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3.6 Rényi entropy 15

4 Discussion 17

1 Introduction

It is well recognized that entanglement entropy is a useful tool to characterize a quan-

tum state [1]. Historically, quantum entanglement has been one of the most mysterious

and fascinating features of quantum mechanics in that performing a local measurement

may instantaneously affect the outcome of local measurements beyond the lightcone. This

apparent violation of causality is known as the Einstein-Podolsky-Rosen paradox [2]. How-

ever, since information does not get transferred in such a measurement, causality remains

intact. There are many phenomena which we are now finding that quantum entanglement

may play a role, including bubble nucleation [3]. Schwinger pair production in a constant

electric field can be considered as an analogue of bubble nucleation in a false vacuum. In

the case of pair creation, electron-positron pairs are spontaneously created with a certain

separation and such particle states should then be quantum correlated. Recent studies of

the Schwinger effect infer that observer frames will be strongly correlated to each other

when they observe the nucleation frame [4–6].

Entanglement entropy has now been established as a suitable measure of the degree of

entanglement of a quantum system. Entanglement entropy has since become a useful tool

in understanding phenomena in condensed matter physics, quantum information and high

energy physics. For example, entanglement entropy plays the roll of an order parameter
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in condensed matter systems and thus the phase structure can be examined using this

measure of quantum correlation. It would be interesting to consider the consequences of a

measurable entanglement entropy in a cosmological setting, especially in view of the bubble

nucleation and the multiverse. Indeed, it may be possible to investigate whether a universe

entangled with our own universe exists within the multiverse framework. Such a scenario

may be observable through the cosmic microwave background radiation (CMB).

To calculate the entanglement entropy in quantum field theories explicitly has, until

recently, not been an easy task. In [7], Ryu and Takayanagi proposed a method of calcu-

lating the entanglement entropy of a strongly coupled quantum field theory with a gravity

dual using holographic techniques. This has proved extremely powerful and their formula

has passed many consistency checks [8]. Consequently, entanglement entropy, especially

within a holographic context has been attracting a great deal of attention of late.

In [9] Maldacena and Pimentel developed a method to explicitly calculate the entan-

glement entropy in a quantum field theory in the Bunch-Davies vacuum of de Sitter space

and discussed the gravitational dual of this theory and its holographic interpretation. In

this paper, we extend the calculation of the entanglement entropy in the Bunch-Davies vac-

uum to α-vacua. The use of conformal symmetry of the de Sitter invariant Bunch-Davies

vacuum as utilized by Maldacena and Pimental can be also extended to the α-vacua and

this will significantly simplify the calculation.

Our interest in α-vacua is three-fold: firstly, these new examples serve to further

develop our understanding of the nature of entanglement entropy in the non-trivial vacua

with de Sitter invariance. Second, understanding entanglement entropy in this de Sitter

invariant family of backgrounds will provide a non-trivial check of the holographic methods

employed by Ryu and Takayanagi which even today is the only tool at our disposal to

access the entanglement entropy of strongly-coupled quantum field theories. We would like

to clarify here how the change of the vacuum can be implemented into the holographic

scheme. This is related to the issue of how to describe the entanglement entropy of excited

states from the holographic point of view. Our final motivation stems from cosmology.

In conjunction with CMB observations, it has been suggested [10] that non-Bunch-Davies

vacua are preferable to explain the results of BICEP2 [11].

In this paper we calculate the entanglement entropy of a massive scalar field in the

family of α-vacua in a fixed de Sitter background. Note that this is not the entropy of the

metric on the de Sitter horizon which has already been discussed extensively in the liter-

ature [12, 13]. Intuitively, an α-vacuum can be thought of as a state of pair condensation

or, alternatively, as a squeezed state [14–17]. Thus the quantum uncertainty of the state

is heavily constrained. The pair condensation itself has an intrinsic quantum correlation

associated with it. When the rate of pair condensation increases, it is expected that the

quantum correlation would increase. Hence, we expect an increase of the entanglement en-

tropy with increasing α parameter, corresponding to the increased pair condensation. We

are also able to investigate the Rényi entropy using the same mathematical techniques. This

will gives rise to a new measure of quantum correlation in these vacua and we will explore

the α dependence. We try to give a holographic interpretation in the discussion, however,

we find it difficult to implement the change of the vacuum in a conventional manner.
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The paper is organized as follows. In section 2, we review the method developed

by Maldacena and Pimentel with some comments relevant to the calculation of the en-

tanglement entropy of α-vacua. In section 3, we introduce the α-vacua and calculate the

relevant density matrix and the entanglement entropy. We also evaluate the Rényi entropy.

We conclude in section 4 with some summary remarks and speculation about a possible

holographic interpretation of our results.

2 A review of entanglement entropy of the Bunch-Davies vacuum

In [9], Maldacena and Pimentel developed a method to calculate a specific contribution

to the entanglement entropy of a massive scalar field in de Sitter space explicitly. They

showed that the long range correlations implied by the entanglement entropy are maximal

for small masses and decay exponentially as the mass increases. Here we will review the

formalism developed in that paper before extending it to α-vacua in section 3.

2.1 Entanglement entropy

The entanglement entropy is a quantity which characterizes quantum correlations of a

system. In particular it is the long-range correlations in which we will be interested. It can

be thought of as a measure of how much we can discover about the full state of a system,

given only a subsystem of it to measure. To explain this, let us divide the system into two

subsystems A and B. The Hilbert space becomes a direct product H = HA ⊗HB. As an

illustration, we choose a special state

|Ψ〉 =
∑
i

ci| i 〉A| i 〉B , (2.1)

where ci is the amplitude of finding the i-th state. In this case, the density matrix is

ρ = |Ψ〉〈Ψ| =
∑
i

∑
j

cic
∗
j | i 〉A| i 〉B A〈 j |B〈 j | . (2.2)

If we trace over the degrees of freedom of B, we find that the density matrix of the

subsystem A is given by

ρA = TrB ρ =
∑
i,j,k

cic
∗
j B〈 k| i 〉A| i 〉B A〈 j |B〈 j | k 〉B =

∑
k

|ck|2 | k 〉AA〈 k | , (2.3)

and the density matrix is normalized to 1 because of the conservation of probability

TrA ρA =
∑
k

|ck|2 = 1 . (2.4)

However, TrA ρ2
A =

∑
k |ck|4 6= 1 in general.

The entanglement entropy is defined via the density matrix as the Von-Neumann en-

tropy

S = −TrA ρA log ρA = −
∑
k

|ck|2 log |ck|2 , (2.5)
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where we traced over the subsystem A. For a pure state such as c1 = 1, c2 = c3 =

· · · cN = 0, the entanglement entropy is given by S = 0. For a mixed state such as

c1 = c2 = · · · cN = 1/
√
N , where N is the dimensionality of the correlated Hilbert space,

the entanglement entropy takes the maximum value

S = −
N∑
k

1

N
log

1

N
= logN . (2.6)

Since the number N describes the extent to which the system correlates, the entanglement

entropy is certainly a measure of the quantum correlations. In other words, the entangle-

ment entropy is related to the relevant degrees of freedom in the system. For instance, in

a two dimensional conformal field theory the entanglement entropy is proportional to the

central charge which counts the degrees of freedom in such a system [18].

2.2 Setup of entanglement entropy in de Sitter space

In order to study entanglement entropy in 3 + 1-dimensional de Sitter space we consider a

closed surface S2 in a hypersurface at fixed time. This divides the spacelike hypersurface

into an inside region (A) and an outside region (B). The total Hilbert space, as in the

previous section can then be written as a direct product H = Hin⊗Hout. From this we can

trace over the outside region to construct the density matrix for the internal region ρin =

Trout |Ψ〉〈Ψ|. From this we can then obtain the entanglement entropy defined in eq. (2.5).

In order to apply this procedure to de Sitter space, we first consider the closed surface

in the flat chart. In the flat chart of de Sitter space, the metric reads

ds2 =
1

H2η2

[
−dη2 + δij dx

idxj
]
, (2.7)

where indices (i, j) denote the three spatial components. H is the Hubble parameter and

η is conformal time.

We consider a free scalar field of mass m on a η = constant hypersurface. The entan-

glement entropy associated to this field in the field theory consists of UV divergent and

UV finite parts

S = SUV-div + SUV-fin . (2.8)

The divergent part is well known and takes the form [19, 20]

SUV-div = c1
A
ε2

+ log(εH)
[
c2 + c3Am2 + c4AH2

]
, (2.9)

where ci are numerical coefficients. Here, ε is the UV-cutoff and A is the proper area of

the shared surface of the two regions. Since all of these terms arise in flat space and from

local effects, we are not interested in this part. The UV-finite part contains information

about the long-range correlations of the quantum state in de Sitter space. We can expect

the IR behavior (η → 0 limit) of the UV-finite part to be of the form

SUV-fin = c5AH2 − c6

2
log
(
AH2

)
+ finite = c5

Ã
η2

+ c6 log η + finite , (2.10)
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Figure 1. De Sitter space and the Penrose diagram.

where Ã = AH2η2 is the area of the surface in comoving coordinates. The quantity we

calculate to get the information about the long range correlations of the state is c6, which

is a cut-off independent quantity.

In order to compute c6, we take the radius of the surface to be much bigger than the de

Sitter horizon, R� RdS = H−1. In the asymptotic future η → 0, we can use a conformal

transformation of the de Sitter invariance to map the shared S2 to the equator of the S3

hypersurface at fixed time. Once we can divide the region in half in the asymptotic future,

the flat chart is indistinguishable from the open chart as in figure 1. Once we can map the

surface on the boundary between the L and R regions of the open chart in the asymptotic

future, it is convenient to trace over the outside region of the surface to obtain the density

matrix of the inside region. Thus, the detailed calculation will be able to be performed in

the open chart as follows.

2.3 Entanglement entropy in the Bunch-Davies vacuum

The following section follows the derivation of [9]. The outline of the section is as follows.

We will first solve the equations of motion for a free scalar field in the L and R regions and

find the solution written in terms of the appropriate operators which annihilate the Bunch-

Davies vacuum. We will then perform a transformation of this state into the operators

written in terms of creation and annihilation operators on the L and R regions separately.

This will then allow us to trace over one part of the space to obtain the density matrix and

eventually the entanglement entropy. We start by finding the solutions to the equation of

motion on the two sections of the space and find a suitable solution which is analytic on

going between the two regions.

The open chart of de Sitter space is studied in detail in [21]. Now, we consider a free

scalar field of mass m with the canonical action given by

S =

∫
d4x
√
−g
[
−1

2
gµν∂µφ∂νφ−

m2

2
φ2

]
. (2.11)
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We write the metric in each region R and L in terms of the local definitions of t and r as

defined from the Euclidean coordinates

ds2
R = H−2

[
−dt2R + sinh2 tR

(
dr2
R + sinh2 rR dΩ2

)]
,

ds2
L = H−2

[
−dt2L + sinh2 tL

(
dr2
L + sinh2 rL dΩ2

)]
, (2.12)

where dΩ2 is the metric on the two-sphere. These coordinate systems are obtained by

analytic continuation from the Euclidean metric. Since it is natural to choose the Eu-

clidean vacuum (the Bunch-Davies vacuum [22–24]) as the initial condition, we need to

find the positive frequency mode functions corresponding to the Euclidean vacuum. After

separation of variables

φ =
H

sinh t
χp(t)Yp`m(r,Ω) , (2.13)

the equations of motion for χp and Yp`m in the R or L regions are found to be[
∂2

∂t2
+ 3 coth t

∂

∂t
+

1 + p2

sinh2 t
+
m2

H2

]
χp(t) = 0 , (2.14)[

∂2

∂r2
+ 2 coth r

∂

∂r
− 1

sinh2 r
L2

]
Yp`m(r,Ω) = −

(
1 + p2

)
Yp`m(r,Ω) , (2.15)

where L2 is the Laplacian operator on the unit two-sphere, the Yp`m are eigenfunctions

on the three-dimensional hyperboloid and the temporal and radial coordinates are left

undistinguished for the R and L regions. The solutions can be found explicitly in [21]. By

defining a parameter

ν =

√
9

4
− m2

H2
, (2.16)

the time dependent part of χp(t) is given by

χp,σ(t) =


1

2 sinhπp

(
eπp−iσe−iπν
Γ(ν+ip+1/2)P

ip
ν−1/2(cosh tR)− e−πp−iσe−iπν

Γ(ν−ip+1/2) P
−ip
ν−1/2(cosh tR)

)
,

σ
2 sinhπp

(
eπp−iσe−iπν
Γ(ν+ip+1/2)P

ip
ν−1/2(cosh tL)− e−πp−iσe−iπν

Γ(ν−ip+1/2) P
−ip
ν−1/2(cosh tL)

)
,

(2.17)

where the index σ takes the values ±1 and P±ip
ν− 1

2

are Legendre functions. This is a solution

supported on the R and L regions respectively. Two independent solutions for each region

are distinguished by the sign of σ. Note that the solutions are obtained by analytic contin-

uation between the L and R regions. This procedure requires the solutions to be analytic in

the Euclidean hemisphere and produces the factor e−πp in the above solutions. In this way,

the Bunch-Davies vacuum is selected. As the Bunch-Davies vacuum is de Sitter invariant,

it is legitimate to use the mapping in figure 1.

We expand the field in terms of the creation and anihilation operators,

φ̂(t, r,Ω) =
∑
σ,`,m

∫
dp
[
aσp`m uσp`m(t, r,Ω) + a†σp`m u

∗
σp`m(t, r,Ω)

]
, (2.18)
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where aσp`m satisfies aσp`m|BD〉 = 0. The mode function uσp`m(t, r,Ω) representing the

Bunch-Davies vacuum is

uσp`m =
H

sinh t
χp,σ(t)Yp`m(r,Ω) . (2.19)

In order to calculate the density matrix, we write the states in a matrix form. If we write

the bases of the L and R regions in a simple form PR,L ≡ P ipν−1/2(cosh tR,L) , P ∗R,L ≡
P−ipν−1/2(cosh tR,L), the two lines of eq. (2.17) are expressed in one line

χσ = N−1
p

∑
q=R,L

[
ασq P

q + βσq P
∗ q ] , (2.20)

where the support of the functions of tL and tR are the relevant sub-regions. Np is a

normalization factor including the 1/ sinhπp in eq. (2.17) and

ασR =
eπp − iσe−iπν

Γ
(
ν + ip+ 1

2

) , βσR = −e
−πp − iσe−iπν

Γ
(
ν − ip+ 1

2

) , (2.21)

ασL = σ
eπp − iσe−iπν

Γ
(
ν + ip+ 1

2

) , βσL = −σ e
−πp − iσe−iπν

Γ
(
ν − ip+ 1

2

) . (2.22)

The complex conjugate of eq. (2.20) which is needed in eq. (2.18) is

χ∗σ = N−1
p

∑
q=R,L

[β∗q
σ P q + α∗q

σ P ∗ q ] . (2.23)

Then eq. (2.17) and its conjugate can be accommodated into the simple matrix form

χI = N−1
p M I

J P
J , (2.24)

where the capital indices (I, J) run from 1 to 4 and

χI = (χσ, χ∗σ ) , M I
J =

ασq βσq

β∗q
σ α∗q

σ

 , P J =
(
PR, PL, P ∗R, P ∗L

)
. (2.25)

Now we focus on the time dependent part1 of the field operator, which is written as

φ(t) = aI χ
I = N−1

p aIM
I
J P

J , aI =
(
aσ , a

†
σ

)
, (2.26)

where the mode functions are defined via the appropriate annihilation of the Bunch-Davies

vacuum. Note that this relation can be regarded as the Bogoliubov transformation by

changing the mode functions defined in the Bunch-Davies vacuum into the Legendre func-

tions, which realize the positive frequency modes in the past. The Bogoliubov coefficients

are then expressed by α and β in the matrix M . To trace out the region R (or L) in the

end to obtain the density matrix of the L (or R) regions, we need to know the relation

between the Bunch-Davies vacuum and the R and L-vacua. By introducing new creation

1We omit the factor 1/ sinh t because it will be canceled when comparing eqs. (2.26) with (2.27).
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and anihilation operators bJ defined such that bR|R〉 = 0 and bL|L〉 = 0, we expand the

field operator as

φ(t) = N−1
p bJ P

J , bJ =
(
bR , bL , b

†
R , b

†
L

)
. (2.27)

Note that we took the Legendre functions as the mode functions of the R,L-vacua because

they realize the positive frequency mode in the past. By comparing eqs. (2.26) with (2.27),

we find the relation between aJ and bJ such as

aJ = bI
(
M−1

)I
J ,

(
M−1

)I
J =

 ξqσ δqσ

δ∗qσ ξ
∗
qσ

 ,

 ξ =
(
α− β α∗−1β∗

)−1
,

δ = −α−1β ξ∗ .
(2.28)

This leads to the relation between aσ and bq

aσ =
∑
q=R,L

[
ξqσ bq + δ∗qσ b

†
q

]
. (2.29)

Thus, the Bunch-Davies vacuum can be regarded as the Bogoliubov transformation

from the R,L-vacua as

|BD〉 = exp

1

2

∑
i,j=R,L

mij b
†
i b
†
j

 |R〉|L〉 , (2.30)

where the operators bi satisfy the commutation relation
[
bi, b

†
j

]
= δij . The condition

aσ|BD〉 = 0 gives

mij = −δ∗iσ
(
ξ−1
)
σj

= −Γ (ν − ip+ 1/2)

Γ (ν + ip+ 1/2)

2 eiπν

e2πp + e2iπν

(
cosπν i sinh pπ

i sinh pπ cosπν

)
. (2.31)

The phase terms are unimportant for ν2 > 0. We will comment on the case ν2 < 0 later in

section 2.4. Here, we consider ν2 > 0 and write them as eiθ for simplicity. Then

mij = eiθ
√

2 e−pπ√
cosh 2πp+ cos 2πν

(
cosπν i sinh pπ

i sinh pπ cosπν

)
, (2.32)

where eiθ contains all phase factors. We write mRR = mLL ≡ ω, which is real and

mLR = mRL ≡ ζ, which is purely imaginary for positive ν2.

It is still difficult to trace over the R (or L) degrees of freedom when the state is

written in the form of eq. (2.30). Thus, we perform the Bogoliubov transformation again

by introducing new operators cR and cL

cR = u bR + v b†R , cL = ū bL + v̄ b†L , (2.33)

to get the relation

|BD〉 = exp
(
γp c

†
R c
†
L

)
|R′〉|L′〉 , (2.34)

– 8 –
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where |u|2−|v|2 = 1 and |ū|2−|v̄|2 = 1 are assumed. The operators satisfy the commutation

relation
[
ci, c

†
j

]
= δij . It should be noted that the Bogoliubov transformation does not mix

L and R Hilbert spaces although the vacuum is changed by this transformation from |R〉|L〉
into |R′〉|L′〉. The consistency conditions for eq. (2.34) are

cR |BD〉 = γp c
†
L |BD〉 , cL |BD〉 = γp c

†
R |BD〉 . (2.35)

Putting eqs. (2.33) and (2.34) into eq. (2.35), we find the system of four homogeneous

equations

ω u+ v − γp ζ v̄∗ = 0 , ζ u− γp ū∗ − γp ω v̄∗ = 0 , (2.36)

ω ū+ v̄ − γp ζ v∗ = 0 , ζ ū− γp u∗ − γp ω v∗ = 0 . (2.37)

Here, ω is real ω∗ = ω and ζ is pure imaginary ζ∗ = −ζ for positive ν2. Taking the compex

conjugate of eq. (2.36), we find that we can set v∗ = v̄ and u∗ = ū if γp is pure imaginary

γ∗p = −γp. Then eq. (2.37) becomes identical with eq. (2.36) and the system is reduced to

that of two homogeneous equations. The normalization condition |u|2 − |v|2 = 1 must be

imposed.

In order to have a non-trivial solution in the system of equations (2.36), γp must be

γp =
1

2ζ

[
−ω2 + ζ2 + 1−

√
(ω2 − ζ2 − 1)2 − 4ζ2

]
, (2.38)

where we took a minus sign in front of the square root term to make γp converge. Plugging

the ω and ζ defined in eq. (2.32) into eq. (2.38), we get

γp = i

√
2√

cosh 2πp+ cos 2πν +
√

cosh 2πp+ cos 2πν + 2
. (2.39)

Note that γp is pure imaginary. For negative ν2, eq. (2.39) is analytic under substitution

ν → ±i|ν| as we will explain in section 2.4.

If we trace over the R degree of freedom, the density matrix is found to be diagonalized

ρL = TrR |BD〉〈BD| =
(
1− |γp|2

) ∞∑
n=0

|γp|2n |n; p`m〉〈n; p`m| , (2.40)

where we used eq. (2.34) and defined |n; p`m〉 = 1/
√
n!
(
c†L

)n
|L′〉. Notice that we put the

normalization factor 1− |γp|2 because

∞∑
n=0

|γp|2n = lim
n→∞

1− |γp|2n

1− |γp|2
|γp|<1−−−−→ 1

1− |γp|2
. (2.41)

Then, the entanglement entropy as a function of p and ν is calculated to be

S(p, ν) = −Tr ρL(p) log ρL(p) = − log
(
1− |γp|2

)
− |γp|2

1− |γp|2
log |γp|2 . (2.42)

Note that this formula is derived under the condition |γp| < 1.

– 9 –
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intr 1/2/S Sν =

Figure 2. Plots of the entanglement entropy Sintr/Sν=1/2. The red line is for the Bunch-Davies

vacuum α = 0, the purple line is α = 0.03, the green line is α = 0.1 and the blue is α = 0.3. The

Sν=1/2 is independent of α.

The quantity c6 that we want to calculate to get the information about the long range

correlation of the quantum state is obtained by integrating over p and a volume integral

over the hyperboloid,

Sintr ≡ c6 =
1

π

∫ ∞
0

dp p2S(p, ν) . (2.43)

Maldacena and Pimentel plot the entanglement entropy, normalized by the conformally

invariant case (ν = 1/2), Sintr/Sν=1/2, as a function of ν2. (See the red line in figure 2).

They found that the long range entanglement is largest for small mass (positive ν2) and

decays exponentially for large mass (negative ν2) in [9].

2.4 Large mass range

For large masses (m > 3/2H), corresponding to negative ν2, we need to take care of the

phase factors in eq. (2.32). In the case of the Bunch-Davies vacuum, all factors in front

of the matrix in eq. (2.31) after substitution ν → ±i|ν| can be equivalently obtained by

performing the analytic continuation on eq. (2.32) which drops all phase factors, that is,

−Γ (ν − ip+ 1/2)

Γ (ν + ip+ 1/2)

2 eiπν

e2πp + e2iπν

ν→±i|ν|−−−−−→ −
Γ
(

1
2 + i (±|ν| − p)

)
Γ
(

1
2 + i (±|ν|+ p)

) 2 e∓π|ν|

e2πp + e∓2π|ν| (2.44)

=

√
2 e−pπ√

cosh 2πp+ cosh 2π|ν|
. (2.45)

Thus, we can use eq. (2.39) for all ranges of masses.

– 10 –
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2.5 Super-curvature modes

So far, we have considered only continuous spectrum for the eigenvalue p. However, it

is known that there exists a discrete mode p = i (ν − 1/2) in the spectrum, the so-called

super-curvature mode [21]. We need to worry about it, namely, the super-curvature mode

may contribute to the long-range entanglement of a quantum state. However, since the

super-curvature modes exist with a spacial value of p = i (ν − 1/2), it is plausible that the

integration would not produce a finite measure unless the super-curvature modes behaves

as delta-functions due to unnormalizable nature of the super-curvature mode. It would be

interesting to investigate this more precisely.

3 Entanglement entropy of α-vacua

In the previous section, we reviewed the entanglement entropy in the Bunch-Davies vac-

uum [9]. Here, we extend the calculation to more general α-vacua, which corresponds to

a state filled with particles from the point of view of the Bunch-Davies vacuum [25, 26].

The α-vacua are also de Sitter invariant, so we can use the same mapping in figure 1 that

was used to define a simple representation of the two subspaces. We will examine if the

long range entanglement is affected by the state in which particles are pair-created in the

vacuum.

3.1 α-vacua

The CPT invariant α-vacua can be parametrized by a single positive real parameter α.

The Bunch-Davies vacuum is realized when α = 0. The mode function is obtained by

the Bogoliubov transformation from the mode function of the Bunch-Davies vacuum in

eq. (2.19) such as

Uσp`m(t, r,Ω) = coshαuσp`m(t, r,Ω) + sinhαu∗σp`m(t, r,Ω) . (3.1)

The relation between the annihilation operators in the α-vacua and the Bunch-Davies

vacuum is also defined by the Bogoliubov transformation

dσ = coshαaσ − sinhαa†σ . (3.2)

The definition of an α-vacuum is then simply

dσ|α〉 = 0 . (3.3)

The scalar field in eq. (2.18) is expanded by those mode functions and operators

φ̂(t, r,Ω) =
∑
σ,`,m

∫
dp
[
dσp`m Uσp`m(t, r,Ω) + d†σp`m U

∗
σp`m(t, r,Ω)

]
. (3.4)
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It is helpful to note that the α-vacua are directly related to the Bunch-Davies vacuum

and the R and L-vacua as

|α〉 = exp

[
1

2
tanhα a†σa

†
σ

]
|BD〉

= exp

1

2
tanhα

 ∑
q=R,L

[
ξ∗qσ b

†
q + δqσ bq

] ∑
q=R,L

[
ξ∗qσ b

†
q + δqσ bq

]
× exp

1

2

∑
i,j=R,L

mij b
†
i b
†
j

 |R〉|L〉 , (3.5)

where we used eqs. (2.29) and (2.30) and pairs of σ are summed over. It is well known that

the α-vacua are nothing but squeezed states. Looking at the above formula, we see that

the α-vacua should create extra correlations across the R and L sub-systems.

3.2 Bogoliubov transformation to R, L-vacua

We calculate the entanglement entropy of α-vacua with the setup of the previous subsection.

The calculation is completely parallel to that of the Bunch-Davies vacuum but we start

with a different set of creation and annihilation operators.

We first to find a relation between operators of α-vacua and ones of R (or L) vacua.

Plugging eq. (2.29) into eq. (3.2), we get the relation

dσ =
∑
q=R,L

[
{coshα ξqσ − sinhα δqσ} bq +

{
coshα δ∗qσ − sinhα ξ∗qσ

}
b†q

]
. (3.6)

Comparing this with eq. (2.29), we find that the Bogoliubov transformation for the original

ξqσ and δ∗qσ is

ξqσ → coshα ξqσ − sinhα δqσ , δ∗qσ → coshα δ∗qσ − sinhα ξ∗qσ . (3.7)

The Bogoliubov transformation between α-vacua and R (or L) vacua can be found by the

consistency of the definition of the α-vacua eq. (3.3) of

|α 〉 = exp

1

2

∑
i,j=R,L

m̃ij b
†
i b
†
j

 |R〉|L〉 , (3.8)

provided

m̃ij = −{ coshα δ∗iσ − sinhα ξ∗iσ } { coshα ξ − sinhα δ }−1
σ j , (3.9)

where we used the first equation in eq. (2.31) and eq. (3.7). Using the expression of ξ and

δ given by eq. (2.28), we get

m̃ij = −
Γ
(
ν − ip+ 1

2

)
Γ
(
ν + ip+ 1

2

) 2

e2πp (coshα− sinhα e−2πp)2 + e2iπν (coshα+ sinhα e−2iπν)2

×

(
DRR DRL

DLR DLL

)
, (3.10)
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where

DRR = DLL =
(
cosh2 α eiπν + sinh2 α e−iπν

)
cosπν − sinh 2α sinh2 πp , (3.11)

DRL = DLR = i
[
cosh2 α eiπν + sinh2 α e−iπν + sinh 2α cosπν

]
sinhπp . (3.12)

3.3 Diagonalization

In order to trace out the R (or L) degree of freedom, the density matrix has to be diagonal-

ized as in the form eq. (2.40). To do this, we need to perform the Bogoliubov transformation

eq. (2.33) again to get the relation

|α〉 = exp
(
γp c

†
L c
†
R

)
|R′〉|L′〉 . (3.13)

The consistency conditions for eq. (3.13)

cR |α〉 = γp c
†
L |α〉 , cL |α〉 = γp c

†
R |α〉 , (3.14)

gives rise to the system of four homogeneous equations eqs. (2.36) and (2.37). Here, ω and

ζ in the case of α-vacua are read off from eq. (3.10) and

ω ≡ m̃RR = m̃LL , ζ ≡ m̃RL = m̃LR . (3.15)

We see that ω and ζ are not real and pure imaginary respectively for positive ν2, which

are different from the case of de Sitter vacuum. Thus we cannot reduce the system of four

homogeneous equation eqs. (2.36) and (2.37) into two by setting v∗ = v̄ and u∗ = ū in the

case of α-vacua. We need to solve the system of four homegeneous equations for positive

ν2, with conditions |u|2 − |v|2 = 1 and |ū|2 − |v̄|2 = 1.

Fortunately, we find a non-trivial solution of γp of this system:

|γp|2 =
1

2|ζ|2

[
− ω2ζ∗2 − ω∗2ζ2 + |ω|4 − 2|ω|2 + 1 + |ζ|4

−
√

(ω2ζ∗2 + ω∗2ζ2 − |ω|4 + 2|ω|2 − 1− |ζ|4 )2 − 4|ζ|4
]
. (3.16)

This recovers eq. (2.38) when α = 0, ω∗ = ω and ζ∗ = −ζ. So these results are analytically

consistent. For negative ν2, we find eq. (3.16) is analytic under substitution ν → −i|ν|.2

This can be checked as follows. As we will see in section 3.5, ω becomes real and ζ becomes

pure imaginary for negative ν2. So we can reduce the system of four equations into that

of two equation as in the case of the Bunch-Davies vacuum. We can plot from ν2 < 0

by using eq. (2.38) and we find the plots agree with the ones obtained by using analytic

continuation of eq. (3.16).

2Here, we have two choices of ν → ±i|ν|. In the case of the Bunch-Davies vacuum, the result doesn’t

change whichever sign we choose. In the α-vacua case, however, we find that the substitution i|ν| produces

the divergence where |γp| ≥ 1.

– 13 –
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intr 1/2/S Sν =

Reν

Imν

Figure 3. A plot of the entanglement entropy Sintr/Sν=1/2 for α = 0.3. This is completely smooth

around ν = 0 in the complex plane.

3.4 Long range entanglement entropy

Now, we can plot the entanglement entropy in eq. (2.43) for various value of α. The

results are found in figure 2. The Bunch-Davies vacuum corresponds to α = 0 (red line).

It shows that there exists a long range entanglement for small masses of the scalar field

(positive ν2) and it decays exponentially for large masses (negative ν2). The entanglement

could exist beyond the Hubble horizon because de Sitter expansion separates off the pair

of particles created within the Hubble horizon. For large masses one expects a lower rate

of pair creation and thus a reduced entanglement entropy.

The pair condensation effect of the α vacuum in de Sitter space enhances the entan-

glement entropy, as expected. Once the effect of a state with condensed particles starts to

work as α increases, we see that the entanglement entropy is enhanced, which agrees with

our expectation that the state with condensed particles would increase the rate of pair

creation by de Sitter expansion for small mass. We also see that the entanglement entropy

does not depend on α when the mass parameter ν = 1/2. This is because conformally flat

space is indistinguishable from Minkowski space for conformally invariant case (ν = 1/2).

So the differences due to the choice of vacua don’t show up at this point. This however is a

feature of the particular normalization chosen. For large mass, the long range correlation

decreases as the Bunch-Davies vacuum. There appears to be a discontinuity in the deriva-

tive in the plots at ν2 = 0 as α increases. However, the plots are completely smooth in the

complex plane as shown in figure 3. We also plotted Sintr as a function of α for some fixed

values of ν2 in figure 4 where we see the qualitative feature is consistent with figure 2.
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intrS

α

Figure 4. Plots of the entanglement entropy Sintr as a function of α. The blue line is for ν2 = 0

and 1, the green line is for ν2 = 1/16, 9/16 and 25/16, and the purple line is for ν2 = 1/4 and 9/4.

3.5 Large mass range

For the negative ν2 region (ν → −i|ν|), ω and ζ as defined in eq. (3.15) are written by

ω = N
(
cosh 2α cosh2 π|ν| − sinh 2α sinh2 πp+ sinhπ|ν| coshπ|ν|

)
, (3.17)

ζ = iN [ (cosh 2α+ sinh 2α) coshπ|ν|+ sinhπ|ν| ] sinhπp , (3.18)

where

N = −

√
cosh(|ν| − p)
cosh(|ν|+ p)

2(
e2πp + e2π|ν|

)
cosh2 α+

(
e−2πp + e−2π|ν|

)
sinh2 α

, (3.19)

where we have dropped the unimportant phase factor. Note that ω is real and ζ is purely

imaginary. Thus we can reduce the system of four homogeneous equation eqs. (2.36)

and (2.37) into two eq. (2.36) as we did in the Bunch-Davies case. We checked that the

plots completely agree with each other in the negative ν2 region.

3.6 Rényi entropy

The entanglement entropy characterizes the features of a quantum state. However, ap-

parently, it is not a unique such characterization. Actually, there exists a one parameter

family generalization of the entanglement entropy, the so-called Rényi entropy [27–29]. It

is defined by

Sq =
1

1− q
log Tr ρq , q > 0 , (3.20)

with the limit q → 1 corresponding to the entanglement entropy. In fact, this gives rise to

a convenient way to calculate the entanglement entropy. In another limit q → 0, the Rényi
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Figure 5. Plots of the Rényi entropy Sq,intr/Sq,ν=1/2. The order of Rényi entropy is q = 1/2. The

red line is for the Bunch-Davies vacuum α = 0, the purple line is α = 0.03, the green line is α = 0.1

and the blue is α = 0.3.

entropy measures a dimension of the density matrix, the so-called Hartley entropy [30]. In

the limit q →∞, on the other hand, the Rényi entropy tells us the largest eigenvalue of the

density matrix. Thus, the Rényi entropy is useful to look at details of a quantum state.

In the present cases, the Rényi entropy as a function of p and ν is

Sq,intr(p, ν) =
q

1− q
log
(
1− |γp|2

)
− 1

1− q
log
(
1− |γp|2q

)
, (3.21)

where γp is defined in eq. (3.16). The information about the long range correlation of the

quantum state is obtained by integrating over p and a volume integral over the hyperboloid,

which is expressed by

Sq,intr =
1

π

∫ ∞
0

dp p2Sq(p, ν) . (3.22)

This is plotted in figure 5. We took the order of the Rényi entropy q = 1/2. We see the effect

of α enhances the Rényi entropy compared with the Bunch-Davies vacuum for small mass.

For large mass, the rate of decreasing appears slower than the case of the entanglement

entropy. The plots eventually become flat irrespective of α as q → 0. Remarkably, the

Rényi entropy exists in spite of the heavy mass. In figure 6, we plotted Sq,intr as a function

of q. We find Sq,intr is a monotonic function of q. It diverges in the limit q → 0 and

approaches the asymptotic value in the limit q → ∞. The asymptotic value of the Rényi

entropy increases as α increases. This means the largest eigenvalue of the density matrix

is an increasing function of α. These features can be explained as follows. From eq. (3.21),

we see Sq,intr(p, ν) ∝ − log q which is independent of α in complete agreement with the

numerical result figure 6 and the fact that Hartley entropy measures the dimensions of the
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q

,intrqS

Figure 6. Plots of the Rényi entropy Sq,intr as a function of q. The mass parameter is ν = 1. The

red line is for the Bunch-Davies vacuum α = 0, the purple line is α = 0.03, the green line is α = 0.1

and the blue is α = 0.3.

density matrix. We can also evaluate Sq,intr(p, ν) in the limit q → ∞ which results in the

formula

Sq=∞,intr(p, ν) = − 1

π

∫ ∞
0

dp p2 log
(

1− |γp|2
)
. (3.23)

It is easy to evaluate this integral and find that it increases exponentially as α increases.

4 Discussion

We studied the entanglement entropy of a free massive scalar filed in de Sitter space by

using a method developed by Maldacena and Pimentel. In particular, we focused on the

state dependence of the entangle entropy, namely, we have considered α-vacua which is

de Sitter invariant. The α-vacua can be thought of as a state filled with pair of particles

from the point of view of the Bunch-Davies vacuum. In order to obtain the entanglement

entropy, we need to determine the density matrix of the subsystem A in terms of the

notation in section 2.1. This can be done when the density matrix is diagonal. To make

the density matrix diagonal, it is essential to transform the original matrix into a special

form. This can be done for the Bunch-Davies vacuum. In the case of α-vacua it is not

so straightforward to obtain diagonal density matrix. However, we found a formula which

can be used to obtain the entanglement entropy. We find that the entanglement entropy in

de Sitter space takes the minimal value for the Bunch-Davies vacuum among the α-vacua.

We argue these features stem from the pair condensation of α-vacua where the pair has

the intrinsic quantum correlation. We also calculated the Rényi entropy and showed that

the asymptotic value of the Rényi entropy increases exponentially as α increases.
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In terms of future extensions of this work, one of the most pressing would be a holo-

graphic interpretation along the lines of the work of Maldacena and Pimentel for the

Bunch-Davies vacuum in [9]. To summarize their argument; a free field theory on a curved

de Sitter space

ds2 = dw2 + sinh2w
[
−dt2 + cosh2 t

(
dθ2 + cos2 θ dΩ2

)]
, (4.1)

can be investigated in a holographic context by treating the de Sitter space as the boundary

of an anti-de Sitter (AdS) bulk which can then be considered as the gravitational dual [31,

32]. Here, dΩ2 is the metric of a two-sphere and w, t, θ are a radial, a time, and an angular

coordinate, respectively. Then, following Ryu and Takayanagi [7], they match the field

theory computation of the entanglement entropy to the area of an appropriate minimal

surface in the AdS space. The minimal surface is identified as the surface t = constant and

θ = 0. Starting with a conformally coupled scalar (ν = 1/2), they generalize the model to

non-conformal theories in this holographic scheme. Then, the bulk geometry is modified as

ds2 = dw2 + a2(w) ds2
dS4 , (4.2)

where ds2
dS4 is a four-dimensional de Sitter metric and the function a(w) is determined by

solving the Einstein equation with the scalar field. The surface we should take is the one

at θ = 0, t = t(w) which extremizes the area

A = VS2

∫
a2 cosh2 t(w)

√
dw2 − a2dt2 , (4.3)

where VS2 is two-volume. It would be of great interest to understand how this line of

reasoning is modified for α-vacua.

The first hurdle to such a holographic computation of the entanglement entropy of

the α-vacua in a strongly coupled phase is the lack of clarity as to what precisely the

gravity duals of a field theory on such α backgrounds are beyond the fact that they will

likely be some one-parameter deformation of AdS. Nevertheless, having demonstrated that

at ν = 1/2 the entanglement entropy is α-independent, we believe that in this case, the

Maldacena-Pimentel argument should go through essentially unchanged since the latter

does not require a choice of vacuum. More generally though, as we saw above, the entan-

glement entropy of α-vacua is decidedly different from that of the Bunch-Davies vacuum.

Hence, we expect the three-dimensional area at θ = 0, t = t(w) in the AdS bulk must

be further deformed to match the entanglement entropy. However, it is not clear how to

implement this state dependence in to the holographic scheme.3 In the conventional case,

the boundary geometry is Minkowski space where we do not have vacuum ambiguity. Now

that there is a continuum of vacua in de Sitter space, we are not sure what surface corre-

sponds to each vacuum. A naive answer is that because there is a difficulty in defining an

interacting field theory on an α-vacuum [15–17] the holographic principle may not lead to

a well-defined gravitational theory. We leave these considerations for future investigation.

3There is a possible approach to this direction in [33].
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