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1 Introduction

The combination of independent observational sources such as the CMB, supernovae, lens-

ing and baryon acoustic oscillations indicate that the Universe is expanding at an increasing

rate, possibly driven by dark energy, [1–3]. Despite a significant theoretical and observa-

tional efforts the physical origin of the accelerated expansion is a mystery. Not only its

discovery but also the resolution to the puzzle of its origin are an unexaggerated merit of

Nobel-prizes. Explanatory attempts fall into three primary categories.

The first solution consists of considering a small cosmological constant Λ with a con-

stant energy density giving rise to an effective repulsive force between cosmological objects

at large distances [4, 5]. If we assume that the cosmological constant correspond to the vac-

uum energy density, then the theoretical expectations for the vacuum energy density caused

by fluctuating quantum fields, differs from the observational bounds on Λ by up to 120

orders of magnitude. This giant mismatch between the theoretically computed high energy
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density of the vacuum and the low observed value remains for more almost a century one

of the most challenging puzzles in physics and is called the cosmological constant problem.

The second solution could for instance consist in introducing new dynamical degrees

of freedom by invoking new fluids Tµν with negative pressure. Quintessence is one of the

important representatives of this class of modification. The acceleration is due to a scalar

field whose kinetic energy is small in comparison to its potential energy, causing dynamical

equation of state with initially negative values [6, 7]. This class of theories might as well

as the cosmological constant exhibit fine-tuning problems.

Alternatively, the third solution would correspond to explaining the acceleration of the

Universe by changing the geometrical part of Einstein’s equations. In particular, weakening

gravity on cosmological scales might not only be responsible for a late-time speed-up of the

Hubble expansion but could also tackle the cosmological constant problem. Such scenarios

could arise in massive gravity or in higher-dimensional frameworks.

Concerning theories of higher dimensional theories, the Dvali-Gabadadze-Porrati

(DGP) model has set the stage for large scale modified theories of gravity [8, 9]. In this

framework our Universe is a three dimensional brane embedded in a five-dimensional bulk.

In this higher dimensional setup, the effective four-dimensional graviton on the brane car-

ries more degrees of freedom, amongst them the scalar degree of freedom carrying most of

the physical impact of this changement. This is explained by the graviton acquiring a soft

mass m which limits its effective range whereas on small scales one recovers General Rela-

tivity (GR) through the so called Vainshtein mechanism: the additional degree of freedom,

the helicity-0 mode, is decoupled from the gravitational dynamics via nonlinear interac-

tions of the helicity-0 mode itself, [10]. This decoupling of the nonlinear helicity-0 mode is

manifest in the limit where the four and five dimensional Plank scales are sent to infinity

and the soft graviton mass m → 0 while the strong coupling scale Λ = (MPlm
2)1/3 is kept

fixed, enabling us to treat the usual helicity-2 mode of gravity linearly while the helicity-0

mode π requires non-linear treatment, [11]. The achievement of the DGP model was the

existence of a self-accelerating solution sourced by the graviton own degree of freedom, the

helicity-0 mode. As promising as this was, it was realized soon that this branch of solution

was plagued by ghost-like instabilities [12–14]. This issue could be avoided for instance

including Gauss-Bonnet terms in the bulk, [15].

Galilean invariant interactions were then introduced to extend the decoupling limit

of DGP-gravity [16]. This Galileon model relies strongly on the symmetry of the

helicity-0 mode π, which is invariant under internal galileon- and shifting transformations

π → π + bµx
µ + c. This symmetry can be regarded as residuals of the 5-dimensional

Poincaré invariance in induced gravity braneworld models. These symmetries, along with

the postulate of the absence of ghosts, imposes drastic restriction on the allowed effective

Galileon Lagrangians, as there is a total number of only five derivative interactions

fulfilling these conditions in four dimensions (omitting the tadpole). In the context

of 5-dimensional braneworld models, these Galilean invariant derivative interactions

appear as consequences of Lovelock invariants [17]. For a review on the Galileon see

ref. [18]. The interesting feature of Galileons to allow self-accelerating de Sitter solutions

while providing a ghost-free theory [16, 19] has generated a flurry of investigations,

targeted at cosmological models and their observational signatures [20–28], inflationary
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models [29–45], gravitational lensing [46], spherically symmetric solutions in the vicinity

of compact sources [47], Binary Pulsars [48–50], etc. . . .

While cosmological models based on Galileon-gravity were commonly restricted

to spatially flat backgrounds, there are also possibilities of introducing generalisations

for non-flat models. One approach being a direct covariantization of the decoupling

limit [51, 52]. Naive covariantisation, however, can give rise to ghost-like terms in the

equation of motion, which can be remedied by a unique non-minimal coupling between

π and the curvature, [53–55]. The explicit formalism was derived in refs. [53, 54] and the

resulting covariantized Galileons are also consistent with a higher-dimensional setup [17].

Generalizations to maximally symmetric backgrounds with a new Galileon symmetry have

been constructed successfully in refs. [56–58].

Another interesting point to mention is that Galileon-type interaction terms naturally

arise in theories of massive gravity, which has, in addition, been constructed to be

ghost-free be it in three dimensions, [59] or for an generalized Fierz-Pauli action in four

dimensions [60, 61].

Finally, another important property of the Galileon interactions is the fact that they

are not renormalizable. In other words, the Galileon coupling constants can be technically

natural tuned to any value and remain stable under quantum corrections [11, 62–64].

Despite the fact that the Galileon exhibits a broad and interesting phenomenology,

they witness a potentially worrying phenomenon, namely the fluctuations of the Galileon

field can propagate superluminally in the regime of interest [16, 65, 66]. Since the Galileon

was introduced as an extention of the decoupling limit of DGP-gravity, the DGP model

shares the same phenomenon of superluminal fluctuations [67]. Superluminal modes are

not only generic to Galileon [68] but also to massive gravity [69–72].

Theories with superluminal fluctuations are sick if they also allow for acausality,

and configurations with Close-Timelike-Curves (CTCs) are present. Nevertheless there

are cases in which the superluminal fluctuations come with their own metric and causal

structure, which can be very different to that felt by photons, and the causal cones of these

fluctuations might even lie outside the causal cones of photons. Regardless of all this,

the causal structure of the spacetime can be protected [73] if there exists one foliation of

spacetime into surfaces which can be considered as Cauchy surfaces for both metrics. In

theories of Galilean invariant interactions it is possible to construct CTCs within the naive

regime of validity of the effective field theory (as is also the case in GR). Nevertheless,

as it has been shown in [74], the CTCs never arise since the Galileon inevitably becomes

infinitely strongly coupled implying an infinite amount of backreaction. The backreaction

on the background for the Galileon field breaks down the effective field theory and forbids

the formation of the CTC through the backreaction on the spacetime geometry. The

setup of background solutions with CTCs becomes unstable with an arbitrarily fast decay

time. As a result, theories of Galilean invariant interactions satisfy a direct analogue of

Hawking’s chronology protection conjecture, see ref. [74]. See also [75] for a thorough

analysis of the Cauchy problem in Massive Gravity.

The single Galileon scalar field theory has been generalized to a multitude of

interacting Galileon fields whose origin again can be traced back to Lovelock invariants
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in the higher co-dimension bulk, [63], or such as in Cascading Gravity, [76–78, 80, 81].

Furthermore, they have been extended to arbitrary even p-forms whose field equations

still only contain second derivatives [79].

In this paper, we scrutinize the superluminality in Multi-Galileon theories and argue

that in these models, the existence of the Vainshtein mechanism about a static spherically

symmetric source comes hand in hand with the existence of superluminal modes. The

argument goes as follows:

1. Superluminalities from the Cubic Galileon for a localized point-source:

we first show that the mere presence of Cubic Galileon interactions guaranties the

superluminal propagation of modes in either the radial or the orthoradial direction

far away from a point source.

This is intrinsic to the fact that for such configurations, at least one field falls as 1/r

at large distance as expected from the Coulomb potential. For that behaviour, the

matrix encoding the temporal perturbations vanishes at infinity while the orthoradial

and radial perturbations arise with opposite sign. This property is independent of

the number of Galileon fields present.

2. Superluminality from the Quartic Galileon for extended static spherically

symmetric sources: since the previous result is ubiquitous to any Cubic Galileon

interactions, the only possible way to avoid superluminalities at large distances, is to

set all the Cubic Galileon interactions to zero. In that case, we show that the Quartic

Galileon always lead to some superluminalities at large distances in either the radial

or the orthoradial direction again when considering a sensible extended source.

3. Superluminality from the Quartic Bi-Galileon for a localized point-source:

even if we restrict ourselves to point sources, we show that the Quartic Galileon

always lead to the propagation of at least one superluminal radial mode for some

range of r. This result contradicts previous claims found in the litterature.

Our result relies crucially on the assumption that 1. the field decay as the Coulomb

potential at infinity, 2. that no ghost are present and 3. that the Vainshtein

mechanism is active (i.e. the Quartic Galileon interactions dominate over quadratic

kinetic terms near the source). The derivation of our generic result relies on the

interplay between the behaviour of the field at large and at small distances.

4. Superluminality from the Cubic Bi-Galileon for a localized point-source:

finally, we show that near a localized source superluminalities are also present in the

radial direction in a theory which includes only the Cubic Galileon.

The rest of the paper is organized as follows: we start in section 2 with a summary of the

formalism of the Bi- and Multi-Galileon. We then present the analysis needed for the study

of the propagation of fluctuations around spherical symmetric backgrounds in section 3.

In section 4 we study the perturbations around the background generated by a point

mass at large distances from that source. We show that there is always one mode which
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propagates superluminaly whenever the Cubic Galileon is present, regardless of the number

of Galileons present in the theory. We also find that there are sensible source distributions

around which there will always be a superluminal mode at large distances even if the Cubic

Galileon is absent, for any number of Galileons. In section 5 we then consider more closely

the case of a point mass source when the Cubic Galileon is absent. In particular we study

the short distance behaviour around a point mass background in the Bi-Galileon theory,

and we find that there is again always a superluminal mode. In the case of vanishing

asymptotic conditions π → 0 the existence of the Vainshtein mechanism comes hand in

hand with the existence of superluminal modes. This constitutes a No-go theorem showing

that superluminal modes are generic to Galileon theories. Finally in the discussion section,

we comment on the only known loophole to this argument, which is to have non-vanishing

asymptotic conditions for the field at infinity. This kind of set up can arise naturally in

theories such as massive gravity which reduce to the Galileon theory in some limit.

In the rest of this work, we adopt the same notation as in [80] and demonstrate in this

language that superluminalities can never be avoided1 in a consistent Galileon model.

2 The Bi- and Multi-Galileon model

In this work we consider the most general Multi-Galileon theory, in four dimensions. This

model consists of N coupled scalar fields, π1, . . . , πN . For simplicity we neglect gravity

in our analysis and study the theory on Minkowski space-time. Similarly to Galileon

theories [16], the Multi-Galileon theory is invariant under internal Galilean and shift

transformations π1 → π1 + bµ1xµ + c1, · · · , πN → πN + bµNxµ + cN .

Coupling to matter. If we consider the Galileon scalar fields as scalar fields in their

own right, there could in principle couple to matter in a number of different ways.

At the linear level, they can

1. Either couple as a conformal mode, πiT ,

2. Or as a longitudinal mode, ∂µ∂νπiT
µν . However when dealing with conserved matter

sources, this coupling vanishes and is thus irrelevant, no matter how many fields are

considered.

Non-linearly,

3. One can consider more general types of conformal couplings of the form

f(π1, · · · , πN )T . Notice however that a general non-linear conformal coupling of

that form breaks the Galileon symmetry at the level of the equations of motion

directly. Alternatively, if one considered a general conformal coupling of the form

f(π1, · · · , πN )T , one could always perform a field redefinition πi → π̂i of the for

π̂1 = f(π1, · · · , πN ) and π̂j = πj for j = 2, · · · , N , so that only π̂1 couples to matters

and in a linear way. The field redefinition π̂1 = f(π1, · · · , πN ) might imply that the

1So long as the Galileon interactions dominate near the source (i.e. , as long as the model exhibits a

viable Vainshtein mechanism) and as long as one considers trivial asymptotic conditions at infinity.
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field interactions are no longer of the Galileon type, which is just another way to see

that an arbitrary non-linear coupling of the form f(π1, · · · , πN )T is not part of the

Galileon family.

4. Finally non-linear couplings of the form f1(π1, · · · , πN )∂µπi∂νπjT
µν can also be con-

sidered. For instance the coupling of the ∂µπ∂νπT
µν is generic in Massive Gravity [61].

However such a type of coupling cancels at the background level for static spherically

symmetric sources, and are thus irrelevant to the present discussion.

In conclusion, only the conformal coupling to external matter is important when dealing

with conserved and static spherically symmetric sources and analyzing the behaviour of

the perturbations in the vacuum. Whilst in principle the conformal coupling could be

fully non-linear, only the linear one respects the Galileon symmetry at the level of the

equations of motion. So in what follows we only focus on this linear conformal coupling,

without any loss of generality.

Furthermore, we couple only one of the N scalar fields to the trace of the stress energy

tensor, as one can always rotate the field space π1, · · · , πN to do so.

Multi-Galileon. Considering the previous linear conformal coupling to matter, the most

general multi-Galileon Lagrangian in four dimensions is

L = L2 + L3 + L4 + L5 + π1T , (2.1)

where the respective Quadratic L2, Cubic L3, Quartic L4 and Quintic Galileon L5 inter-

actions are given by

Ln(π1, · · · , πN ) =
∑

m1+···+mN=n−1

Lm1,...,mN
(2.2)

with

Lm1,...,mN
= (α1

m1,...,mN
π1 + · · ·+ αN

m1,...,mN
πN )Em1,...,mN

, (2.3)

where the αn
m1,...,mN

are the coefficients for the Galileon interactions. Notice that this

parameterization allow for a lot of redundancy, so not all the αn
m1,...,mN

are meaningful

(many of them can be set to zero without loss of generality). Notice as well that in this

language these coefficients α’s are dimensionfull (the dimension depends on m1+· · ·+mN ).

We stick nonetheless to this notation for historical reasons, [80]. In this formalism, all the

derivative are included in the Em1,...,mN
which can be expressed as

Em1,...,mN
= (m1 + · · ·+mN )!δµ1

[ν1
· · · δµm1

νm1
· · · δρ1σ1

· · · δρmN

σmN
] (2.4)

×
[

(∂µ1
∂ν1π1) · · · (∂µm1

∂νm1π1)
]

· · ·
[

(∂ρ1∂
σ1πN ) · · · (∂ρmN

∂σmN πN )
]

,

using the formalism derived in ref. [54].
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Bi-Galileon. Specializing this to the Bi-Galileon N = 2 is straightforward. The analogue

to (2.3) for the Bi-Galileon would simply be

Lπ1,π2
=

∑

0≤m+n≤4

(αm,nπ1 + βm,nπ2)Em,n , (2.5)

with

Em,n = (m+ n)!δµ1

[ν1
· · · δµm

νm δρ1σ1
· · · δρmσn]

(∂µ1
∂ν1π1) · · · (∂µm

∂νmπ1)(∂ρ1∂
σ1π2) · · · (∂ρn∂σnπ2) .

(2.6)

The equations of motion for the two scalar fields π1 and π2 are then

∑

0≤m+n≤4

am,nEm,n = −T and
∑

0≤m+n≤4

bm,nEm,n = 0 , (2.7)

where the coefficients am,n and bm,n can be expressed in terms of the parameters αm,n and

βm,n as

am,n = (m+ 1)(αm,n + βm+1,n−1) and bm,n = (n+ 1)(βm,n + αm−1,n+1) . (2.8)

3 Spherical symmetric backgrounds

In this subsection, we recapitulate the formalism needed to study the superluminality

of fluctuations about spherical symmetric solutions. For this we split every field into a

spherically symmetric background configuration π0(r) and a fluctuation δπ(t, ~r),

πn(t, ~r) = π0
n(r) + δπn(t, ~r) , ∀ n = 1, · · · , N , (3.1)

and introduce the N -dimensional fluctuation vector in field space,

δΠ(t, ~r) =







δπ1(t, ~r)
...

δπN (t, ~r)






. (3.2)

At quadratic order in the fluctuations, the Lagrangian can be written as

Lπ1,...,πN
=

1

2
∂tΠ .K . ∂tΠ− 1

2
∂rΠ .U . ∂rΠ− 1

2
∂ΩΠ .V . ∂ΩΠ . (3.3)

The kinetic matrix K and the two gradient matrices U and V are defined as follows:

K =

(

1 +
r

3
∂r

)

(Σ1 + 3Σ2 + 6Σ3 + 6Σ4) (3.4)

U = Σ1 + 2Σ2 + 2Σ3 (3.5)

V =

(

1 +
r

2
∂r

)

U , (3.6)
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where the Σ matrices depend on the spherically symmetric background configuration (and

are thus functions of r). In this language the nth matrix Σn encodes information about

the (n+ 1)th order Galileon interactions Ln+1,

Σn =







∂y1f
a1
n · · · ∂yN f

aN
n

...
. . .

...

∂y1f
a1
n · · · ∂yN f

aN
n






, (3.7)

with

fα
n (y1(r), · · · , yN (r)) =

n
∑

i=0

(α1′

i,n−i + αN ′

i,n−i)y
i
1(r) · · · yn−i

N (r) , (3.8)

and for each of the Galileon field, we define,

yn(r) =
∂rπ

0
n(r)

r
. (3.9)

In terms of the matrix U , the background equations of motion are given by

1

r2
∂r













r2U(π0(r)).∂r













π0
1(r)

π0
2(r)
...

π0
N (r)

























= −













T

0
...

0













. (3.10)

In particular for a point source of mass M = 4πm localized at the origin r = 0, we have

(Σ1 + 2Σ2(r) + 2Σ3(r)) .













y1(r)

y2(r)
...

yN (r)













=













m
r3

0
...

0













, (3.11)

where Σ1 is independent of yn and is thus simply a constant, Σ2 is linear in the yn and Σ3

is quadratic in the fields.

Notice that the expressions (3.4), (3.5), (3.6) for the matrices K, U and V in terms of

the Σn matrices are universal and do not depend on the number N of fields.

Focus on the Bi-Galileon. In the following we restrict our attention to the Bi-Galileon

since we will first focus on that case and then generalize our results to the Multi-Galileon

case. In the Bi-Galileon case, the matrices Σn are given explicitly as below:

Σn =

(

∂yf
a
n ∂yf

b
n

∂zf
a
n ∂zf

b
n

)

with fα
n =

n
∑

i=0

α′
i,n−iy

izn−i (3.12)

The functions y and z appearing in the coefficients fα
n are shortcuts for

y(r) =
1

r

∂π0
1

∂r
(3.13)

z(r) =
1

r

∂π0
2

∂r
, (3.14)
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such that the equations of motion for π0
1 and π0

2 become simply

fa
1 + 2(fa

2 + fa
3 ) =

m

r3
(3.15)

f b
1 + 2(f b

2 + f b
3) = 0 , (3.16)

where m = M/4π, and M is the mass of the point particle introduced at r = 0. More

explicitly, in terms of y and z the two equations of motion are given by

a10y + a01z + 2
(

a20y
2 + a11yz + a02z

2
)

+ 2
(

+a30y
3 + a21y

2z + a12yz
2 + a03z

3
)

=
m

r3
, (3.17)

a01y + b01z + 2
(a11

2
y2 + 2a02yz + b02z

2
)

+ 2
(

a21/3y
3 + a12y

2z + 3a03yz
2 + b03z

3
)

= 0 . (3.18)

In terms of the parameters aij and bij , the Σ1,2,3 matrices can then be expressed

respectively as

Σ1 =

(

a10 a01
a01 b01

)

, (3.19)

Σ2 =

(

2a20y + a11z a11y + 2a02z

a11y + 2a02z 2a02y + 2b02z

)

, (3.20)

Σ3 =

(

3a30y
2 + 2a21yz + a12z

2 3a03z
2 + 2a12zy + a21y

2

3a03z
2 + 2a12zy + a21y

2 3b03z
2 + 6a03zy + a12y

2

)

, (3.21)

in the Bi-Galileon case. To get these expressions we have used the fact that for m < n

we have the correspondences Em,n = En,m|π0

1
↔π0

2

. The exclusion of superluminal mode

propagation implies that the sound speed of both modes along both the radial and

orthoradial directions be less than or exactly equal to 1. The two sound speeds in the

radial direction are given by the eigenvalues of the matrix Mr = K−1U and the two

sound speeds along the orthoradial direction are given by the eigenvalues of the matrix

MΩ = K−1V . Therefore the condition for no superluminality is equivalent to requiring

that all the eigenvalues of both matrices Mr − I and MΩ − I be zero or negative (and

larger than −1), with I the identity matrix. In the following sections we study the behavior

of the system in two different regimes, in the large and short distance regimes and check

explicitly there always exists at least one superluminal mode in one direction.

4 Superluminalities at large distances

Let us start by summarizing the results find in this section:

• We first show that if at least one Cubic Galileon interaction is present2 i.e. if L3

does not vanish identically, then superluminal propagation is always present at large

2It can be an interaction involving just one of the N Galileon fields, or an interaction mixing different

Galileon fields together, the result remains unchanged.
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enough distances from a point source. The only way to bypass this conclusion is

to remove all the Cubic Galileon interactions for all N fields L3 ≡ 0, meaning that

any αn
m1,··· ,mN

with n = 1, · · · , N and m1 + · · ·+mN = 2 has to vanish exactly (for

example in the Bi-Galileon case, this implies a20 = a11 = a02 = b02 = 0). If the

coefficients are merely small, then one can always go to large enough distances where

the Cubic Galileon dominates over the Quartic and Quintic Galileon interactions.

• Nevertheless even if all the Cubic Galileon terms vanish L3 ≡ 0, we can still find

perfectly sensible static, spherically symmetric matter distributions around which

there are superluminalities due to the Quartic Galileon at large distances.

• As a consequence, we will see in this section that as soon as either a Cubic or a Quartic

Galileon interaction is present one can always construct a sensible matter distribution

which forces at least one of the N Galileon fields to propagate superluminaly in one

direction (either the radial or the orthoradial one).

We note that the Quintic Galileon interactions L5 always vanish at the background level

around static, spherically symmetric sources, independently of the number of fields, so

that if one tries to avoid the above conclusions by making both the Cubic and the Quartic

Galileon vanish, then there is no Vainshtein mechanism at all about these configurations.

4.1 Superluminalities from the Cubic Galileon

In the Multi-Galileon case, the background equations of motion for a point source at r = 0

are given in (3.11). At large distances,3 this simplify to

Σ1 .













y1(r)

y2(r)
...

yN (r)













=













m
r3

0
...

0













. (4.1)

Recalling that Σ1 is invertible and independent of the field (Σ1 is a constant), this implies

that to leading order at large distance about a point-source, the fields die off as r−1

y(r) ∼ r−3 +O(r−6) ⇒ π0(r) ∼ r−1 +O(r−4) , (4.2)

for at least one of the N fields, as expected from the Newtonian inverse square law which

should be valid at infinity. As a result, at large distances the Σ matrices behave as follows:

Σ1 = Σ̄1 (4.3)

Σ2 =
1

r3
Σ̄2 +O

(

r−6
)

(4.4)

3We assume throughout this manuscript trivial asymptotic conditions at infinity which implies that the

Galileon interactions ought to die out at large distances. The contributions from Σ1 are thus the leading

ones at large distances. Consistency of the theory requires that detΣ1 6= 0 (so that the theory does indeed

exhibit N degrees of freedom) and the matrix Σ1 is thus invertible.
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Σ3 =
1

r6
Σ̄3 +O(r−9) , (4.5)

where the ‘barred’ matrices Σ̄1,2,3 are independent of r.

As a direct result of this scaling, it is trivial to see that at large distances, the kinetic

and gradient matrices K, U and V are given by

K = Σ̄1 + 0 +O
(

1

r6

)

, (4.6)

U = Σ̄1 +
2

r3
Σ̄2 +O

(

1

r6

)

(4.7)

V = Σ̄1 −
1

r3
Σ̄2 +O

(

1

r6

)

. (4.8)

It is apparent that the perturbations at the order 1
r3

in the matrix K vanish while in

the matrices U and V they always come with the opposite sign, hence there is always a

superluminal direction at infinity. These results coincide with what is already known in

the case of one Galileon [16]. This is intrinsic to the 1
r3

behaviour at infinity and to the

presence of the Cubic Galileon, and is independent of the number of fields.

The only way to bypass this very general result is to require the matrix Σ̄2 to

vanish entirely, which could be for instance achieved by imposing all the Cubic Galileon

interactions to vanish.4 In particular, even if some eigenvalues of Σ̄2 vanish, the previous

result remains unchanged, as long as Σ̄2 has at least one non-vanishing eigenvalue which

would imply that the associated eigenmode in field space has a superluminal direction

(either a radial or an orthoradial one). Only if all the eigenvalues of Σ̄2 vanish can we

evade the previous argument, which can be accomplished by demanding all the coefficients

arising from the cubic Galileon interactions to vanish exactly, in other words if the next

to leading interactions arise from the Quartic Galileon.

In the very special case where Σ̄2 vanishes entirely (i.e. all its eigenvalues are identically

0), then the previous argument needs special care. The contribution from Σ̄3 implies that

(K−1U) and (K−1V) do not necessarily have opposite sign. In any Multi-Galileon theory one

can always tune the coefficients of L3 so that the matrix Σ̄2 vanishes identically and so the

r−3 scaling is not the leading order correction to U and V . For example, for the Bi-Galileon

if the parameters of the theory are carefully chosen so as to satisfy a20 = b02c
3, a11 = 2b02c

2

and a02 = b02c with c = a01/b01 then U and V vanish identically at O(r−3) for a pure point

source and the argument given above breaks down. However as soon as we consider an

extended source with energy density going as 1/r3−ǫ would revive Σ̄2 and the argument

would then again be the one above. So even for these special coefficients, there is a whole

classs of otherwise physically sensible solutions which exhibit superluminal propagation.

In section 5 we consider this case more closely in the Bi-Galileon scenario and find

that there is still always at least a superluminal mode for some range of r. For instance

4At large enough distances the Cubic Galileon would always dominate over the Quartic one (assuming

trivial asymptotic conditions at infinity), so imposing a hierarchy between the Cubic Galileon interactions

and the other ones is not sufficient to avoid superluminalities. All the Cubic interactions should be

completely absent.
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superluminalities unavoidably arise near the origin through the Quartic Galileon, unlike

what was claimed in [81]. But first we point out that one can very easily construct an

extended source for which superluminalities are present at large distance for the Quartic

Galileons just in the same way as they were for the Cubic ones.

4.2 Superluminalities from the Quartic Galileon about an extended source

When the Cubic Galileon is absent, the presence of superluminalities about a point-source

is more subtle to prove and will be done explicitly in the next section. Nevertheless,

even if the coefficients in the Cubic Galileon vanish, we can always find a background

configuration in which we can see superluminalities at large distances arise using the same

argument as for the Cubic Galileon. In particular we can consider a gas of particles with

a spatially varying density of the form

T = M0

(r0
r

)3/2
(4.9)

where r0 characterizes the scale over which the density varies and M0 controls the overall

strength of the density profile.5

In this case the asymptotic behavior of the background fields becomes

yn(r) =
Y

(1)
n

r3/2
+

Y
(2)
n

r9/2
+O

(

1

r15/2

)

, (4.10)

for all the fields n = 1, · · · , N , and we find once again using eq. (3.4) that to order O(r−3/2),

K vanishes and U and V have opposite signs, guaranteeing a superluminal direction.

This illustrates the basic reason we expect any theory that exhibits the Vainshtein

mechanism to inevitably contain superluminalities when considering trivial asymptotic

conditions. Every new source configuration gives rise to a new background Galileon

field configuration. Because the theory must be nonlinear in order to have a Vainshtein

mechanism, the fluctuations around this background will propagate on an effective metric

determined by the background. Since the sources are not constrained by the theory, we

are free to choose any source we like, and so we have a lot of freedom to change the

parameters in this background metric and create superluminalities.

5 Quartic Galileon about a point-source

In the previous section we have shown that superluminalities are ubiquitous in Galileon

models. No matter the number of field there is no possible choice of parameters that

can ever free the theory from superluminal propagation. The argument in the previous

section was completely generic an independent of the number of fields. It only required

the behaviour at large distances (when the non-linear Galileon interactions can be treated

perturbatively).

5This matter distribution can always be imagined for some arbitrarily large radius before being cut off.
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In what follows we show that even for a point source in the Quartic Bi-Galileon

model,6 superluminalities can never be avoided in a consistent model.7 This result is in

contradiction with previous results and examples in the literature, but upon presentation

of this following argument, the previous claims have been reconsidered.

The philosophy of the argument goes as follows: we analyze the model both at large

distances in the weak field limit and at short distances from the point source where

the quartic interactions dominate (as required by the existence of an active Vainshtein

mechanism). The requirement for stability (in particular the absence of ghost) sets some

conditions on the parameters of the theory. We then show that these conditions are

sufficient to imply the presence of superluminal modes near the source. We emphasize

that this result could not be obtained, should we just have focused on the near origin

behaviour without knowledge of the field stability at infinity.

5.1 Stability at large distances

To ensure the stability of the fields, the kinetic matrix K as well as the gradient matrices

U and V should be positive definite at any point r. At infinity in particular these three

conditions are equivalent and simply imply that the matrix Σ1 ought to be positive

definite. In the case of the Bi-Galileon, this implies

detΣ1 = a10b01 − a201 > 0 and Tr Σ1 = a10 + b01 > 0 . (5.1)

In terms of the coefficients of the quadratic terms, these two conditions imply

a10 > 0 and b01 >
a201
a10

> 0 . (5.2)

The behaviour of the fields at large distance from a point source localized at r = 0 is

determined by the coefficients of the quadratic terms, (or equivalently by Σ1),

y(r) =
Y1
r3

+O
(

1

r6

)

, with Y1 =
b01

detΣ1
m (5.3)

z(r) =
Z1

r3
+O

(

1

r6

)

, with Z1 =
−a01
detΣ1

m, (5.4)

and as expected, we recover a Newtonian inverse square law behavior for each mode at

infinity, namely ∂rπ
0
1 ∼ ∂rπ

0
2 ∼ r−2. At this stage it is worth to mention that the stability

condition (5.2) implies that Y1 > 0, which is consistent with the fact that the force

mediated by the one field π1 that coules to matter is attractive.

5.2 Short distance behavior

We now study the field fluctuations at small distances near the source (i.e. at leading

order in r, assuming we are well within the Vainshtein region). From the equations of

6I.e. we only consider two fields with mixing kinetic terms and Quartic Galileon interactions, but no

Cubic interactions.
7The only requirements are the absence of ghost, the presence of an active Vainshtein mechanism, and

trivial conditions at infinity.
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motion (3.17), (3.18) after setting the coefficients of the cubic Galileon to zero) near the

origin, we infer the following expansion

y(r) =
y1
r

+ y2r +O(r3) (5.5)

z(r) =
z1
r

+ z2r +O(r3) , (5.6)

with

a30y
3
1 + a21y

2
1z1 + a12y1z

2
1 + a03z

3
1 =

m

2
(5.7)

a21
3

y31 + a12y
2
1z1 + 3a03y1z

2
1 + b03z

3
1 = 0 . (5.8)

Note that the O(r0) terms vanish since the Cubic Galileon is not present.

Expanding Σ3 in powers of r, we have

Σ3 = Σ
(l)
3 +Σ

(nl)
3 + · · · = 1

r2
Σ̃
(l)
3 + Σ̃

(nl)
3 +O

(

r2
)

, (5.9)

where the leading order contribution to Σ3 is given by

Σ̃
(l)
3 =

(

3a30y
2
1 + 2a21y1z1 + a12z

2
1 3a03z

2
1 + 2a12y1z1 + a21y

2
1

3a03z
2
1 + 2a12y1z1 + a21y

2
1 3b03z

2
1 + 6a03y1z1 + a12y

2
1

)

. (5.10)

Solving the equation of motion (5.8) for b03 gives b03 = (−a21y
3−3a12y

2z−9a03yz
2)/(3z3).

Similarly solving the equation of motion (5.7) for a30 yields a30 = ((m − 8a21πr
3y2z −

8a12πr
3yz2 − 8a03πr

3z3)/(8πr3y3)). Using these expressions for b03, a30 and introducing

the combination B defined as follows:

B = 3a03z
2
1 + 2a12y1z1 + a21y

2
1 , (5.11)

we can then write Σ̃
(l)
3 simply as:

Σ̃
(l)
3 =

(

− z1
y1
B + 3m

2y1
B

B −y1B
z1

)

. (5.12)

5.3 Stability at short distances

As mentioned previously, me must ensure that the eigenvalues of K are strictly positive.

At small distances near the source, the matrix K can be expressed as

K =
2

r2
Σ̃
(l)
3 +O(1) . (5.13)

In terms of y1, z1 and B, the absence of ghost near the origin implies the following

conditions on the parameters

detΣ̃3 = −3

2

Bm
z1

> 0 (5.14)

TrΣ̃3 =
3mz1 − 2B(y21 + z21)

y1z1
> 0 , (5.15)

which are equivalent to

y1 > 0, and
B
z1

< 0 . (5.16)

We now use the stability conditions derives at both large and small distances to deduce

the behaviour of the radial sound speed in this model.
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5.4 Sound speed near the source

Similarly as we did at large distances, we can now compute the ‘radial sound speed’ matrix

Mr = K−1U near the origin,

Mr = I− 2r2(Σ̃
(l)
3 )−1Σ̃

(nl)
3 +O(r4) . (5.17)

We note that unlike the Cubic Galileon case described in more detail below, the leading

order behaviour of M is not manifestly superluminal. However, this is not enough to

guarantee the absence of superluminal modes, we must carefully check the sign of the small

O(r2) correction term before making any conclusions. A simple formulation for the matrix

Σ
(l)
3 is given in (5.12), and a similar expression for Σ

(nl)
3 can be found in an analogous way,

Σ̃
(nl)
3 =

(

−a10 − a01
z1
y1

− 2ζ z1
y1

2ζ

2ζ −b01 − a01
y1
z1

− 2ζ y1
z1

)

, (5.18)

with the notation:

ζ = a21y1y2 + a12y2z1 + a12y1z2 + 3a03z1z2 . (5.19)

This allows us to compute the radial sound speed:8

c2s± = 1 + r2(a′ ±
√
b′) +O(r4) , (5.20)

with a′ and b′ some coefficients that depend on y1, z1, B, m and (a, b)ij . So for both modes

to be subluminal along the radial direction, the following conditions should be satisfied:

a′ < 0, b′ > 0 and a′2 − b′ > 0 . (5.21)

However as we shall see, these are not consistent with the stability conditions established

previously.

The explicit form of the coefficients a′ and b′9 is given by:

a′ = − 1

3mBy1

(

3m(a01y1 + 2ζy1 + b01z1)− 2BD
)

(5.22)

a′2 − b′ = − 8

3mBy1

(

(a10y1 + a01z1)(a01y1 + b01z1) + 2ζD
)

, (5.23)

with the notation

D = a10y
2
1 + 2a01z1y1 + b01z

2
1 . (5.24)

We may re-express the quantity D as follows

D = a10y
2
1 + 2a01z1y1 + b01z

2
1 (5.25)

= a10

(

y1 +
a01
a10

z1

)2

+
z21
a10

(

a10b01 − a201
)

> 0 . (5.26)

8We need to work to O(r4) inside the square root to get this expression, because we need to square the

O(r2) corrections we have calculated. One might worry that the calculation we have done is not consistent

because we have not worked to O(r4), however one can check that the O(r4) corrections we have neglected

here cancel identically and do not contribute to c2s at the order we are interested in.
9It easy to check that b′ is always positive.
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Recall from the expression of the kinetic matrix K at infinity, that the following two

conditions should be satisfied, (5.1): a10 > 0 and
(

a10b01 − a201
)

> 0, which directly implies

that D is strictly positive. Knowing this, we check whether or not a′ < 0 and a′2 − b′ > 0

which if true, would imply that both modes are sub-luminal.

We start with the requirement that a′ < 0. This implies that 3m(a01y1+2ζy1+b01z1)−
2B(a10y21+2a01z1y1+b01z

2
1) has the same sign as B. Once this condition is satisfied, we check

the sign of a′2−b′ > 0. This quantity is positive only if F has the opposite sign as B, where

F = (a10y1 + a01z1)(a01y1 + b01z1) + 2ζD . (5.27)

In what follows, we will start by assuming that z1 is positive and show that in that case the

condition to avoid any super-luminal modes cannot be satisfied. The same remains true

if z1 is assumed to be negative. We can therefore conclude that the Quartic Bi-Galileon

interactions always produce a superluminal mode already in the configuration about a

point source.

We recall from eq. (5.16) that if z1 > 0, the absence of ghost-like modes near the origin

imposes the condition B < 0. Furthermore, knowing that D = a10y
2
1+2a01z1y1+b01z

2
1 > 0,

we can infer that a′ negative only if

a01y1 + 2ζy1 + b01z1 <
2BD
3m

< 0 . (5.28)

Then using the fact that D = a10y
2
1 + 2a01z1y1 + b01z

2
1 > 0, this implies (knowing

from (5.16) that y1 > 0):

a01y1 + 2ζy1 + b01z1 < 0 ⇒ ζ < −1

2

(

a01 + b01
z1
y1

)

. (5.29)

Finally to avoid any superluminal mode, the quantity a′2 − b′ should also be positive.

Since in this case B is negative, a′2 − b′ has the same sign as F , where

F = (a10y1 + a01z1)(a01y1 + b01z1) + 2ζD

< (a10y1 + a01z1)(a01y1 + b01z1)−
(

a01 + b01
z1
y1

)

D

< −z1
y1

(a01y1 + b01z1)
2 . (5.30)

Since y1 > 0 and z1 > 0 this implies that F < 0. Since a′2 − b′ has the same sign as F , we

can therefore conclude that if we assume z1 to be positive and a′ < 0, the quantity (a′2−b′)

will also be negative, or in other words, there is one superluminal mode. This argument was

made assuming z1 > 0, however it is straightforward to reproduce the same argument for

negative z1. If we choose for instance negative z1 (z1 < 0) then the condition coming from

the absence of ghost-like instabilities eq. (5.16) will require this time the opposite sign for

B, namely B > 0 and therefore F will be a positive number F < − z1
y1

(a01y1 + b01z1)
2 while

the expression (a′2 − b′) in eq. (5.23) will have the opposite sign to F and therefore again

there would not be any choice of coefficients (a, b)ij to make both modes (sub)luminal.

With this we have proven that there is no generic choice for the parameters aij and bij
near the origin which would prevent the propagation of superluminal modes.
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5.5 Special case of dominant first order corrections

In the previous section we proved that close to the source there is always one mode

which propagates superluminaly in a generic theory where only the Quartic Galileon is

present. However we made a technical assumption in eq. (5.17) that Σ̃
(l)
3 was invertible,

or equivalently that we did not make the special choice of parameters aij , b0i which gives

B = 0 (implying that the leading order pieces in Σ3 were strictly larger than the first order

corrections). However we could consider a specific choice for which some of the leading

order pieces of Σ3 vanish and the subleading pieces become dominant. Therefore in this

section we will examine this possible loophole more closely. We will find that even in this

case one always finds that a superluminal mode is present. When B = 0, Σ̃
(l)
3 takes the

following trivial form:

Σ̃
(l)
3 =

(

3m
2y1

0

0 0

)

. (5.31)

The stability of the theory now depends not only on the leading behavior of the kinetic K
and radial derivative U matrices, but also on the subleading behavior. In terms of the Σ

matrices, K and U take the following form

K = 2
Σ̃
(l)
3

r2
+Σ1 + 6Σ̃

(nl)
3 , U = 2

Σ̃3
(l)

r2
+Σ1 + 2Σ̃

(nl)
3 . (5.32)

The theory is stable only if K and U have positive eigenvalues, or in other words only if

the following quantities three quantities are positive:

y1 > 0,

λ2
1 ≡ − 3m

y1z21

(

6(a01 + 2ζ)y1z1 + 5b01z
2
1

)

> 0, (5.33)

λ2
2 ≡ − 3m

y1z21

(

2(a01 + 2ζ)y1z1 + b01z
2
1

)

> 0.

Now we construct again the radial speed of sound matrix Mr ≡ K−1U in this specific case

with B = 0. We can write the trace and determinant as

trMr =

(

1 +
λ2
2

λ2
1

)

+ r2τ +O(r4),

detMr =
λ2
2

λ2
1

+ r2δ +O(r4). (5.34)

where τ and δ are functions of the given parameters (however we will only need τ − δ as

shown below). The speed of sound is given by, to O(r2),

• If λ2
1 > λ2

2

c2± =







1 + r2
λ2

1

λ2

1
−λ2

2

(τ − δ),

λ2

2

λ2

1

− r2
λ2

1

λ2

1
−λ2

2

(τ − δ).
(5.35)

In this case we will have superluminal propagation if and only if τ − δ > 0. We show that

one always has τ − δ > 0 in this case by carefully making use of the stability constraints

in appendix A.
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• If λ2
1 < λ2

2

c2± =







λ2

2

λ2

1

+ r2
λ2

1

λ2

2
−λ2

1

(τ − δ),

1− r2
λ2

1

λ2

2
−λ2

1

(τ − δ).
(5.36)

Since λ2
1 < λ2

2, in this case superluminal propagation is guaranteed.

One might argue that this only guarantees superluminalitiy at the origin which is

inside the redressed strong coupling radius of the theory, where we can no longer trust the

results of the theory. However, we note that explicitly factoring out powers of M and Λ

that the speed of sound is given by

c2± =
λ2
2

λ2
1

+

(

r

rV

)2 λ2
1

λ2
2 − λ2

1

(τ̂ − δ̂), (5.37)

where rV ≡ (M/MPl)
1/3/Λ is the Vainshtein radius and where τ̂ and δ̂ are dimensionless.

Since rV > Λ−1, and since the redressed strong coupling radius is always smaller than

Λ−1, there is a range of r in which we can trust the theory and we can also trust the

leading order behavior of the speed of sound above.

6 Cubic Lagrangian near the source

Lets have a quick look into the contributions coming from a Cubic Bi-Galileon theory10

near the origin and study the superluminality. In the section 4.1 we had seen that the

existence of the Cubic Galileon guarantees superluminal propagation at infinity. Now lets

also see the effect of a pure Cubic Galileon term on short distances. We quickly recall the

equations of motion in the Cubic Galileon case near the origin here again:

2
(

a02z
2 + a11yz + a20y

2
)

=
m

r3
(6.1)

2

(

b02z
2 + 2a02yz +

1

2
a11y

2

)

= 0 . (6.2)

At short distance the fields then behave as

y(r) =
y1

r3/2
+ y2 +O(r3/2) , (6.3)

z(r) =
z1

r3/2
+ z2 +O(r3/2) . (6.4)

The leading order matrix Σ̃
(l)
2 can be expressed as follows (after use of the equations of

motion):

Σ̃
(l)
2 =

(

m
y1

− z1
y1
C C

C −y1
z1
C

)

. (6.5)

with the notation

C = a11y1 + 2a02z1 . (6.6)

10I.e. a Bi-Galileon theory where only the Cubic interactions are present.
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The stability condition in the short distance regime requires detK ≈ detΣ
(l)
2 > 0 and

TrK ≈ TrΣ̃
(l)
2 > 0:

TrΣ
(l)
2 =

m− Cz1
y1

> 0 (6.7)

detΣ
(l)
2 =

−mC
z1

> 0 . (6.8)

These conditions imply C
z1

< 0 and y1 > 0. After using the next-to-leading order equations

of motion to simplify the next-to-leading order matrix Σ̃
(nl)
2 , we find

Σ̃
(nl)
2 =

(

−a10
2 − a01

z1
2y1

− 2β z1
y1

2β

2β − b01
2 − a01y1

2z1
− 2β y1

z1

)

, (6.9)

with β ≡ a02z2 +
a11
2 y2.

Assuming Σ
(l)
2 is invertible (which is the case if there is at least one non-vanishing

Cubic Galieon interaction), the matrix Mr is given by

Mr = K−1U =

[

3

2

Σ
(l)
2

r3/2
+ (Σ1 + 3Σ

(nl)
2 )

]−1 [

2
Σ
(l)
2

r3/2
+ (Σ1 + 2Σ

(nl)
2 )

]

(6.10)

=
4

3
− 2

3
r3/2

[

Σ
(l)
2

]−1 [

Σ1 + 4Σ
(nl)
2

]

. (6.11)

This in turn implies that the Cubic Galileon also gives rise to superluminal propagation

near the origin. If on the other hand we consider the possible loophole with vanishing

determinant of the leading matrix Σ
(l)
2 (choosing parameters such C = 0) nothing changes.

The matrix Mr has still one eigenvalue going as 4/3 + O(r), and another eigenvalue

whose leading behavior depends on the signs and relative strengths of β and z1. But the

existence of one eigenvalue that is 4/3 at leading order is enough to prove the existence of

superluminalities in that regime as well.

7 Discussion

In this paper we have shown that Multi-Galileon theories inevitably contain superluminal

modes around some backgrounds, for any number of Galileon fields. At large distances

from a static point source, we have shown that if the Cubic Galileon is present (even if

its coefficients are very small), it will eventually dominate over the other Galileons and

lead to a superluminal mode. Even if no Cubic Galileon interactions are present (i.e. all

the Cubic Galileon coefficients are exactly zero), we find that there are simple, perfectly

valid matter distributions (such as a static gas of particles whose density falls of as r−3/2)

around which perturbations propagate superluminally.

We also considered the case studied in the journal version of ref. [81] of perturbations

around a static point source in the Bi-Galileon when only the Quartic Galileon is present.

By studying the speed of sound of perturbations close to the source, we find, in contradic-

tion to their original claims, that the presence of a superluminal mode cannot be avoided.
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This is a nontrivial result, which can only be seen by carefully taking into account the

constraints that stability at large distances places on the theory, and the interplay between

these conditions coming from infinity and the action for perturbations near the source. In

other words, this is not a local result which could have been derived from the knowledge

of the behaviour near the source only. We have also showed that there will always be

superluminal perturbations around a point source if only a Cubic Galileon is present.

Our results physically arise from the link between the Vainshtein mechanism and

superluminalities in typical Galileon theories. So long as one is considering theories

that are ghost-free, with trivial asymptotic conditions at infinity and avoid quantum

strong-coupling issues (fields with vanishing kinetic terms), these two effects are intimately

connected. One way to see this link is to note that the Vainshtein mechanism is inherently

nonlinear, and so the behavior of the perturbations depends strongly on the source

distribution present. Thus one expects to always be able to find backgrounds around

which there are superluminalities. However, the connection may be stronger than this:

as we have shown, even in the case of a static point source with only a Quartic Galileon

present, where the presence of superluminalities at large distances is not manifest, there

are still inevitably superluminalities close to the source.

We would like to emphasize however that the presence of superluminal modes is not

enough to conclude that Galileon theories are inconsistent. As discussed in greater detail

in ref. [74], the Galileons still have their own causal structure. The crucial issue is instead

whether or not closed time like curves can form. This would lead to violations of causality

and the theory would be inconsistent. However, a Chronology Protection Conjecture for

Galileon theories can be constructed, which states that it is impossible to form closed

timelike curves without requiring energies that push the theory beyond its regime of

validity. Further work could explore this conjecture in greater detail.

We believe that the superluminalities are a crucial feature of Galileon theories. As

shown in ref. [67], the presence of superluminalities around some backgrounds is ultimately

tied with the failure of the Galileon theory to have a Wilsonian completion. It would be

interesting to understand whether this aspect and the presence of a Vainshtein mechanism

could however be tied to theories which allow for an alternative to UV completion such as

classicalization, [82, 83, 85].

We conclude by reviewing the only known way (so far) to have a Vainshtein mechanism

and still avoid superluminalities. If the Galileon is not considered as a field in its own

right, but rather as a component of anther fully fledge theory, one needs not to impose

trivial asymptotic conditions at infinity. In massive gravity for instance, the Galileon

field that appears in its decoupling limit is not a fundamental field. In such setups, it is

then consistent to consider configurations for which the Galileon field does not vanish at

infinity, so long as the metric is well defined at infinity (which does not necessarily imply

Minkowski space-time). In such cases, we can thus have more freedom to fix the asymptotic

boundary conditions for the Galileon field. A specific realization has recently been found11

11In a single Galileon realization. Notice that the presence of multiple Galileon fields would not be

relevant there.
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in [47], where the asymptotic behaviour is non trivial and the metric asymptotes to a

cosmological one at large distances. These results do rely on the existence of a non-trivial

coupling to matter of the form ∂µπ∂νπT
µν which naturally arises in Massive Gravity, [61].

When such non-trivial asymptotics conditions are considered, the results derived in this

work are no longer valid and open the door for a way to find configurations which do

exhibit the Vainshtein mechanism without necessarily propagating a superluminal mode

around these configurations. Future work should consider the role of boundary conditions

in the selection of viable configurations.

Comments. Part of this work was been derived as Paul de Fromont’s Master thesis in

the summer of 2011 and was presented in ref. [84].

As a result to this work, the example and conclusions originally presented in ref. [81]

have been corrected, and a new arXiv version of [81] has been submitted, taking into

account and summarizing the new analysis performed here.

The results presented in this work are in agreement with that of ref. [86]. Whilst the

methods used in [86] are different, they reach the same basic conclusion that the combi-

nation of an active Vainshtein mechanism, a lack of ghost at infinity, and trivial boundary

conditions at infinity inevitably lead to superluminalities in Multi-Galileon theories.
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A Detailed analysis of the special case in the Quartic Galileon: dominant

first order corrections

In this section of the appendix we will show that τ − δ > 0 when λ2
1 > λ2

2.

We can write τ − δ as

τ − δ =
6b01m

λ4
1y1

(1− α)×
[

1

8(3α− 1)2

(

a10b01 − 2
3α− 1

5α− 1
a201

)

+
2

(1− α)(5α− 1)
ζ2 − 1

(5α− 1)(3α− 1)
ζa01

]

. (A.1)

We also use the notation λ2
2 = αλ2

1. Note that since y1, b01 > 0 we must have 3λ2
2 > λ2

1.

Thus we have 1/3 < α < 1, the upper bound comes from our assumption that λ2
1 > λ2

2.

Now the first term in the brackets of the expression τ − δ has the same sign as

a01b01 − ǫa201 , (A.2)

with 0 < ǫ < 1. This is positive because in order to avoid ghost instabilities at large

distances from the source a10b01 − a201 > 0 and a10, b01 > 0, (see equation (5.1)).
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Meanwhile, the second term in the brackets is manifestly positive. Finally, the third term

has the sign of −ζa01.

So at this point our only hope of avoiding superluminalities is to consider a choice of

parameters where−ζa01 < 0. Now we will proceed to show that τ−δ > 0 in this case as well.

Note that in the limit α → 1 with everything else fixed we have

τ − δ −→ 3b01mζ2

λ4
1y1

> 0 . (A.3)

Also in the limit α → 1/3 with everything else fixed we have

τ − δ −→ a10b
2
01m

2λ4
1y1

1

(1− 3α)2
> 0 . (A.4)

Now consider the function

σ(α) = 8(1− α)(5α− 1)(3α− 1)2

[

1

8(3α− 1)2

(

a10b01 − 2
3α− 1

5α− 1
a201

)

+
2

(1− α)(5α− 1)
ζ2 − 1

(5α− 1)(3α− 1)
ζa01

]

. (A.5)

We can write this function in the shortened notation as σ(α) = σ0 + σ1α+ σ2α
2 with

σ0 = 2a201 − a10b01 + 8a01ζ + 16ζ2 (A.6)

σ1 = −8a201 + 6a10b01 − 32a01ζ − 96ζ2 (A.7)

σ2 = 6a201 − 5a10b01 + 24a01ζ + 144ζ2 . (A.8)

The sign of σ(α) is the same as the sign of τ − δ in the regime 1/3 < α < 1. Note that

σ(1/3), σ(1) > 0 using the limits above.

Note that σ0, σ1, σ2 do not have a definite sign, because a01ζ, ζ
2 > 0, but a201−a10b01 <

0. Therefore we need to investigate the behaviour of this function σ(α) in more detail.

Being a quadratic function σ(α) has a single critical point (either corresponding

to a maximum or a minimum) αcrit. Given that σ(1/3), σ(1) > 0, we can avoid

superluminalities if and only if 1/3 < αcrit < 1 and simultaneously σ(αcrit) < 0.

Computing dσ(α)
dα = 0 yields for the critical point αcrit

αcrit = − σ1
2σ2

=
4a201 − 3a10b01 + 16a01ζ + 48ζ2

σ2
. (A.9)

Plugging this back into the expression for σ(αcrit) gives the following expression

σ(αcrit) = 4(a10b01 − a201)
a201 + 8a01ζ + 16ζ2 − a10b01

σ2
. (A.10)

It is useful to consider

1− αcrit = 2
a201 + 4a01ζ + 48ζ2 − a10b01

σ2
. (A.11)
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If αcrit < 1 then this is positive. Similarly

αcrit −
1

3
=

1

3

6a201 + 24a01ζ − 4a10b01
σ2

. (A.12)

If αcrit > 1/3 then this is positive.12

We will now show that we cannot simultaneously satisfy all the criteria that we need to

satisfy to avoid superluminalities. We consider four cases which will exhaust all possibilities:

Case 1: σ2 = 0. In this case we have

σ(α) = σ0 + σ1α

Since σ(1/3), σ(1) > 0 we know that σ(α) > 0 in the whole interval 1/3 < α < 1.

Case 2: σ2 < 0. Consider σ(αcrit). If we assume that σ2 is negative, then we can avoid

superluminalities if and only if the numerator of σ(αcrit) is positive.

However the condition that σ2 is negative means that a01b01 >
6
5a

2
01 +

24
5 a01ζ +

144
5 ζ2,

which implies that

num of σ(αcrit) = a201 + 8a01ζ + 16ζ2 − a10b01 < −1

5
(a01 − 8ζ)2 . (A.13)

So we cannot avoid superluminalities in this case either.

Case 3: σ2 > 0, ζ > 0. Again we consider σ(αcrit). We now assume that σ2 is positive,

so we need to check if numerator of σ(αcrit) can be negative if we also assume that αcrit < 1,

ie a10b01 < a201 + 4a01ζ + 48ζ2, and also that αcrit > 1/3, ie a01b01 <
3
2a

2
01 + 6a01ζ.

The inequality αcrit < 1 tells us that

num of σ(αcrit) = a201 + 8a01ζ + 16ζ2 − a10b01 > 4a01ζ − 32ζ2 = 4ζ(a01 − 8ζ) (A.14)

and the inequality αcrit > 1/3 tells us that

num of σ(αcrit) = a201 + 8a01ζ + 16ζ2 − a10b01 > −1

2
a201 + 2a01ζ + 16ζ2 (A.15)

Now let’s take ζ > 0. The first inequality then implies we need a01 − 8ζ < 0 to avoid

superluminalities. So we set a01 = 8ζǫ for 0 < ǫ < 1 (if ǫ < 0 then −a01ζ > 0). Then the

second inequality becomes

num > 16ζ2(1 + ǫ− 2ǫ2) = 16ζ2(1− ǫ)(1 + 2ǫ) > 0 (A.16)

So also in this case we are forced to have superluminalities.

12When we write num of σ(αcrit), we mean a2

01 + 8a01ζ + 16ζ2 − a10b01 by that, ie we are ignoring the

uninteresting factor of 4(a10b01 − a2

01) > 0.
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Case 4: σ2 > 0, ζ < 0. Now we take ζ < 0. The first inequality then implies we need

a01 − 8ζ > 0 to avoid superluminalties. However note that both a01 and ζ are negative.

So we set a01 = 8ζǫ for 0 < ǫ < 1. Then the argument is exactly the same as above,

and that concludes our set of possibilities. In conclusion there is no possible way to avoid

superluminalities near the origin, even if one had been so lucky as to live in a theory with

specifically tuned coefficients for which the first order corrections near the origin vanished.

Our result is thus generic: superluminalities are always present near the origin if the field

is to be trivial at infinity and stable both at small and large distances.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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