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An Interpretation of Completeness and 
Basu's Theorem 

E. L. LEHMANN* 

In order to obtain a statistical interpretation of complete
ness of a sufficient statistic T, an attempt is made to 
characterize this property as equivalent to the condition 
that all ancillary statistics are independent ofT. For tech
nical reasons, this characterization is not correct, but two 
correct versions are obtained in Section 3 by modifying 
either the definition of ancillarity or of completeness. The 
light this throws on the meaning of completeness is dis
cussed in Section 4. Finally, Section 5 reviews some of 
the difficulties encountered in models that lack 
completeness. 
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1. INTRODUCTION 

Let X be a random observable distributed according 
to a distribution from the family'!/' = {P9 , 8 E !1}. Recall 
the following definitions. 

A statistic V = V(X) is ancillary if its distribution does 
not depend on 8. 

A statistic T = T(X) is sufficient if the conditional dis
tribution of X given T does not depend on 8. 

These two concepts are complementary. If the rest of 
the data is discarded, a sufficient statistic by itself retains 
all the information about 8 contained in the data; an an
cillary statistic by itself contains no information about 8. 

Since sufficiency reduces the data without loss of in
formation, a sufficient statistic is of greatest interest when 
it is minimal, that is, when it provides the greatest re
duction of the data. Formally, a sufficient statistic is 
minimal if it is a function of every other sufficient statis
tic . Although exceptions are possible (Landers and Rogge 
1972; Pitcher 1975), minimal sufficient statistics typically 
exist and are easy to construct (Bahadur 1954; Lehmann 
and Scheffe 1950). 

A sufficient statistic T is complete if 

Eaf<n = 0 for all 8 ~ f(t) = 0 (a.e .'!/' ), (1 .1) 

and is boundedly complete if (1.1) holds for all bounded 
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f. A necessary condition for T to be complete or bound
edly complete is that it is minimal. 

The properties of minimality and completeness are of 
a rather different nature. Under mild assumptions a min
imal sufficient statistic exists and whether or not T is 
minimal then depends on the choice of T. On the other 
hand, existence of a complete sufficient statistic is equiv
alent to the completeness of the minimal sufficient sta
tistic, and hence is a property of the model '!/' . We shall 
say that a model is complete if its minimal sufficient sta
tistic is complete. 

It has been pointed out in the literature that definition 
(1.1) is purely technical and does not suggest a direct 
statistical interpretation. Since various aspects of statis
tical inference become particularly simple for complete 
models, one would expect this concept to carry statistical 
meaning. It is the principal aim of this article to attempt 
a statistical characterization of models which are com
plete or boundedly complete. In the last section, we shall 
briefly survey some of the difficulties presented by in
complete models . 

2. AN EXAMPLE AND BASU'S THEOREM 

In order to get some insight into the problem, consider 
the following example. 

Example 1. Let X1 , • • • , X" be iid with density f(x1 

- 8), and contrast what happens when f is normal, ex
ponential, or uniform on the one hand, and in most other 
cases, for example, when f is logistic, Cauchy, or double 
exponential on the other. In the fitst type of situation the 
data can be reduced without loss of information to a small 
number of sufficient statistics: one for the normal (Xl and 
exponential (X(t~l . and two for ·the uniform (Xm . X,.,). 
wbere Xo> < .. . < X<n> denote the order statistics. In the 
second type of situation, the set of n order statistics is 
minimal sufficient. (Intermediate cases are of course pos
sible, as is seen, for example, by considering f(x - 8) 
= Ce - <x - a>".) 

As will be seen later, this difference is reiated to the 
following property of the ancillary information. In any 
location problem, then - I differences Y1 = X<n> - X(i> 
(i = I, . .. , n - I) constitute an (n - I)-dimensional 
ancillary statistic. In the normal and exponential cases, 
the Y's are independent of the minimal sufficient statistic 
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and hence carry no information about a either by them
selves or in conjunction with the minimal sufficient sta
tistic. On the other hand, when the n order statistics are 
minimal, the differences Y1-although still ancillary-are 
functions of the minimal sufficient statistic. Thus, suffi
ciency has not been successful in squeezing out the an
cillary material. By themselves, the Y's carry no infor
mation but in conjunction with the rest of the data they 
do. 

The uniform case is intermediate. Here the Y's are not 
independent of the minimal sufficient statistic, but the 
ratios Z1 = Y;/Y1 (i = 2, ... , n - I) are. If we represent 
the ordered sample by 

(![X(I) X XtnJJ, Y, = X<nJ - Xtth Z2, .. . , Zn - tl 

we see that the minimal sufficient statistic T = (X (I), X1nJl 
has pushed out then - 2 Z's, which carry no information 
by themselves or in conjunction with the rest of the data, 
but not Y1 • 

Note that the minimal sufficient statistic is complete 
in the normal and exponential cases, but not in the other 
four cases. This suggests that completeness of a minimal 
sufficient statistic T may be associated with the ability 
of T completely to rid itself of the ancillary part of the 
data by making it independent ofT. As a further illustra
tion of this idea, consider a sample from a uniform dis
tribution on (a,, a2) where now both a's are unknown. 
The minimal sufficient statistic continues to beT= (X(l), 
X<nJl· However, Y1 is no longer ancillary, although the 
Z's continue to be so. In the present case, T is more 
successful in discarding ancillary material than it Was in 
the one-parameter case, and T is now complete. 

These comments are closely related to a theorem of 
Basu (1955, 1958), which states that when a sufficient 
statistic T is boundedly complete, then all ancillary sta
tistics are independent of T. This would provide the de
sired characterization of complete models as those in 
which the minimal sufficient statistic is completely suc
cessful in discarding all ancillary material, if the converse 
were also true, that is, if the independence of all ancillary 
statistics from a sufficient statistic implied that T were 
boundedly complete. Unfortunately this is not correct 
(see Sec. 3, Ex. 2) but it contains a germ of truth. 

3. SOME ADAPTATIONS OF BASU'S THEOREM 

The converse of Basu's theorem fails because ancil
larity is concerned with the whole distribution of a sta
tistic, while completeness is a property dealing only with 
expectation . We shall now show that correct versions of 
the converse can be obtained by replacing either ancil
larity with the corresponding first-order property or com
pleteness with a condition reflecting the whole distribution. 

Let us call a real-valued statistic V = V(X) first-order 
ancillary if £ 8 (V) is independent of a. (A first-order an
cillary is simply an unbiased estimator of zero plus a 
constant.).Then we have the following first-order version 
of Basu's theorem. 
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Theorem 1. A necessary and sufficient condition for a 
sufficient statistic T to be boundedly complete is that 
every bounded first-order ancillary Vis uncorrelated (for 
all a) with every bounded real-valued function of T. 

The proof is based on the following characterization 
of all bounded, unbiased estimators of zero. 

Lemma 1. If a sufficient statistic Tis boundedly com
plete, then a bounded statistic S = S(X) is an unbiased 
estimator of zero if and only if (im 

1](t) = E[S I t] = 0 (a.e. <!J>T) . (3.1) 

(Here (a. e. ~r) means: except on a set N of values ofT, 
which has probability zero for all a.) 

Proof of Lemma 1. If S is an unbiased estimator of 
zero, then E(S) = £[1](7)] = Ofor all a, and (3. l)follows 
from completeness. Conversely, if (3.1) holds, taking the 
expectation of both sides shows S to be an unbiased es
timator of zero. 

Proof of Theorem 1. (a) Necessity. Suppose that T is 
boundedly complete and that V is a bounded first-order 
ancillary. Without loss of generality suppose that E(V) 
= 0. Then for any bounded f(t) we have 

cov6(f(T), V) = Ealf(T) V] = EaoJ!(T) 

where IJ!(t) = f(t)E[V It]. By the lemma, E[V It] and 
therefore IJ!(t) is zero (a.e. fiJ>T) and hence cov6 (f(T), V) 
= 0 for all a. 

(b) Sufficiency. If Tis not boundedly complete, there 
exists a bounded function f such that E6 f(1) = 0 for all 
a but f(T) * 0 with positive probability for some 9o. Put 
V(X) = f(T). Then cova.(V, f(T)) = Ea.!f2(T)] > 0, and 
this proves the condition to be sufficient. 

The analogous result holds for completeness instead 
of bounded completeness if attention is restricted to sta
tistics with finite variance. 

Instead of modifying the definition of ancillarity to ob
tain a converse of Basu's theorem, one can instead mod
ify the definition of completenes~. Quite generally, call 
a sufficient statistic :Y'-complete if Eef( 1) = 0 for all a 
and f E :Y' implies f(t) = 0 (a.e. ~T) where :Y' is some 
given class of real-valued functions. Completeness and 
bounded completeness correspond respectively to the 
case that F is the class of all integrable or all bounded 
functions. The case that it is the class of all square in
tegrable functions is relevant for the analog of Theorem 
I mentioned following the proof of that theorem. 

If Fa is the class of all two-valued functions, we have 
the following result, which provides a partial converse 
of Basu's theorem. 

Theorem 2. If 

Every ancillary statistic is independent ofT, (3 .2) 

then Tis Fa-complete. 
Proof Suppose Tis not Fa-complete. Then there exists 

a two-valued function f such that Eof(T) = 0 for all a, 
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but f is not zero with probability one. Let f(t) = -a 
when t E A and f(t) = b otherwise. Then P0 (T E A) 
= b/(a + b) is independent of 8 so that the indicator of 
A. IA(T) , is an ancillary . This provides a contradiction . 

Basu's theorem , together with Theorem 2, shows that 

Bounded completeness ~ (3.2) ~ F0 -completeness. 

(3 .3) 

That neither of these implications holds in the other 
direction is shown by the following example. 

Example 2. Let X be distributed as 

- 5 -4 -3 -2 - 1 I 2 3 4 5 
a 'pzq a'pq2 !pl !ql 'Y'pq 'YPq !ql !pl apq2 ap2q 

where the first row lists the values X takes on and the 
second row their probabilities and where a, 'Y · a', 'Y' are 
positive constants satisfying 

a + 'Y =a' + 'Y ' = f . 

!I is easy to check the following facts. 

If 0 < p < I, q = I - p, the probabilities add up 
to l. 

II T = I X I is minimal sufficient. 
III P(X > 0) = ! so that the indicator V of the set 

{X > 0} is an ancillary statistic . 
IV If a * a ', Vis not independent ofT, so that (3 .2) 

does not hold . 
V To see that Tis F0 -complete, note that Ef(T) = 

0 iff 

f(l)b + 'Y']pq + f(2}q 3 + f(3)p 3 

+ (a + a')[f(4)pq2 + f(5)p 2 q] = 0. 

This holds for all 0 < p < I iff 

f(2) = f(3) = 0, f(l) = a, 

f(4) = f(5) = - 'I + 'Y' a 
a+ a ' 

(3.4) 

for some a. Since no two-valued f can satisfy (3.4), Tis 
F0-complete . 

It now follows from (IV) that F0-completeness does 
not imply (3 .2). Also, since (3.4) shows Tnot to be bound
edly complete; F0 -completeness does not imply bounded 
completeness. 

That (3 .2) does not imply bounded completeness can 
be seen from any example without bounded completeness 
in which no ancillary statistic exists and (3 .2) therefore 
holds vacuously . A less trivial example is obtained by 
puting a = a', 'Y = 'Y ' in Example 2. The totality of 
ancillary statistics is then obtained by selecting any of 
the 5 sign combinations ±I, ±2, ±3, ±4, ±5, for ex
ample + I, - 2, - 3, + 4, -5 and setting 

V( + I)= V( -2) = V( -3) = V(4) = V( -5) =I (3 .5) 

V(-1) = V(+2) = V(+3) = V(-4) = V(5} = 0 . 

For any such V, P(V = I) = P(V = 0) = ! and Vis 
independent ofT, so that (3.2) holds. On the other hand, 
T has been seen not to be boundedly complete. 

That F0 -completeness is a very weak (and somewhat 
unnatural) condition is indicated by the fact that a suf
ficient statistic can be F0 -complete with being minimal. 
As a simple example, suppose that X and Y are inde
pendent Poisson variables with E(X) = E( Y) = }l. Then 
T = X + Y is minimal sufficient and complete, but (X, 
Y) is F0 -complete. This follows from the facts that the 
conditional distribution of X given X + Y = t is the 
binomial distribution b(l. /) and that for no constant c 
does there exist a nontrivial two-valued function f(x, y) 
such that E[f(X, Y) I t) = c for all 1. 

Example 2, together with (3.3), shows that bounded 
completeness is a stronger condition than (3.2) while F0 -

completeness is not strong enough. It is interesting that 
there exists an intermediate· completeness condition 
whiCh is exactly equivalent to (3 .2) . Although the con
dition is rather intractable and not likely to be of much 
use, we give it here for the sake of completeness. 

Let F, be the class of all functions f(t ) which are the 
conditional expectation of a two-valued function of X 
given t. If X = T, then F 1 reduces to F0 • 

Theorem 3. Condition (3.2) is necessary and. sufficient 
forT to be F 1-complete in the model '!P. 

Proof (a) Suppose T is F 1-complete with respect to 
'1P and that Vis an ancillary statistic. Then for any set A , 
the probability P(V E A) = pis independent of 8, and 
g( V) = /A ( V) - p is both a two-valued function of X and 
an unbiased estimator of zero. If f(t) = E[g( V) I t) , it 
follows as in the proof of Theorem l(a} that E0 f(T} = 0 
for all 8. Since f E F 1, this implies 

f(t) = P[V E A I 1) - p = 0 a.e. 

and hence the independence of V and r . 
(b) Conversely, suppose that Tis not F 1-complete, so 

that there exists f E F, which is not 0 a .e . but such that 
Eof(T) = 0 for all 8. Let g be a nontrivial two-valued 
function of X for which E[g(X} I 1) = f(t), say g(x} = a 
if x E A and g(x) = b otherwise. Then Eog(X) = 0, the 
indicator V of A is an ancillary statistic as in the proof 
of Theorem 2, but by the assumption about f, Vis not 
independent of T. 

4. INTERPRETATION OF COMPLETENESS 

Ancillary statistics by themselves have no value for 
estimating 8 and the same is likely to be true of first-order 
ancillaries (since their expectation is. independent of 8), 
although statistics with either property may be valuable 
when used in conjunction with other statistics. The re
sults of the preceding section can be summarized roughly 
by saying that the various forms of completeness of a 
sufficient statistics T characterize the success of T in 
separating the informative part of the data from that part 
which by itself carries no (or little) information . 
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Basu's theorem explains how a complete sufficient sta
tistic achieves this separation. It does this by making the 
ancillary part of the data independent of (or uncorrelated 
with) T. For the technical reasons mentioned in Section 
2, this interpretation of completeness is not as clear-cut 
as one might like. Roughly speaking, however, a suffi
cient statistic T is complete if it contains no ancillary 
information or equivalently if all ancillary information is 
independent of (or at least uncorrelated with) T. 

The idea that it is the lack of correlation between first
order ancillaries and functions of T that makes complete 
sufficient statistics so effective as a noise-free distillation 
of the data finds some support in a theorem of Lehmann 
and Scheffe (1950) and Rao (1952). Suppose Tis not com
plete, and consider the functions f(T) which are uncor
related with all first-order ancillaries (all functions being 
assumed to be square integrable). One might then expect 
these f's (though not sufficient) to be particularly effec
tive estimators . The theorem in question states in part 
that these functions are the only unbiased estimators with 
uniformly minimum variance (UMVU). 

Unfortunately , it turns out that in many common prob
lems there are no functions f for which the above prop
erty holds. For example, when X 1 , • • • , Xn are iid ac
cording to the uniform distribution on (0 - !, 0 + t), it 
was shown by Lehmann and Scheffe (1950, I956) that no 
funct ion of 0 has a UMVU estimator. One might expect 
this property to hold fairly generally in location problems 
with incomplete minimal sufficient statistic. (For some 
partial results in this direction see Bondessen I975.) 
The corresponding result was proved by Unni (1978) for 
the case that X 1 , • • • , X" is a sample from the normal 
distribution N(rcr, cr2 ), r = known, and for the Behrens
Fisher problem (i .e. , the case of samples from two normal 
distributions N(~. cr 2), N(~, T 2) with unknown variances 
and common unknown mean .) Examples in which the 
minimal sufficient statistic is not complete but in which 
some parametric functions have UMVU estimators can 
of course be constructed (see for instance Ex . 5.2 of 
Lehmann and Scheffe I950), but even then the dimension 
of the space of such functions is typicalry quite low. 

5. ANCILLARY STATISTICS AND THE PRINCIPLE OF 
CONDITIONALITY 

When a model is not complete, the minimal sufficient 
statistic will contain ancillary or at least first-order an
cillary statistics, and as a result its dimension will typi
cally be larger than that of the parameter space . The 
question then arises as to how to use the ancillary infor
mation to effect a further reduction of the data in order 
to facilitate the inference problem. Little is known about 
ways of utilizing first-order ancillaries (the theorems by 
Lehmann and Scheffe. and by Rao mentioned in Section 
4 can be viewed as a contribution in this direction) but 
there is considerable literature on the use of ancillary 
statistics . The ideas were first put forward by R.A. Fisher 
(1934 , I935) and an excellent discussion of the issues can 
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be found in Cox and Hinkley (1974). Many additional 
results are given by Barndorff-Nielsen (1978). As a brief 
introduction to the subject, we shall here discuss a few 
examples. 

Example 3. (a) In the standard introductory example, 
which is implicit in the writing of Fisher, the natural an
cillary statistic is the sample size. To be specific , let N 
be a random variable taking on values I, 2, . .. with 
known probabilities 'IT,, 'IT2, • • . . Having observed N 
= n, we perform n binomial trials with success proba
bility p and let Sn be the number of successes in these 
trials . For the observation X = (N, SN), X is minimal 
sufficient and N is ancillary. 

The natural estimator SNIN of p is unbiased and has 
variance pq E(l/ N). It is, however, not clear that this is 
the appropriate measure of accuracy for the following 
reason . The most striking feature of the example is that 
N, while not providing any information about p, tells us 
how much information about p is contained in SN· If the 
observed value n of N is large, SN is highly informative; 
for small n it carries little information. For this reason 
it may be better to cite as measure of accuracy the con
ditional variance pq/n as appropriate in those cases in 
which n has been obtained. 

If this argument is accepted, not only the variance but 
the whole problem should be viewed conditionally. This 
includes in particular the choice of estimate which in the 
present case would remain unchanged but in others might 
not. From this point of view, conditioning on N has the 
advantage of reducing the random part of the data from 
(N, SN) to the simple one-dimensional statistic Sn . Since 
S" is complete, the conditional model is complete, there 
exist UMVU estimators for p and pq/n , and so on. 

(b) Example (a) may seem artificial (although very 
similar situations arise in sampling from finite popula
tions) but some of its principal features are in fact quite 
typical. Consider for instance once more the location 
problem of Example I . Here the differences Y, provide 
the ancillary information which i,') analogous to N, and 
typically give an indication of the dispersion of the con
ditional distribution of an estimator of 0 such as the mean 
or median. This is particuarly clear in the case of the 
uniform distribution. The minimal sufficient statistic can 
then be represented as (Z, Y) with Z = ![X (I) + X1n>l and 
Y = X<n> - X(l). The conditional distribution of Z, given 
Y = y, is the uniform distribution on (0 - i(l - y), 0 
+ !(I - y)). Thus Y again measures the amount of in
formation Z contains about 0 and it is natural to restrict 
attention to the conditional distribution of Z given Y. In 
this case even the conditional model is not complete. 
(Additional ancillaries exist but are rather unsatisfactory. 
See Basu I964, Sec. 4.) 

(c) As a last illustration consider the ancillary statistic 
V = I{x > 0} of Ex. 2. The probabilities of the conditional 
distribution of X given V = I are 

I 2 3 4 5 
(3 - 2a)pq, q3 , p 3 , 2apq2 , 2apq2 • 

(5.1) 
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Given V = 0, they are the corresponding values with a 
replaced by a'. It is easy to see that an experiment with 
outcome probabilities (5. I) is more informative than the 
corresponding experiment with a ' when a > a'. (The 
reason is that the events with probabilities 2a.pq2 and 
2apq2 can be split at random into four events with prob
abilities 2a'pq 2 , 2a'p 2q, 2(a - a')pq2 , 2(a - a')p 2 q. 
The latter two have a combined probability of 2(a -
ex' )pq, which can be combined with (3 - 2cx)pq to yield 
an event with probability (3 - 2cx')pq. Thus, from the 
a-experiment and a table of random numbers one can 
generate the a' -experiment but not vice versa .) 

The above considerations suggest the conditionality 
principle, first proposed by Fisher (1935, 1936, 1956) and 
investigated as a fundamental principle by Birnbaum 
(1962): in the presence of an ancillary statistic V, statis
tical inference should be carried out not in the overall 
model but in the conditional model given V. 

Apart from possible reservations which one may have 
about the principle itself, difficulties in implementing it 
arise from the fact that ancillary statistics are not unique. 
In Example 3(b), for instance, L (X, -X? is ancillary, 
as is L I X, - X I or any other function of the differences. 
To avoid this difficulty it is tempting, in analogy with the 
definition of a minimal sufficient statistic, to call an an
cillary statistic V maximal if every other ancillary statistic 
is a function of V. One would then condition on this 
maximal V, thereby carrying the conditioning process as 
far as possible. 

Unfortunately, a maximal V in this strong sense often 
does not exist. Basu (1964) has therefore introduced a 
weaker concept and has defined V as maximal if there 
exists no ancillary statistic V' of which V is a function. 
Such maximal ancillaries, however, frequently are not 
unique. In searching for a way out of the difficulty, it is 
helpful to recall the motivation for conditioning which 
was given in the comments after Example 3, and which 
was stated by Fisher (1935, p. 48) as follows: "Ancillary 
statistics are only useful when different samples of the 
same size can supply different amounts of information, 
and serve to distinguish those which supply more from 
those which supply less." 

Fisher's statement leads to the idea that the better an 
ancillary statistic is, in distinguishing the more informa
tive samples from those that are less so, the more useful 
it is as a conditioning variable. An implementation of this 
criterion for choosing an ancillary has been provided by 
Cox (1971), who compares different ancillaries V in terms 
of the variance of the Fisher information of the condi
tional distribution of X given V. An ancillary V is pre
ferred to V' if it has the larger such variance for all pa
rameter values. Such a principle will resolve the choice 
of ancillary in many cases although it may of course turn 
out that it leads to different choices for different param
eter values. 

If X = ( Y, V), where V is ancillary, conditioning on 
V can be thought of as data .reduction obtained by re
placing the random quantity V by a· known constant v, 

so that part of the randomness of the data is eliminated. 
It frequently happens that the conditional model for Y 
given v is complete, in which case conditioning is partic
ularly rewarding. It is interesting to note that in this latter 
case the ancillary V is essentially maximal in the sense 
of Basu (1959) . This result (to which we hope to return 
in a later paper) presents a considerable strengthening of 
Theorem 7 of Basu (1959). 

In summary it is seen that models involving ancillaries 
contained in the minimal sufficient statistic are more dif
ficult to analyze than complete models. Even in so rel
atively simple a situation as that of Example I, no general 
agreement has been reached whether to assess the ac
curacy .of the best estimator of a (the Pitman estimator) 
conditionally or unconditionally. The situation becomes 
even more complicated when nuisance parameters are 
present, a possibility we have not considered here. 

Commenting on his efforts to develop a satisfactory 
small-sample theory of estimation, Fisher wrote in 1956 
(pp. 157 and 158): "The most important step which has 
been taken so far to complete the structure of the theory 
of estimation is the recognition of Ancillary statistics." 
Despite some important recent work on conditional in
ference by Efron and Hinkley (1978) and Hinkley (1977), 
we still seem to be far from a full understanding of this 
difficult topic and a satisfactory small-sample theory of 
models that lack completeness. 

(Received November 1979. Revised December 1980.] 
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