound. Three probability distributions

representing QSAR predictions from different models

(Q1, Q2, Q3) are compared to the experimental probability

distribution (P), and the l and r values for each of the

distributions are provided in Table 1. The KL divergences

for the three models are 1.4, 0.9 and 0.7, respectively.

Distribution Q2 (shown as a dashed grey line) is the most

accurate with a residual error of 2.0 compared to 2.5 for the

other two models; however, the standard deviation (rq) is

too low to comfortably cover the full range of possible

values represented by the true distribution, P. In other

words, the error estimate assigned to predictive distribution

Table 1 Parameter values for the example calculation of KL

divergence

L r KL

P 0.0 1.0 –

Q1 2.5 1.5 1.4

Q2 2.0 1.5 0.9

Q3 2.5 3.0 0.7

-1 -0.5 0 0.5 1

Actual p(X) Model q1(X)

Model q2(X) Model q3(X)

Fig. 1 Example calculation of KL divergence
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Q2 is too low. As a consequence, predictive distribution Q3,

which has a larger standard deviation and covers the full

range of possible values, has the lowest KL divergence.

From this point on, to aid readability, we will switch from

the standard statistical notation of N(lp, rp) and N(lq, rq)

to N(lobs, robs) for measurement distributions and N(lpred,

rpred) for predictive distributions.

Measurement probability distributions

The measurement data-points used to train and validate the

models are represented by measurement probability distri-

butions that are defined by two parameters: lobs and robs. The

mean value (lobs) is the mean measurement for the com-

pound and is the value traditionally used in QSAR analyses.

The standard deviation (robs) represents an estimate of the

error on the mean and is calculated with Eq. 4, where rexp is

the ‘single-shot’ measurement error for the assay and N is

the number of measurements for the compound.

robs ¼
rexpffiffiffiffi

N
p ð4Þ

For each of the assays, we estimated rexp by analysis of the

measurement variance for quality control (QC) compounds,

which are run through the assays every day to check the

consistency of the results. We used the QC compounds to

assess experimental error, rather than using all compounds

with more than 1 measurement, because experiments are

most likely to be repeated when the measurement is

suspected to be incorrect because of a problem with the

initial experiment. Given a set of M quality control

compounds, QCif gM
i¼1, each of which has NQCi

associated

experimental measurements, QCi ¼ QCij

� �NQCi

j¼1
, we

calculated the rexp value for the assay with Eq. 5.

rexp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1PM

i¼1 NQCi

XM
i¼1

XNQCi

j¼1

QCij � QCi

� �2

vuut ð5Þ

We have assumed that the measurement errors for all non-

QC compounds are the same as the errors observed on the

QC compounds. There are between 1 and 5 QC compounds

for each of the endpoint datasets used in this work.

Predictive distributions

The PD methods produce Gaussian-shaped predictive dis-

tributions, N(lpred, rpred). The mean values (lpred) are the

predictions obtained from models, which were generated

using AstraZeneca’s AutoQSAR system [25]. We used 4

different machine learning algorithms that are available in

R (v2.14.0): [26] Partial Least Squared (PLS); k-Nearest

Neighbours (KNN); Random Forests (RF); and Support

Vector Machines (SVM).

PLS creates linear models from principal components of

the input data. The models were generated with the R pls

library [27] using the approach previously described in

Wood et al. [25]. RFs are ensembles of regression trees each

built with a different bootstrap sample of the training data.

RF models were generated with the R random Forest library

[28]. Forests comprised of 250 trees, and the parameter

nodesize, which specifies the point at which tree nodes are

not further split into child nodes, was set to the default value

of 1. The parameter mTry specifies the size of the random

subset of descriptors consider for each node split and was

optimized against the training set out-of-bag error using the

tuneRF method. The KNN algorithm predicts properties of

test compounds from the k nearest neighbors in a training set

of examples. Distance weighted KNN models were gener-

ated using the R library kknn. The triangular kernel was used

in all cases, and the parameter k, which represents the number

of nearest neighbors used to form the predictions, was opti-

mized with a sevenfold cross validation on the training set.

SVM models were generated with the R e1071 implemen-

tation of the LIBSVM algorithm. [29, 30] The SVMs were

constructed with a Gaussian Radial Basis Function kernel.

The optimal value for the parameter c was identified from the

set {2-8, 2-7, 2-6} and the cost parameter was set to 2 [3].

The optimal parameter values were identified with a grid

search within this limited parameter space using sevenfold

cross validation.

All compounds were represented by the ‘AZ’ descriptor

set, which comprises 193 descriptors that include physi-

cochemical properties, topological indices and structural

counts. The descriptors were calculated with the following

software packages: ACD/PhysChem Suite [31], HYBOT

[32], and AstraZeneca in-house descriptor package,

SELMA [33]. We have provided the full list of descriptors

in the supplementary information.

Assigning prediction errors, rpred

The value rpred represents an estimation of the expected

error of a prediction. Under the Gaussian assumption we

can expect the true property value to lie within ±1 rpred of

the prediction value for 68 % of predictions, and within ±2

rpred for 96 % of predictions. We have used two general

approaches for setting rpred. Uniform error estimation

methods assume that the expected prediction error is the

same for all test compounds regardless of any judgments

on their reliability. Variable error estimation methods

assign compound-specific prediction errors with the aid of

a reliability index. The uniform methods serve as null

hypotheses in these experiments: to be of practical use, any

method that assigns compound-specific prediction errors

must represent an improvement in information relative to

the uniform methods.
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We used two different uniform error estimation meth-

ods. The temporal Test Set (TS) method assesses the

accuracy of the models’ predictions with the large

‘parameterization’ test sets that are described below. The

Cross Validation (CV) method uses double loop cross-

validation on the models’ training sets to determine the

expected error of future predictions. Double loop cross

validation techniques are used to ensure that the estima-

tions of the models’ generalization errors are not biased by

the parameterization of the models [34, 35]. For both

uniform error estimation methods, the rpred value for all

future predictions is set to be equal to the Root Mean

Squared Error (RMSE) of the predictions produced by the

validation procedure.

We investigated a range of different reliability indica-

tors for setting compound-specific (variable) prediction

errors, which are described below.

Distance-to-model (D2M)

Distance-to-model approaches to the estimation of predic-

tion reliability have been widely reported in the literature.

[6–14] Given a distance function, the average distance of a

test compound to the k nearest training set neighbors indi-

cates the relative reliability of the prediction. We calculated

distances with the Euclidean and Mahalanobis distance

functions on the input descriptor space, with all descriptors

scaled to zero-mean, unit variance. The Euclidean distance

between two vectors A and B is calculated with Eq. 6.

DEUC A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� BÞðA� BÞT

q
ð6Þ

The Mahalanobis distance function is given in Eq. 7,

where S-1 is the estimated inverse covariance matrix for

the training data. The inverse covariance matrix could not

be solved exactly for our training data matrices and was

approximated using singular value decomposition with the

R library MASS. [36].

DMAL A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� Bð ÞS�1 A� Bð ÞT

q
ð7Þ

The resulting distance-to-model values are converted to

estimates of the expected prediction error (rpred) by finding

a linear regression between distance and the residual

squared errors for predictions from the parameterization

test sets. The y intercept for the regression was fixed to the

square of the experimental error for the assay so that rpred

is equal to the experimental error for distances of zero.

Figure 2 shows an example regression using the Caco2

parameterization test set with the mean Mahalanobis

distance to the nearest 3 neighbors (MD3) used as the

reliability index. The black line shows the moving average

RMSE with a block size of 50. The regression line

rpred ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:037DMAL 3 þ 0:04
p� �

fits the moving average

well. The regression parameters and the parameter k were

optimized with the parameterization test sets (described

below), and the optimal values were used for all

subsequent ‘future’ predictions.

Local error

The local error (LE) approach estimates the value of rpred

to be equal to the RMSE of the double loop cross validated

predictions for the nearest k neighbors in the model’s

training set. The underlying assumption is that, if a test

compound is similar to training set compounds that were

poorly predicted, the model is likely to perform poorly on

the test compound. Again, we used the Euclidean and

Mahalanobis distances within the scaled input descriptor

space to identify the nearest training set neighbors. We

tested an additional corrected local error (LEC) approach

where a regression analogous to the one described above

for D2M is used to transform the initial local error estimate

into a final, corrected estimation of the expected error.

Bagged variance

The bagged variance (BV) method has recently been

shown to be a very effective reliability indicator for QSAR

predictions [12, 15]. The method requires that ensembles of

models are generated with a bagging procedure, where

individual models are built with different, randomly gen-

erated bootstrap samples of the training data set [37]. The

standard deviation of the individual predictions for a test

compound across the ensemble is an indicator of the reli-

ability of the prediction for the compound. A large standard
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Fig. 2 Converting distance-to-model to estimations of prediction

error
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deviation in the individual predictions indicates that the

model is not stable for the compound and corresponds to

greater expected prediction error. The BV indicator is

easily calculated from Random Forest models as they are

already bagged ensembles of regression trees. Furthermore,

because each individual tree in the forest is a low bias, high

variance representation of the training data, the standard

deviation of the predicted values across the ensemble can

serve as a direct estimation of the expected prediction

error. Generating bagged ensembles for the other machine

learning algorithms considerably extended the models’

training times and proved unfeasible for the SVM algo-

rithm, as it takes several days to train a single SVM model

with these large global datasets. However, we generated

bagged variations of the PLS and KNN algorithms by

applying the algorithms to 100 bootstrap samples of the

training data. We set up two different error estimation

methods based on Bagged Variance. The uncorrected

Bagged Variance (BV) method uses the standard deviation

of the predictions across the ensemble as a direct estima-

tion of the expected prediction error, rpred, whereas the

Corrected Bagged Variance (BVC) approach finds a linear

regression of bagged variance to the expected prediction

error using the same method as described above for D2M.

Error model

In this approach, prediction errors are estimated with a

second model generated with machine learning. We used

the R PLS algorithm to model the absolute errors of the

predictions produced by the double loop cross validation.

The resulting PD models consist of a model that predicts

the property values (using KNN, PLS, RF or SVM) and a

model that estimates the errors on those predictions (using

PLS).

Datasets and experimental methodology

We assessed the PD methods described above with three

global AstraZeneca datasets: LogD, Human Plasma Protein

Binding, and Caco2 A to B permeability. LogD data were

generated with a shake flask methodology described by

Wenlock et al. [38] Caco2 A to B Permeability (Caco2)

was measured across 2-week old Caco2 cell monolayers in

a pH-gradient system, as described in essence by Neuhoff

et al. [39] The Caco2 data were modeled in units of log

cm/s. Human Plasma Protein Binding data (hPPB) were

generated with an assay previously described by Leach

et al. [40] and were modeled in units of log bound/free.

Any experimental measurements in our datasets that were

annotated with a comment that suggested an issue with the

experiment were removed. We treated qualified data

points, where the experimental measurement is indicated to

be greater or less than a specified value, as quantitative

measurements by ignoring the qualifying symbols. We

have found treating qualified data points in this way results

in improved prediction accuracies relative to the alternative

approach of removing all qualified data from the models’

training sets.

Our experimental methodology is shown schematically

in Fig. 3. We began by dividing each of the datasets into a

series of temporal subsets as shown in Table 2. For each

Fig. 3 Schematic of the experimental methodology. Temporal sub-

sets of the data are represented by columns and the model building/

prediction experiments are represented by rows. The parameterization

test set (shown in light textured grey) is used to set the parameters for

the error estimations methods, whereas the experimental test sets

(shown in solid grey) are used to assess the performance of the

various PD methods. There are 10 experimental test sets in total

which are predicted by models built on growing training sets
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endpoint, the first subset comprised all data collected

before 2011 and provided an initial training set for the

models. The second subset for each endpoint included all

data collected during the 1st quarter of 2011 and served as

a ‘parameterization’ test set that was used to optimize any

parameters required by the error estimation methods. The

10 months from April 2011 to January 2012 represent 10

experimental test sets that provided ‘future’ tests for the

PD methods. These experimental test sets are intended to

represent the kind of compounds that would be applied to

models like these in real life use. They provide unbiased

tests for the models as they were not used in the model

optimization and parameterization processes.

To minimize the computational resource requirements

for these experiments, we reduced in size any training

dataset that contained more than 35,000 compounds by

selecting a subset that consisted of the most recent 20,000

compounds and a random selection of 15,000 of the

remaining compounds. We have found that this process has

only a marginal effect on the predictive performance of the

models. The number of compounds included in each of the

datasets is given in Table 2, with the initial training set

numbers representing the reduced dataset sizes.

For each endpoint, we generated an initial QSAR model

using each of the 4 machine learning approaches described

above. These initial models were applied to the initial

parameterization sets, and the resulting sets of predictions

were used to optimize the parameters of the various error

estimation methods. We then combined the initial param-

eterization test sets with the initial training sets, and the

models were rebuilt and used to generate predictions for

the first experimental test set (April 2011), with prediction

errors estimated with the previously parameterized error

estimation methods. This process was repeated until pre-

dictions were obtained for all experimental temporal test

sets with updating QSAR models. Finally, we combined

the predictions of the individual experimental test sets and

used them to assess the performance of the various PD

methods.

Results and discussion

Measurement errors (robs)

Figure 4 shows the normalized distributions of measure-

ment values obtained from the QC compounds. The Caco2,

LogD and hPPB assays had 3, 1 and 5 QC compounds,

respectively. All distributions are shown in comparison to

Gaussian distributions with the same standard deviation.

Kolmogorov–Smirnov tests for normality revealed that all

three of these distributions were significantly different

from Gaussian distributions, but this result was unsurpris-

ing: there is no intrinsic reason why the measurement

errors should be precisely normally distributed. Nonethe-

less, we felt that the distributions looked close enough to

Table 2 Numbers of compounds in the global datasets

Dataset Period LogD hPPB Caco2

Initial training set Pre-2011 34,837 34,450 13,037

Parameterization

test set

Q1-2011 2,457 1,586 451

Experimental

test sets

04-2011 879 649 68

05-2011 765 491 171

06-2011 923 293 178

07-2011 848 451 80

08-2011 932 517 64

09-2011 866 503 109

10-2011 780 415 249

11-2011 392 426 278

12-2011 739 639 189

01-2012 984 408 84

Combined expt.

test sets

04-2011 to 01-2012 8,108 4,792 1,470

0

0.5

-1 0 1

Caco2

0

0.5

-1 0 1

LogD

0

0.5

-1 0 1

hPPB

Fig. 4 Normalized measurement error distributions obtained from

the quality control compounds for each of the three endpoints
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the Gaussians for it to represent a reasonable model for the

errors. The standard deviations of the normalized measured

values, and therefore the estimates of the experimental

error, were 0.21, 0.10 and 0.17 for the Caco2, LogD and

hPPB endpoints, respectively.

Accuracy of the predictions

First, we compared the 4 modeling algorithms by the

accuracy of their ‘data-point’ predictions of the combined

experimental test set compounds using conventional QSAR

validation techniques. Table 3 provides descriptive statis-

tics of the experimental test set data for the 3 endpoints,

and Table 4 summarizes the prediction accuracies of the

4 modeling algorithms. The SVM models produced the

most accurate predictions and the RF models produced the

second most accurate predictions for all three endpoints.

The KNN algorithm was more accurate than the PLS

algorithm for 2 of the 3 endpoints. The R0
2 statistics for the

predictions from the SVM models are 0.59, 0.73 and 0.63

for the Caco2, LogD and hPPB models respectively, which

represents a reasonably high level of prediction accuracy

for the studied endpoints.

Table 4 also provides the cross-validation ðCV dRMSEÞ
and temporal test set TS dRMSE

� �
based estimates of the

prediction error for comparison against the actual errors

observed for the experimental test set (Obs. RMSE). In

most cases, the TS-based estimations of the models’

expected prediction errors (generated using the 2011-Q1

dataset) are closer to the observed experimental test set

error than the CV-based estimate. For the KNN, RF and

SVM algorithms, the CV-based estimate always underes-

timated the prediction error of the models on the experi-

mental test sets. For the SVM models, this underestimation

is quite marked.

Any QSAR model validation should test the model with

the kind of chemical structures that will be applied to the

model in real life usage. When validating a model with cross

validation there is therefore an implicit assumption that the

range of compounds that comprise the model’s training set

are representative of the kind of structures that will be

applied to the model in its real-life use. Many pharmaceutical

datasets, however, have an intrinsic temporal ordering.

Typical compounds for which predictions are requested

will be most similar to the more recent training set com-

pounds and will often represent a move into a previously

unexplored area of chemical space that stretches the model’s

AD. This effect is supported by the results in Table 3. A key

disadvantage of temporal test set approaches is that they use

relatively small subsets of the dataset to validate models, and

as a consequence, test set-based estimates of generalization

error have a greater sampling error relative to the CV-based

estimates. Furthermore, the range of chemistries represented

by small temporal test sets may not cover the full range of

chemistries that will be applied to the model. The temporal

test sets used in the analyses presented in this paper are

sufficiently large to alleviate these problems, and the test set-

based method appears to better reflect the future prediction

accuracies. These findings provide some evidence in favor of

temporal test set-based model validation methods over

internal validation procedures for quantitative pharmaceu-

tical datasets. However, it should be emphasized that these

datasets, which represent a sequential exploration of chem-

ical space, are quite distinct from typical literature datasets

that usually contain static and unordered data. Herein we will

use the TS error estimation method as the benchmark for

success for the variable error estimation methods.

Parameterization of the error estimation methods

The D2M, LEC and BVC error estimation methods

required up to three parameters to be set to convert the

Table 3 Descriptive statistics for the experimental test sets

N Mean SD Range Expt error (robs)

Caco2 1,136 -5.47 0.74 -8.0 to -3.9 0.21

LogD 7,694 2.36 1.17 -4.0 to 5.8 0.10

hPPB 5,569 1.24 0.81 -1.4 to 4.3 0.17

Table 4 Comparison of the temporal test set (TS) and the double

loop cross validation (CV) based estimate of the models’ forward

prediction errors

Endpoint Model Obs. R0
2 Obs. RMSE TS dRMSE CV dRMSE

Caco2 KNN 0.43 0.56 0.57* 0.48

PLS 0.38 0.59 0.58* 0.66

RF 0.53 0.51 0.47* 0.46

SVM 0.59 0.47 0.49* 0.43

LogD KNN 0.61 0.73 0.74* 0.62

PLS 0.61 0.73 0.72 0.73*

RF 0.70 0.64 0.65* 0.55

SVM 0.73 0.61 0.63* 0.50

hPPB KNN 0.56 0.53 0.50* 0.44

PLS 0.52 0.56 0.59 0.53*

RF 0.62 0.49 0.47* 0.41

SVM 0.63 0.49 0.45* 0.37

Obs. RMSE and Obs. R0
2 represent the prediction accuracy of the

models against the experimental test sets. The TS dRMSE column

provides estimate of the models’ forward generalization error based

on the 2011-Q1 parameterization test sets. The CV dRMSE column

provides estimates of the forward generalization error calculated with

double loop cross validation on the training set. The uniform error

estimation method that provided the closest estimate of the prediction

error on the experimental test set is marked with an asterisk
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reliability score into a quantitative estimate of expected

prediction error. These parameters were m and c, the gra-

dient and intercept for the regression between the reliability

indicator and the squared or absolute expected error, and

k, the number of training set neighbors used to calculate the

reliability scores. We fixed the parameter c to be the

experimental error of the assays. The other parameters

were optimized using the predictions obtained for the ini-

tial parameterization temporal test set for each of the

algorithms and endpoints. Table 5 summarizes the optimal

parameter values for k, which is the number of near

neighbors used to calculate the reliability metric. The

notation for the error estimation method in this table is

{Method}-{DistanceMetric}; for example, D2M-EUC

represents distance-to-model based error estimates with the

Euclidean distance function, and LEC-MD indicates the

Corrected Local Error method with the Mahalanobis dis-

tance function. The choice of distance metric (Euclidean or

Mahalanobis distance) had very little effect on the optimal

value for this parameter; the optimal values were between

1 and 5 for the D2M reliability methods, and between 50

and 200 for the local error-based methods.

Performance of the PD methods

Table 6 summarizes the performances of the PD methods

across the three endpoints, as evaluated within the KL

framework. We have italicized the uniform error methods

and marked with an asterisk the best variable error esti-

mation method for each modeling algorithm/endpoint. Any

methods that performed better than the best uniform

method are shown in bold. Figure 5 also provides a

graphical representation of these results. The magnitudes of

the mean KL divergence numbers are dependent on the

magnitude of the estimated experimental measurement

errors and the models’ prediction errors. This explains why

the mean KL divergence numbers are highest for LogD,

despite the fact that LogD models were most accurate as

judged by the R0
2 statistic. The D2M error estimation

methods performed consistently well across all modeling

algorithms and endpoints, and tended to result in mean KL

divergences that are at least close to the best method. The

Euclidean and Mahalanobis distance functions performed

very similarly, with the Euclidean distance function typi-

cally resulting in slightly lower mean KL divergences. The

BV and BVC methods performed very well when used in

conjunction with the RF modeling algorithm, but less well

when used in conjunction with the other modeling algo-

rithms. The predictive distributions from the PLS:BV

method resulted in particularly high KL divergences. This

is because the individual models in the bagged ensembles

are stable, high-bias, low-variance models, which caused

the individual predictions to vary very little across the

ensembles. As a consequence, the uncorrected BV method

produced overly tight estimations of prediction errors for

the PLS models. A similar effect was seen with the

KNN:BV PD method, but to a lesser degree. In general, the

Table 5 Range of optimal values of the parameter k for the various

reliability methods

Error estimation method KNN PLS RF SVM

D2 M-EUC 2–3 12–50 2–5 1

D2 M-MD 2–3 8–50 1–3 1

LE-EUC 50–200 200 200 200

LE-MD 200 100–200 100–200 200

LEC-EUC 100–200 100–200 50–200 200

LEC-MD 100–200 12–200 50–200 100

Table 6 Mean KL divergences for the various PD methods

Caco2 LogD hPPB

KNN PLS RF SVM KNN PLS RF SVM KNN PLS RF SVM

CV 1.14 1.13 1.03 0.98 2.04 2.01 1.90 1.89 1.27 1.25 1.20 1.26

TS 1.09 1.13 1.02 0.94 2.01 2.01 1.87 1.83 1.21 1.24 1.14 1.14

D2 M-EUC 1.06 1.12* 0.98 0.88* 1.97* 2.00 1.85 1.79* 1.17* 1.22* 1.10 1.08*

D2 M-MD 1.05* 1.12* 0.98 0.89 1.97* 1.99* 1.85 1.79* 1.17* 1.22* 1.10 1.08*

LE-EUC 1.17 1.12* 1.02 0.98 2.06 2.02 1.92 1.87 1.42 1.25 1.21 1.11

LE-MD 1.33 1.12* 1.13 0.97 2.12 2.02 2.02 1.86 1.36 1.25 1.27 1.13

LEC-EUC 1.07 1.12* 0.99 0.94 1.99 2.02 1.87 1.86 1.53 1.26 1.11 1.21

LEC-MD 1.09 1.15* 1.03 0.95 2.01 2.02 1.87 1.84 1.49 1.25 1.11 1.20

BV 2.63 4.06 0.96 – 6.43 25.50 1.82* – 3.27 5.36 1.10 –

BVC 1.13 1.15 0.95* – 2.04 2.00 1.83 – 1.25 1.23 1.09* –

EM 1.13 1.18 3.06 1.07 2.02 2.03 19.38 1.89 1.24 1.28 4.18 1.16

The uniform error estimation methods are italicized, and the best error estimation method for each model/endpoint is marked with an asterisk.

Any variable error estimation methods that performed better than the best corresponding uniform method are shown in bold
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other variable error estimation methods did not provide

information gain relative to the uniform error estimation

methods.

We assessed the statistical significance of the results by

fitting a linear mixed-effects model to the mean KL

divergence numbers for the monthly experimental test sets.

Endpoints and months were treated as random effects, and

the algorithm and error estimation method as fixed effect.

In essence we regard the endpoints and months as nuisance

factors which we want to control for, whereas our main

interests are on differences between algorithms and error

estimation methods. Our aim for this analysis was to

identify variable error methods that resulted in a statisti-

cally significant improvement to information relative to the

corresponding uniform TS error estimation method, to a

95 % level of confidence. The linear mixed-effects model

was fit using Gibbs sampling with the Bayesian software

package JAGS [41]. Bayesian P values were calculated

from the Gibbs sample using 10000 iterations. We used

locally uniform priors for the fixed effects, and locally non-

informative priors for the random effects. The mean KL

divergence was assumed to follow a t-distribution, which

was used instead of a normal distribution to account for the

heavy tails of the distribution of mean KL divergence. The

table of data that was used as an input for this analysis is

provided in the supplementary information.

Table 7 provides the Bayesian P values for the variable

PD methods that were determined to result in a statistically
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Fig. 5 Charts showing the order of performance of the PD methods

for each model/endpoint in terms of mean KL divergence against the

combined experimental test sets. Variable error estimation methods

are shown in grey and uniform error estimation methods are shown in

black. The variable error estimation methods must result in a reduced

mean KL divergence for them to represent an improvement on the

uniform error estimation methods

Table 7 A list of PD methods that resulted in a statistically signifi-

cant improvement relative to their equivalent uniform TS method

Algorithm Error method Effect estimate Bayesian p value

KNN D2M-EUC 0.027 \0.001

KNN D2M-MD 0.031 \0.001

PLS D2M-EUC 0.007 0.045

PLS D2M-MD 0.010 \0.001

RF BVC 0.043 \0.001

RF BV 0.045 \0.001

RF D2M-EUC 0.025 \0.001

RF D2M-MD 0.028 \0.001

RF LEC-EUC 0.016 0.049

SVM D2M-EUC 0.045 \0.001

SVM D2M-MD 0.043 \0.001

Bayesian P values were calculated with a linear mixed-effects model
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significant improvement to the information content of the

predictive distributions. The D2M-EUC and D2M-MD-

based PD methods resulted in a statistically significant

improvement, relative to the uniform TS method, for all

four modeling algorithms. Additionally, the RF:BV and

RF:BVC, and RF:LEC-EUC methods resulted in a statis-

tically significant improvement relative to the RF:TS

method. For each modeling algorithm, we have compared

9 variable error estimation methods to a single uniform

error estimation method; we therefore wondered whether

the a-value for 95 % significance should be adjusted to

account for multiple testing effects. Using a Bonferroni

correction [42], significance at a 95 % level of confidence

corresponds to a P value of 0:05
9
¼ 0:0056. This seemed an

excessively cautious adjustment as there is a high degree of

correlation between the results across the different mod-

eling algorithms and endpoints. However, even with this

Bonferroni correction, most of the significant results remain

significant. From this analysis we have concluded that the

D2M error estimation method works consistently well

across a range of different modeling algorithms, and results

in a statistically significant improvement to the information

content of the predictive distributions. Two PD methods

stood out as particularly successful, which are the

SVM:D2M-EUC method and the RF:BV method. We take a

closer look at these methods in the remainder of the paper.

Validity of the predictive distributions Gaussian

assumption

The current implementation of the KL framework assumes

that the prediction errors are distributed as a Gaussian

around the mean prediction value, and if the actual distri-

butions of errors differ greatly from the Gaussian

assumption, we may be able to improve on the KL

divergence by using alternative functional forms for the

error distribution. The histograms in Fig. 6 show the nor-

malized distributions of predictions errors with the RF-BV,

and SVM:D2M-EUC PD methods. We calculated the

normalized prediction errors as lobs � lpred

� �
=rpred , which

is the residual error divided by the estimated prediction

error. Again, a Kolmogorov-Smirnov test for normality

indicated that all distributions were significantly different

from Gaussian distributions, but we felt that they were

close enough to provide a useful model for the predictions

errors.

Behavior of KL divergence

Figure 7 provides a graphical representation of the accu-

racies of the prediction error estimates. We produced these

charts by ranking the experimental test set predictions by

their estimated errors (rpred) and binning the predictions so

that each bin contained test set compounds with similar

estimated errors. We used a bin size of 200 for the Caco2

predictions and a bin size of 500 for the LogD and hPPB

predictions. The y axis error bars represent the 95 % con-

fidence interval for the RMSE and were calculated using

Faber’s distribution-based approximation of the variance

[43] (Eq. 8).

r dRMSE=RMSE � 1=2nð Þ
1
2 ð8Þ

For each of the bins, the estimated and observed RMSEs

correlate to the line of unity extremely well, and this shows

that the RF:BV and SVM:D2M-EUC methods have

provided error estimates that are a very good reflection of

the actual prediction errors. The performance of the RF:BV

method is particularly notable because the error estimate is

obtained directly from the RF models with no further

calculations required. The SVM:D2M-EUC method
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Fig. 6 The validity of the predictive distributions shown graphically; the shape of the normalized prediction error distribution compared to

Gaussian distributions
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provided predictive distributions with the lowest KL

divergence, but the computation time for both the SVM

algorithm and the D2M-EUC error estimation method

means that the SVM:D2M-EUC method is much more

computationally expensive than the RF:BV method, both

for model generation and for making predictions.

Figure 8 provides charts that show the difference in the

mean KL divergences relative to the equivalent uniform TS

method for each of the bins shown in the charts in Fig. 7.

The first data point in each of these charts represents the

experimental test set predictions with the lowest estimated

prediction errors, and the last data point represents the

predictions with the highest estimated prediction errors. A

negative KL difference indicates that the variable error

estimation method has provided an information gain rela-

tive to the uniform TS method for the bin. In general the

mean KL numbers behave exactly as we expected:

the difference in the mean KL divergences is greatest for

the bins at the two extremes. Reassuringly the shapes of the

charts are consistent across endpoints, and the KL differ-

ences are negative or close to zero in almost all cases. The

greatest reductions in the mean KL divergences from the

variable error estimation methods are seen in the bins

corresponding to the predictions with the highest estimated

error, which suggests that the majority of the information

gains are achieved by recognizing the compounds that are

likely to result in poor predictions.

In Fig. 8, the SVM:D2M-EUC and RF:BV charts for

hPPB both feature a positive spike in the mean KL dif-

ference in the first bin. These spikes are caused by a small

number of predictions that were estimated to have a very

low error, but that were badly mispredicted. These pre-

dictive distributions resulted in very high KL divergences

and this skewed the mean KL divergence for the bin. The

compounds behind these predictions all featured multiple

stereo-centers, but the descriptor set used to encode the

structures for the QSAR modeling is achiral. Leach et al.

[44] have recently shown that protein binding is affected

by stereochemistry. The mispredictions were caused by

diastereoisomers with identical descriptor representations

but different 3-dimensional shapes, and therefore different

levels of protein binding. Essentially, the RF and SVM

models would match these compounds to previously seen

isomers, and, with a high degree of confidence, incorrectly

predict the protein binding to be the same as the previous

compound. This observation highlights limitations of

models built with achiral descriptors and reveals a specific

type of model applicability domain error.
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Fig. 7 The accuracies of the prediction error estimates for the RF:BV

and SVM:D2M-EUC PD methods. The predictions for the experi-

mental test sets are grouped into groups with similar estimated

prediction errors. The Caco2 data points represent bins of 200

compounds whereas the LogD and hPPB represent bins of 500

compounds. Error bars show the 95 % confidence intervals
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Probability of hitting a target profile

Given valid predictive distributions, we can convert pre-

dictive distributions into estimates of the probability that an

untested compound has properties that match a desired

target profile (TP). Probabilistic approaches similar to this

have previously been explored by Segall et al. [45–47]. The

approach provides a flexible alternative to classification

models because the threshold values for the properties can

be defined by users at the point of prediction, rather than

when the model is generated. Furthermore, we believe that

expressing predictions as probabilities provides an intuitive

way of representing prediction errors to the model users

[48]. Expressing QSAR predictions as probabilities also

allows users to make intelligent decisions about the num-

bers of compounds that must be synthesized to stand a

reasonable chance of producing a compound that meets the

project’s requirements. Information like this can potentially

be used to prioritize synthetic chemistry resources towards

projects that do not have access to reliable QSAR predic-

tions. In this section, first we will consider target profiles

that comprise a single drug optimization parameter, and

then will give a couple of examples of probability estimates

for 2-parameter target profiles. We do not have enough

compounds spanning all three of the datasets to extend the

analysis beyond 2 optimization parameters. We also wish

to emphasize that all these target profile ranges are arbi-

trary and are intended only to demonstrate the approach.

The accuracies of the probability estimates for each of

the target profile datasets are shown graphically with cal-

ibration plots in Fig. 9 [49]. We produced the calibration

plots, which are similar to the plots shown in Fig. 7, by

ranking and binning the compounds according to their

estimated probabilities of hitting the target profiles so that

each bin contains compounds with similar probability

estimates. We used the SVM:D2M-EUC PD method for all

these plots as it was the method that produced predictive

distributions with the highest information content. Equiv-

alent results obtained using the SVM:TS method are shown

in grey for comparison. A high correlation of the data

points with the line of unity indicates that the probability

estimates are an excellent reflection of the actual observed

probabilities. The y error bars were calculated with central

limit theorem and show 95 % confidence intervals on the

data points.

The first target profile is a LogD within the range

2.5–3.5. We ranked the 7698 predictions from the LogD

experimental test sets and calculated the proportion of each

predictive distribution that lies within the target profile

range with a Gaussian cumulative distribution function
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Fig. 8 The difference between the best variable PD methods and the

uniform TS PD method. The same binning scheme is used as in

Fig. 7, i.e., the first bin represents the set of predictions with the

lowest estimated prediction error and the last bin corresponds to the

subset of predictions with the highest estimated prediction error. A

negative Mean KL difference indicates that the variable method has

increased information relative to the uniform TS method
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(CDF) using the predicted lpred and rpred values. The

calibration plot in Fig. 9a shows a good agreement between

the estimated probabilities and the actual observed likeli-

hood of hitting the target profile. There is a slight bias to

the probability estimates, with the probabilities of hitting

the target profile consistently overestimated; however, we

feel that this bias is small enough that it should not sig-

nificantly impact the model users. The most obvious dif-

ference between the results from the SVM:D2M-EUC

method and the more simple SVM:TS method lie in the

highest probability bin, indicating that the SVM:D2M-

EUC method has been able to identify some of the hits with

a higher degree of confidence than the SVM:TS method.

Nonetheless, both methods provide reasonable probability

estimates. The second target profile is for a Caco2 cell

permeability of[-5 (log cm/s). Again, the chart in Fig. 9b

shows that the probability estimates are an accurate

reflection of the likelihood of a test compound hitting the

target profile. In this case, there is no clear difference

between the SVM:D2M-EUC and SVM:TS methods.

The third and fourth target profiles considered here

feature two optimization parameters. Target profile 3 is

defined as LogD in the range 1.5–2.5 and Caco2 perme-

ability of greater than [-5 (log cm/s). There were only

225 compounds common to both the LogD and Caco2

permeability experimental test sets, and only 24 (11 %) of

these compounds hit the 2-parameter target profile. We

calculated the probability of a compound having the

desired target profile by multiplying the probability esti-

mates for individual components, each of which were

calculated with the Gaussian CDF function as described

above. We produced the calibration plot shown in Fig. 9c

with a bin size of 50, and it shows a high correlation

between the estimated and observed hit rates. The fourth

2-parameter target profile is Caco2 [-5 (log cm/s) and

hPPB \1 (log bound/free). In total, 546 compounds were

common to both experimental test sets and 43 (8 %) of

these compounds hit the target profile. The calibration plot

shown in Fig. 9d was produced with a bin size of 50

compounds. Again, the estimated probabilities match the

observed proportions of hits very well, although we do

wish to emphasize that both these 2-parameter target pro-

files were based on limited data with very few TP hits and

the performance on these two TPs may not be generalizable

to all other 2-parameter target profiles. In this final case, the

SVM:D2M-EUC method provided more accurate proba-

bility estimates than the SVM:TS method.

Our focus in this paper is on providing the best possible

information to model users for individual predictions,

rather than improving the rankings of large sets of com-

pounds. However, at this point we should note that the

differences in the performance of the SVM:D2M-EUC,
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Fig. 9 Calibration plots for the

estimated probabilities that a

test compound hits a target

profile. Charts a and b are

single-objective target profiles

and charts c and d are double-

objective target profiles. The

main black data points represent

the SVM:D2 M-EUC model’s

predictions. The grey data

points show equivalent results

obtained from the SVM:TS

method for comparison. Error
bars on the y-axis show the

95 % confidence interval of the

mean and are calculated using a

central limit theorem

approximation (error bars are

shown only if this

approximation is reasonable,

i.e., the number of hits in the

sample is greater than 5)
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SVM:TS, RF:BV and RF:TS methods, in terms of ranking

of the TP hits, are quite small. The differences between the

rankings for the uniform and variable methods are most

obvious for the highest ranked TP hits; for example, in the

LogD 1.5-2.5 profile above, the SVM:D2M-EUC method

ranked 384 TP hits in the first 500 compounds, compared to

348 hits for the SVM:TS method; and the RF:BV method

ranked 381 TP hits in the first 500 compounds, compared to

309 with the RF:TS method. The data used for these

analyses are provided as supplementary information.

Summary and conclusions

We have outlined an information theoretic framework for

assessing QSAR predictions based on KL divergence, in

which both predicted and experimentally measured prop-

erties are treated as Gaussian-shaped probability distribu-

tions. By treating QSAR predictions as probability

distributions, estimations of error become intrinsic to the

predictions themselves and error estimation becomes an

integral part of the model generation and selection process.

The ‘models’ in this work consisted of two components:

(1) a modeling algorithm that assigns the means the pre-

diction values, and (2) an error estimation method that

assigns a quantitative value to the error of the prediction

(the width of the Gaussian predictive distribution).

We chose to use KL divergence to quantify the distance

between probability distributions because of its grounding

in maximum likelihood theory and because it is probably

the most widely used metric for comparing probability

distributions. Other metrics, such as a simple overlap score,

may provide a more intuitive result, although we do feel

that the KL numbers will become more intuitive with

increased usage and familiarity. Further work could be

aimed at assessing alternative metrics for quantifying the

distance of probability distributions.

Using the KL framework, we assessed a range of dif-

ferent predictive distribution models in a time-series study

that spanned 1 year’s worth of AstraZeneca’s data for 3

global DMPK assays. Two predictive distribution methods

stood out as particularly successful: (1) Support Vector

Machine modeling algorithm with distance-to-model based

error estimation, and (2) the Random Forests modeling

algorithm with bagged variance-based error estimation. A

statistical analysis of our data showed that these methods

provided a significant improvement in information relative

to ‘uniform’ error estimation methods, in which all test

compounds are assigned the same error estimate. The

Random Forest bagged variance method is of particular

note because excellent error estimations can be obtained

directly from the Random Forest models with no extra

calculations required.

Throughout this work we have assumed that predictions

and measurement errors have a Gaussian-shaped distribu-

tion. This assumption is commonplace in statistics and,

after inspecting the actual error distributions for predictions

and experimental measurements, we feel that it is a prac-

tical and useful model for the errors. Nonetheless, the

Gaussian assumption is not a requirement for the KL

framework and alternative error distribution models may

be more suitable. Any alternative error distributions can be

assessed alongside Gaussian error distributions within the

framework.

With methods that produce valid predictive distributions,

we can estimate the probability that a virtual, untested

compound has properties that match a desired target phar-

macological profile. We have shown that our best methods

can produce accurate probability estimates for both single

and multi-objective target profiles. We feel that presenting

predictions in this manner represents prediction errors in a

way that is intuitive, and may allow strategic allocation of

synthetic chemistry resources to projects that do not have

access to accurate predictive models.

In future work we will investigate methods for assigning

non-parametric predictive distributions that do not require

an assumed functional form. We will also apply the pre-

dictive distribution methods described in this paper to local

datasets to determine whether they are able to recognize

completely out-of-domain prediction queries.
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