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1 Introduction

Supersymmetric gauge theories have been extremely fruitful in our endeavor to uncover the

rich structure of quantum field theory. One of the most remarkable phenomenon discovered

in supersymmetric gauge theory is Seiberg duality [1] where two different UV gauge theories

flow to the same fixed-point in the IR . The original example studied by Seiberg was

N = 1 SQCD with SU(N) gauge group, which was subsequently generalized to SO(N)

gauge groups by Intriligator-Seiberg [2] and to USp(2N) gauge groups1 by Intriligator-

Pouliot [3].

1In this paper we use the notation USp(2N) = CN for the symplectic groups so that USp(2) = SU(2).
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Recently, a new dual description to SU(N) SQCD has been found by Gadde-Maruyoshi-

Tachikawa-Yan (GMTY) [4]. Their new dual theory involves coupling two copies of the

so-called TN theory. The new theory can be thought of as a generalization of the (multiple)

self-duality of Csaki-Schmaltz-Skiba-Terning [5] from SU(2) to SU(N). The main compo-

nent they used was the TN theory which arises from wrapping N coincident M5-branes or

AN−1 six-dimensional N = (2, 0) theory on a 3-punctured sphere [6].

One of the objectives of this paper is to generalize the GMTY duality to the SO/USp

theories thereby adding more dual theories in addition to the ones found in [2, 3]. Moreover,

we will show that there is not just one new dual theory but three more dual descriptions

to each theory. From this, we argue there are five different theories in the UV that flow to

the same superconformal theory in the IR.

We also find new dual theories for the G2 gauge theory with 8 fundamentals. G2 is

the simplest group with a trivial center and hence QCD with a G2 gauge group provide us

with an opportunity to study the role of the center of a gauge group in confinement [7]. A

dual for G2 QCD with 5 flavors was discussed in [8, 9] while for 5 < Nf < 12, a magnetic

theory with an SU(Nf − 3) gauge group was found by Pouliot [10]. The duality frames

discovered in this paper are either non-Lagrangian or based on Spin(8) gauge group and

hence constitute a new class of magnetic theories.

Two dual frames among five have Lagrangian descriptions. The ‘electric theory’ U
is the original SQCD with certain number of flavors and the ‘magnetic theory’ Uc1 is

also an SQCD with the same number of flavors2 but also has mesons coupled through a

superpotential. Three non-Lagrangian dual theories can be categorized into ‘swap’ theories

Us following the nomenclature of [4], and Argyres-Seiberg type Uas since it can be thought

of as N = 1 version of the dualities found in [11], and the crossing type Uc2.

Our discussion is motivated from the six-dimensional construction of N = 1 super-

conformal field theories. It is an extension of the so-called the N = 2 theories of class

S [6, 12]. A class S theory is constructed by compactifying the six-dimensional N = (2, 0)

theory of type Γ = A,D,E on a Riemann surface C with a partial topological twist. This

gives rise to N = 2 theory in 4-dimensions labeled by C called the UV curve. Since any

(negatively curved) Riemann surface can be decomposed in terms of pair of pants or 3-

punctured sphere, it is natural to associate a 4d theory to a 3-punctured sphere and regard

it as a building block for the 4d theory. The 4-dimensional theory associated to C has to be

the same regardless of how we decompose the Riemann surface. The statement of duality

is equivalent to saying that the different pair-of-pants decompositions give rise to the same

4-dimensional theory.

In order to write down various dual theories, one needs to identify the theory cor-

responding to the various different types of three punctured spheres. This has been ex-

tensively studied, for example in [13–16], from which they find new N = 2 SCFTs and

dualities. The class S construction for the DN type was first studied in [17] and the effect

of outer-automorphism twists has been studied in [18].

One can generalize this construction to N = 1 theory. The simplest way is to give

mass to the chiral adjoints in the N = 2 vector multiplets. In the IR, the massive chiral

2Except for the G2 case where both the gauge group and matter contents changed.
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(c) G2 theory.

Figure 1: The UV curves realizing SQCDs in this paper. The symbol $ denotes twisted

null puncture, � the full puncture having SO(2N) flavor symmetry, 8 the twisted full

puncture having USp(2N − 2) flavor symmetry and ♥ denotes USp(4) puncture. The

dashed line and the green solid line denote Z2 and Z3 twist line respectively.

adjoints will be integrated out and we land on a SCFT [19, 20]. One can construct more

general theories by requiring non-baryonic U(1)F to be conserved. This gives rise to a new

class of N = 1 SCFTs generically not the same as the mass-deformed N = 2 theories in

class S [21, 22]. This class of theories are subsequently generalized to include the Riemann

surface with punctures in [4, 23, 24] so that the theory can have larger global symmetries.

Further studies of N = 1 class S theories have been done in [25–29]. In this paper, we

generalize this construction to the case of Γ = DN series with outer-automorphism twists.

This construction requires extra data beyond the choice of the Riemann surface, namely

the degree of the normal bundles L(p)⊕ L(q)→ Cg,n with p+ q = 2g − 2 + n. This stems

from the fact that we have one parameter ways to twist the 6d N = (2, 0) theory while

preserving N = 1 SUSY in 4-dimensions.3 The punctures also have to be more general than

the N = 2 counterpart. In our case, we put Z2 valued ‘color’ to the punctures in addition

to the usual N = 2 data. In order to realize SQCD of gauge group SO(2N)/USp(2N − 2)

with (4N − 4)/(4N) fundamental quarks,4 we put the Γ = DN theory on a 4-punctured

sphere with two twisted full punctures with each color and two twisted null punctures with

each color and choose the normal bundle to be (p, q) = (1, 1). For the case of G2 theory,

start with Γ = D4 with 4 punctures, but also with Z3 twist line running between two

USp(4) punctures of each color. We also need two twisted null punctures of each color

as well.

The notion of pair-of-pants decomposition needs an extra ingredient because of the

normal bundles. It can be realized by putting colors to the pair-of-pants itself. It turns out

there are five different colored pair-of-pants decompositions for our setup, thereby giving

five dual frames to the SQCD.5 The list of dual theories we find are summarized as follows.

For the SO(2N) theory, the five dual frames are:

3For the purpose of preserving supersymmetry, the rank 2 bundle E → Cg,n is not necessarily given by a

sum of two line bundles. The only necessary condition is to have detE equal to the canonical bundle KCg,n .

But here we restrict ourselves to the case where the rank 2 bundle is given by a direct sum.
4The number of flavors here is counted by the number of chiral multiplets. This is in contrast with the

SU(N) theory, which has both quarks and anti-quarks.
5Actually there is one more in terms of colored pair-of-pants decomposition, but it is identical to one of

five upon inverting the color.
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• USO: SO(2N) with 4N − 4 fundamentals (vectors)

• USOc1 : SO(2N) with 4N − 4 fundamentals and mesons [2]

• Three non-Lagrangian duals: USOs , USOas , USOc2

and for the USp(2N − 2) theory:

• USp: USp(2N − 2) with 4N fundamentals

• USpc1 : USp(2N − 2) with 4N fundamentals and mesons [3]

• Three non-Lagrangian duals: USps , USpas , USpc2

and for the G2 theory:

• UG2 : G2 with 8 fundamentals

• UG2
c1 : Spin(8) with 6 quarks in 8V and 8S and mesons

• Three non-Lagrangian duals: UG2
s , UG2

as , UG2
c2

Three out of five dual theories are non-Lagrangian. We will explain these non-Lagrangian

duals in detail in later sections.

We provide evidence to these dualities through computing the anomaly coefficients and

the superconformal indices. In order to compute the superconformal index of G2 theory,

we also discuss N = 2 index with Z3 twist line and G2 puncture. Especially, we find that

the theory with UV curve given by three punctured sphere with USp(6), G2 and twisted

null punctures has enhanced E7 flavor symmetry as expected in [18] where it was identified

as the theory of Minahan-Nemeschansky [30].

The paper is organized as follows. In section 2, we review construction of the N = 1

theories of class S from which we construct our dual theories. We will also discuss the effect

of outer-automorphism twist in the setup. In section 3, we propose dualities of SO(2N)

gauge theories and check the ’t Hooft anomaly coefficients. In section 4, we discuss the

dualities of USp(2N − 2) gauge theories. In the section 5, we discuss the dualities of

G2 gauge theory. Finally, in section 6, we check our duality proposals by computing the

superconformal index. In the appendix, we derive certain chiral ring relations for the

TSO(2N) and the twisted T̃SO(2N) blocks, which are necessary in other sections.

2 Constructing N = 1 theory from M5-branes

In this section, we review the construction of 4d N = 1 theories from 6d perspective due

to [4, 19–24]. From this, we propose several dual theories based on different ways of gluing

the 3-punctured spheres.
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Setup and data. In order to obtain an N = 1 SCFT from M5-branes dubbed the

theories of class S, we need the following data:

• Choice of the ‘gauge’ group Γ = An, Dn, E6,7,8.

• Riemann surface Cg,n of genus g and n punctures. We call it a UV-curve.

• Choice of two normal bundles L1(p),L2(q) of degree p, q over Cg,n such that p+ q =

2g − 2 + n.

• The choice of appropriate boundary condition on each punctures.

The choice of Γ labels the 6-dimensional N = (2, 0) theory and we compactify the 6d theory

on Cg,n to obtain the N = 1 theory in 4-dimension. When compactifying the theory, we

have to perform partial topological twist in order to preserve any supersymmetry. It turns

out that there is an integer parameter family of different ways to twist the theory while

preserving 4 supercharges. This can be understood as the choice of the normal bundles

L1(p)⊕ L2(q)→ Cg,n. The total space of this rank-2 bundle becomes Calabi-Yau 3-fold if

it satisfies p+ q = 2g − 2 + n.

The data on a puncture is specified by the following conditions which are all equivalent:

• 1
4 -BPS boundary condition of N = 4, d = 4 SYM theory.

• Choice of the singular boundary condition of a generalized Hitchin equation on Cg,n

Dz̄Φ1 = Dz̄Φ2 = 0 ,

[Φ1,Φ2] = 0 , (2.1)

Fzz̄ + [Φ1,Φ
∗
1] + [Φ2,Φ

∗
2] = 0 .

• Choice of the singular boundary condition of a generalized Nahm’s equation.

When one of p or q is zero, then we go back to the N = 2 theories of class S [6, 12]. In this

case, the data on the puncture is specified by a 1
2 -BPS boundary condition of N = 4, d = 4

SYM theory, or the embedding of SU(2) group to Γ. Equivalently, one of the Higgs field

Φ1,2 vanishes and we get the ordinary Hitchin equation. When Γ = An−1 it is labeled by

a Young tableau with n boxes.

Colored N = 2 punctures. Generally, N = 1 puncture will involve both Φ1 and Φ2

in (2.1) developing singularities at the same point where the punctures sits. Throughout

the paper we restrict ourselves to the case where only one of them develops a singularity

at a given point. In a sense this makes our system N = 2-like near the puncture. We will

label each puncture by a color σ = ± along with the choice of embedding ρ : SU(2) → Γ.

We will call them as colored N = 2 punctures.

When the group Γ admits an outer-automorphism (when the corresponding Dynkin

diagram is symmetric under a discrete action o), we can twist the punctures accordingly [17,

18, 31]. Once we twist the puncture, the punctures are no longer labeled by the SU(2)

– 5 –
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Figure 2: A choice of UV curve with colored punctures. Here we suppressed the labeling

ρ for each punctures.

Γ A2n−1 A2n Dn+1 D4 E6

o Z2 Z2 Z2 Z3 Z2

G Bn Cn Cn G2 F4

G∨ Cn Bn Cn G2 F4

Table 1: The group Γ changes to G under the outer-automorphism twist o. It is given by

the Langlands-dual of the G∨ which is the subgroup of Γ invariant under o.

(a) DN theory on sphere with 3 untwisted

punctures.

(b) DN theory on sphere with 1 untwisted and

2 twisted punctures.

Figure 3: By twisting the punctures of DN theory, we get twisted punctures having the

CN−1 flavor symmetry.

embedding into Γ but into G, see table 1. Another thing to notice here is that the number

of twisted punctures cannot be arbitrary, but is required to be such that the product of

monodromies around the punctures should be equal to one.6 For example, we need to have

even numbers of Z2-twisted punctures. In the case with Z3 punctures, we could also have

odd number of Z3-twisted punctures as in the figure 23.

Colored pair-of-pants decomposition. For a given such configuration, we can have

various different dual frames by considering different pair-of-pants decompositions. On

each pair of pants, we also label it by a color σ = ±. The number of the pair-of-pants

6We thank Yuji Tachikawa for bringing this to our attention.
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Figure 4: An example of colored pair-of-pants decomposition. Here red/blue means σ = ±
respectively. Three red punctures and two blue punctures with p = 1, q = 2. Grey tube

denotes N = 1 vector, white tube denotes N = 2 vector multiplet. We have 3 mesons

associated to the blue puncture on the right and two red punctures on the left.

labelled by + and by − are given by the degree of line bundles p and q respectively. Now,

for a given pair of pants, we have the following data:

1. The choice of color σp of the pair of pants itself.

2. (ρpi , σ
p
i ) where ρpi : SU(2) → G labels the SU(2) embedding in G and σpi denotes a

coloring for each punctures i = 1, 2, 3.

When we glue two pair of pants, we gauge the flavor symmetry associated to punctures we

glue. When the σp of two pair of pants are the same, we gauge it using the N = 2 vector

multiplets, and when the σp are different, we glue it through N = 1 vector multiplet. Note

that when we glue two punctures, we can always choose the coloring of the punctures as

the same as the pair of pants that we are gluing. See figure 4 for an illustration of the

construction.

Now, for a given colored pair of pants with color σp, we identify the building block as

follows. When all the punctures have the same color as the pair of pants itself, we identify

the theory as the same one as N = 2 theory. For example, when all the punctures are

(untwisted) full punctures, then we get TΓ theory.7 When a full puncture has a different sign

from the pair of pants, we add a ‘meson’ field that transforms as an adjoint of Γ associated

to the puncture. Moreover we add a superpotential term for the meson field: W = Tr(Mµ),

where µ is an operator associated to the puncture. The operator µ transforms under the

adjoint representation of Γ and has the conformal weight ∆ = 2.

For a theory in class S, we have U(1)F global symmetry in addition to the N = 1

superconformal symmetry and the global symmetry labeled by the punctures. Suppose we

have only maximal punctures meaning ρ is given by the trivial embedding and has the full

7For Γ = AN−1, it is usually called as TN theory.
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global symmetry G. We define the U(1)F global charge to be

F =
∑
i

σiJi , (2.2)

where Ji are the global U(1) charge at each pair of pants. Note that each pair-of-pants or

three punctured sphere describes N = 2 superconformal theory. It has SU(2)R × U(1)R
R-symmetry which is broken down to U(1)R × U(1)Ji upon coupling to N = 1 vectors.

The coloring σi labels the choice of the sign of U(1)Ji charge we can make.

The color σpi of a puncture tells us the charges of the operator µpi . We assign U(1)F of

µ to be 2σpi . When we have a meson field Mp
i , the U(1)F charge for the µpi is reversed to

−2σpi and the meson has charge 2σpi instead. In addition to the operators corresponding

to the punctures, we also have ‘internal’ operators µi associated to the punctures glued

via cylinders in the pair-of-pants decompositions. The U(1)F charge for µi is given by 2σi.

When the gluing is done through N = 2 vectors, we also have an adjoint chiral multiplet φ.

The U(1)F charge for φ is −2σi, so that the N = 2 superpotential term W = Tr(φµ+ φµ̃)

preserves the U(1)F where µ̃ is the operator corresponds to the other glued puncture.

For the N = 1 gluing, we can have a superpotential term W = Tr(µµ̃) which is exactly

marginal.

This global symmetry is not anomalous and in general not baryonic. The true R-

charge in the IR will mix with U(1)F charge in the UV. Therefore one needs to perform

a-maximization [32] to obtain the correct R-charge.

Non-maximal punctures via Higgsing. If the labeling of the punctures ρ is non-

maximal, we ‘Higgs’ a maximal puncture down to a non-maximal one in the following ways:

for the puncture with the same color as the color of the pair-of-pants σp, we give vev to the

moment map 〈µ〉 = ρ(σ+), and for the puncture with different color σp, we give vev to the

meson 〈M〉 = ρ(σ+) where ρ is the embedding of SU(2) into G which labels the puncture

itself. For the latter case, this yields the superpotential W = trρ(σ+)µ + trM ′µ′ where

µ′ are the components of µ which commute with ρT and M ′ are the mesonic fluctuations

around its vev. Higgsing breaks the global symmetry from G down to the commutant GF
of ρ(SU(2)) in G.

When some of the punctures are non-maximal, it shifts the U(1)F of (2.2) by a certain

amount, if the color of the puncture is different from the pair-of-pants. The shifted U(1)F
is given by

F =
∑
i

σiJi + 2
∑

p,σpi =−σi

σpi ρ
p
i (σ3)

 , (2.3)

where (ρpi , σ
p
i ) labels the punctures and their colors.

N = 1 Dualities from colored pair-of-pants decompositions. As we discussed

above, the different pair of pants decomposition describes different dual frames. Additional

ingredient here is the assignment of color σpi for each pair of pants. This adds another

– 8 –
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Figure 5: Colored pair-of-pants decompositions for a 4-punctured sphere with two twisted

full punctures and two twisted null punctures of each color. The degrees of normal bundles

are (p, q) = (1, 1). Each subscript stands for: crossing-type 1, swap, Argyres-Seiberg type,

crossing-type 2. The first two dual frames have Lagrangian descriptions. The theory

USOc1 turns out to be identical to the dual theory of [2]. The latter three theories are all

non-Lagrangian theories. The theory USOs is an SO version of [4].

choices on the top of the pair of pants decomposition and it makes the duality structure

richer than the N = 2 counterpart. We call it colored pair-of-pants decomposition.

The SQCD with SO(2N) gauge group and 4N − 4 vectors can be realized by choosing

the normal bundles and the UV curve to be L(1)⊕L(1)→ Cg=0,n=4. Two of the punctures

are twisted maximal ones having USp(2N − 2) flavor symmetries with each color, and

we also put two twisted punctures with no flavor symmetry with each color. Since we

have 4 distinct punctures and two distinct pair-of-pants, there are many more dual frames

compared to the case of N = 2 theory. See figure 5.

One can also consider having other type of punctures to realize USp(2N − 2) gauge

theories or G2 gauge theory. The colored pair-of-pants decompositions will be almost

the same as this example. There are five dual frames, one of them being the electric

gauge theory. There is one Lagrangian dual which we denote as crossing 1 and three non-

Lagrangian theories which we name as swap, Argyres-Seiberg type and the crossing 2 type.

This fact will be universal regardless of the choice of the gauge group, as it can be easily

read off from the geometry. In the later sections, we study each theories in more detail.

3 Dualities for SO(2N) gauge theory

In this section, we study dualities for the SO(2N) gauge theory with 4N − 4 vectors.

3.1 TSO(2N) and T̃SO(2N) theory and Higgsing

For a class S theory of type Γ, the most basic building block is TΓ which is given by

wrapping the 6d theory on a three punctured sphere with 3 maximal punctures. The

theory has ΓA × ΓB × ΓC global symmetry, and has special dimension 2 operators µA,B,C
that transform under the adjoint of ΓA,B,C respectively. These operators satisfy a chiral

– 9 –
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(a) TSO(2N). (b) T̃SO(2N).

Figure 6: Left: TSO(2N) theory, Right: T̃SO(2N) theory.

ring relation

trµ2
A = trµ2

B = trµ2
C . (3.1)

This relation is proved in [20] for the Γ = SU(N) where the theory is usually called as TN .

We will mainly use the twisted T̃SO(2N) theory to construct various theories of interest. It

has SO(2N) × USp(2N − 2) × USp(2N − 2) global symmetry. We prove the chiral ring

relation (3.1) for the TDn and the twisted T̃Dn in appendix A.

The number of effective vector multiplets nv and hypermultiplets nh for TDn and T̃Dn
can be computed using the equations (3.16) and (3.19) of [31]. Each puncture contributes by

nv(SO(2N)) =
1

3
N(7− 15N + 8N2) , (3.2)

nv(USp(2N − 2)) =
1

6
(−3 + 20N − 30N2 + 16N3) , (3.3)

nh(SO(2N)) = nh(USp(2N − 2)) =
2

3
N(2N − 1)(2N − 2) . (3.4)

There is also a contribution from the bulk

nv(g = 0) = −4

3
(2N − 2)N(2N − 1)−N , (3.5)

nh(g = 0) = −4

3
(2N − 2)N(2N − 1) , (3.6)

from which we can compute the nv, nh for TDn and T̃Dn to get

nv(TDn) =
1

3
N(10− 21N + 8N2) , (3.7)

nv(T̃Dn) = −1 +
16

3
N − 7N2 +

8

3
N3 , (3.8)

nh(TDn) = nh(T̃Dn) =
4

3
n(n− 1)(2n− 1) . (3.9)

We will use these formula in later sections to compute the anomaly coefficients.
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Higgsing the T̃SO(2N) theory. From the T̃SO(2N) theory, we can obtain other building

blocks by partially closing the full puncture to a one with smaller global symmetries. The

SU(2) embedding ρ : SU(2) → G where G = SO(2N) or G = USp(2N − 2) induces a

decomposition of adjoint representations into the representations of SU(2) and its commu-

tant GF

adj =
⊕
j

Rj ⊗ Vj , (3.10)

where Vj is the spin-j representation of SU(2) and Rj are the representations of the flavor

symmetry GF associated to the puncture.

For example, when we close one of the twisted puncture having USp(2N−2) completely

to have no global symmetry, we obtain a free theory with bifundamental of SO(2N)-

USp(2N −2). More concretely, we give vev to the operator µ associated to the puncture as

〈µ〉 = ρ∅(σ+) =
∑
α

E+
α , (3.11)

where α are the simple roots of USp(2N − 2) and E+
α are the corresponding raising

operators.8 The ρ∅ denotes the principal embedding of SU(2) into USp(2N − 2), and

σ+ = σ1 + iσ2 where σi are the Pauli matrices. This embedding leaves no flavor symmetry

at all. Under this embedding the adjoint representation of USp(2N − 2) decomposes as

=
N−1⊕
k=1

V2k−1 , (3.12)

where Vj is the spin-j representation of SU(2). The dimension of the nilpotent orbit of

ρ(σ+) then gives us the number of free half-hyper multiplets produced in the process. Thus

we find that after Higgsing, the theory flows to an SO(2N)-USp(2N − 2) bifundamental

along with 2(N − 1)2 free half-hypermultiplets. See for example section 2 of [31].

3.2 Dualities for SO(2N)-coupled T̃SO(2N) theories

Before going into the SQCD, let us consider the theory that does not have a known La-

grangian description. Consider a theory realized by the UV curve given by 4 punctured

sphere with two red and blue colors each. Choose all the punctures to be the twisted max-

imal ones having USp(2N − 2) flavor symmetries. We decompose it as two pair-of-pants

with red and blue colors and arrange all the punctures to lie in the same color as the

pair-of-pants. Each pair-of-pants gives T̃SO(2N) block. Let us call the red punctures to be

A,B and blue punctures to be C,D.

This construction realizes two T̃SO(2N) blocks coupled along their SO(2N) puncture by

an N = 1 vector multiplet and a superpotential given by

W = ctrµµ̃ . (3.13)

8We will be cavalier about our notations denoting the Lie groups and Lie algebras.
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Figure 7: Coupling two copies of T̃SO(2N) theories.
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+
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(a) Electric theory T SO.
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A
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µ̂

2N

ˆ̃µ

-

2N-2

B

MB 2N-2

D

(b) Crossing T SO
c .

2N-2

D

MD

+

2N-2

C

MC

µ̂

2N

ˆ̃µ

-

2N-2

B

MB 2N-2

A

MA

(c) Swapped T SO
s .

Figure 8: Dual frames of the two T̃SO blocks coupled by SO gauge group. The red/blue

color means σ = +/− respectively.

Here µ is the dimension 2 operator transforming in the adjoint representation of the SO(2N)

flavor symmetry of T̃SO(2N) while µ̃ is its counterpart coming from the other T̃SO(2N) block.

The U(1)F charge for µ is +2 while µ̃ has −2. The U(1)F charges of the operators are deter-

mined by the color choice σ for each punctures as described in section 2. Diagrammatically

we can represent this theory as in figure 8a. We will call this theory as T SO.

This theory can also be obtained by starting from two T̃SO(2N) blocks coupled along

with their SO(2N) flavor symmetry by an N = 2 vector multiplet and then integrating

out the adjoint chiral in the vector multiplet by giving it mass and then flowing to the IR.

Since the operators µ and µ̃ both have R-charge 1, the operator µµ̃ is marginal.

A dual of this theory can be obtained by exchanging the punctures labeled B and

C. We will also have to integrate in mesons MB and MC that transform in the adjoint

representation of USp(2N − 2)B and USp(2N − 2)C respectively [4]. The superpotential

in the dual theory is given by

W = ĉtrµ̂ ˆ̃µ+ tr ΩMBΩµ̂B + tr ΩMCΩµ̂C , (3.14)

where Ω is the USp(2N−2) invariant antisymmetric form. We now have the dual operators

µ̂B, µ̂C for the punctures B,C which have their U(1)F charges reversed, and also meson
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Figure 9: Intriligator-Seiberg duality.

operators MB,MC which has the same U(1)F charges as µB, µC . We depict this theory by

figure 8b.

We can further exchange punctures A and D to obtain a third theory which is dual to

the previous two. The superpotential now becomes

W = ĉtrµ̂ ˆ̃µ+ trMAΩµ̂AΩ + trΩMBΩµ̂B + trΩMCΩµ̂C + trMDΩµ̂DΩ , (3.15)

with extra meson fields MA and MD. See the figure 8c.

One can also derive these dualities starting from N = 2 S-duality and giving mass to

the adjoint chiral multiplet in the N = 2 vector multiplet and integrating it out and then

flowing to the IR. Then by using the chiral ring relation derived in the appendix A and

integrating in the mesons, one can reproduce the superpotentials (3.14), (3.15). We refer

to the section 2.2.4 of [4] for details.

Following the nomenclature used in [4], we refer to the dual theories obtained above

as being in the “crossing frame” T SOc and the “swapped frame” T SOs respectively. These

three duality frames will be the basis of the dualities discussed in this section.

3.3 Dualities for SO(2N) SQCD

Now, let us move on to discuss dualities for the theory with UV Lagrangian descriptions.

Intriligator-Seiberg duality. By partially closing the punctures A and D in the electric

theory T SO, we reduce it to SQCD with gauge group SO(2N) andNf = 4N−4 fundamental

(vector) flavors. Partial closing of the puncture is implemented by giving appropriate vevs

as in (3.11) to µA and µD. Closing the punctures changes the dual theories as well. Upon

Higgsing, the two copies of T̃SO(2N) become free bifundamentals of SO(2N)×USp(2N−2)B
and SO(2N) × USp(2N − 2)C . Therefore, the original theory T becomes SO(2N) gauge

group with 4N −4 fundamental(vector) flavors where only the USp(2N −2)B×USp(2N −
2)C ⊂ SU(4N − 4) global symmetry is manifest. This is nothing but the usual SQCD. We

also have the marginal superpotential

W = ctrµµ̃ , (3.16)

where now µαβ = (QαiΩ
ijQβj)B and µ̃αβ = (QαiΩ

ijQβj)C with α, β = 1, . . . , 2N denoting

the SO(2N) vector indices and i, j = 1, . . . , 2N − 2 denoting the USp indices. Here (QB)αi
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is the quark transforming as the bifundamental of SO(2N)×USp(2N − 2)B while (QC)αi
is the bifundamental of SO(2N) × USp(2N − 2)C . This superpotential term breaks the

global symmetry to USp(2N − 2)B ×USp(2N − 2)C . We will denote this theory as USO.

Now, let us look at the theory obtained by closing the punctures A and B of crossing

frame, T SOc . The theory so obtained has two meson fields MB,MC each transforming under

the adjoint of USp(2N − 2)B and USp(2N − 2)C . Also we get superpotential terms as

W = ĉtrµ̂ ˆ̃µ+ trMBΩµ̂BΩ + trMCΩµ̂CΩ . (3.17)

We can write µ̂B and µ̂C in terms of the fundamental dual quarks Q̂ as µB = Q̂BQ̂B and

µC = Q̂CQ̂C which are in the adjoint (=symmetric) representations of USp(2N − 2)B,C .

The µ̂ and ˆ̃µ are given by the dual quark bilinears as µ̂ = Q̂BΩQ̂B and ˆ̃µ = Q̂CΩQ̂C which

are in the adjoint of SO(2N).

The duality frames obtained through this procedure are depicted in figure 9. These two

duality frames are related to each other by the Intriligator-Seiberg duality [2]. Applying

Intriligator-Seiberg duality to the SO(2N) gauge theory with 4N −4 fundamentals we find

that the magnetic dual is given by the theory with SO(2N) gauge group and 4N − 4 dual

quarks Q̂ along with mesons and the superpotential term W = trMQ̂Q̂. In the absence

of any other superpotential the global symmetry of this theory would be SU(4N − 4) with

the mesons transforming in the symmetric representation of SU(4N − 4). In terms of

USp(2N − 2)B × USp(2N − 2)C ⊂ SU(4N − 4), the quarks split into bifundamentals of

SO(2N) × USp(2N − 2)B and SO(2N) × USp(2N − 2)B while the meson splits into the

following irreducible representations.

• symmetric tensor of USp(2N − 2)B : (MB)ij

• symmetric tensor of USp(2N − 2)C : (MC)ij

• bifundamental of USp(2N − 2)B ×USp(2N − 2)C : Mij

Note that Mij is dual to the meson of the electric theory formed by QBαiQCαj . The electric

superpotential trµµ̃ induces a mass term for Mij . The dual superpotential of the magnetic

theory can be written as

W = trMΩMΩ + trMBΩQ̂BQ̂BΩ +MCΩQ̂CQ̂CΩ + trMΩQ̂BQ̂CΩ . (3.18)

Integrating out the massive mesons Mij then gives us the superpotential of (3.17). We will

denote this theory as USOc1 since it arises from exchanging the two punctures in the electric

theory.

Non-Lagrangian dual 1: swap. An interesting non-Lagrangian dual (figure 10) to the

SO(2N) SQCD is obtained by the Higgsing the swapped theory T SOs of figure 8c. In this

frame the Higgsing of USp(2N − 2)A and USp(2N − 2)D is implemented through a vev

ρ∅(σ+) to the meson fields MA and MD. The low energy dynamics of this theory can be

obtained as follows. With a little abuse of notation, let MA now represent the fluctuations
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Figure 10: Non-Lagrangian dual USOs of SO(2N) SQCD.

around the vev ρA(σ+). The deformed superpotential now becomes

W = trΩρA(σ+)Ωµ̂A + trΩMAΩµ̂A

= (µ̂A)1,−1 +
∑
j,m

(MA)j,−m(µ̂A)j,m ,
(3.19)

where we rewrite the components of (µA)ij and (MA)ij by decomposing into SU(2) repre-

sentations as in (3.10). The indices j,m with m = −j,−j + 1, . . . , j − 1, j labels the spin-j

representations of SU(2) and k = 1, . . . ,dimRk. Since there is no flavor symmetry left here,

we do not have any k dependence.

Since the first term of (3.19) break the U(1)F , we should shift its charge appropriately.

Also we want our superpotential term to have U(1)R charge 2. In order to achieve this, we

shift the U(1)F flavor symmetry and R-symmetry to

F = F0 + 2ρA(σ3) ,

R = R0 − ρA(σ3) ,
(3.20)

where F0 and R0 are the U(1)F and R-charges of the fields before Higgsing.

The USp(2N − 2)A flavor symmetry gets broken and the resulting non-conservation of

the associated global currents can be expressed as

D̄2(JA)j,m = δW = (µ̂A)j,m−1 . (3.21)

The right-hand side vanishes only if m = −j. This implies that the operators (µ̂A)j,m−1

are no longer BPS and hence the superpotential terms that couples them to mesonic fields

become IR-irrelevant. As a result of this, the fields (MA)j,m for m 6= −j decouple. The

number of such free fields is 2(N − 1)2 which is same as the number of free half-hypers

obtained from Higgsing USp(2N − 2)A in figure 8a.

Repeating the same analysis for USp(2N − 2)D then leads to the following superpo-

tential for our proposed dual

W = ĉtrµ̂ ˆ̃µ+trΩMCΩµ̂C+trΩMBΩµ̂B+
∑
j

(MA)j,−j(µ̂A)j,j+
∑
j

(MD)j,−j(µ̂D)j,j , (3.22)

where j = 1, 3, . . . , 2N − 3 from which we see 2(N − 1) gauge singlets. The charges for the

U(1)F and U(1)R are shifted to

F = F0 + 2ρA(σ3)− 2ρD(σ3) ,

R = R0 − ρA(σ3)− ρD(σ3) .
(3.23)

We will denote this theory as USOs .
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Figure 11: Argyres-Seiberg type dual USOas of SO(2N) SQCD.

Non-Lagrangian dual 2: Argyres-Seiberg type dual. Another type of dual theory

to the SQCD can be obtained from Higgsing punctures B and D of the duality frames in

figure 8. This is possible since the punctures with the same colors are indistinguishable in

the non-Lagrangian theory of figure 8 and therefore their labels can be interchanged. In

the present case we relabel A↔ B.

Higgsing the frames T SO and T SOs give us the theories USO and USOs respectively.

However an Argyres-Seiberg type dual, USOas , is obtained upon closing the afore mentioned

punctures in T SOc (see figure 11). Firstly, Higgsing the puncture D will make the theory

T̃SO(2N) on the upper sphere to be the theory of bifundamentals. Therefore we have T̃SO(2N)

theory with SO(2N) flavor symmetry gauged and coupled to 2N−2 fundamentals (vectors).

The punctures A and C have different colors from their pair of pants. Therefore we

will have meson field MA and MC coupled through

W = ĉtrµ̂ ˆ̃µ+ trMAΩ(QQ)AΩ + trMCΩµ̂CΩ , (3.24)

where we replaced the operator µ̂B by the product of the quarks (QαiQβi)A. In order to

Higgs the puncture A, we give vev to the meson field 〈MB〉 = ρ∅. We can now consider low

energy fluctuations around this vacuum and repeat the analysis of the previous subsection.

The vev for the meson gives a mass to one of the quark bifundamentals which should be

integrated out. The resulting low energy theory consists of 2N−3 fundamentals coupled to

a T̃SO(2N) block along with N−1 gauge singlets (MA)j,−j and mesons MC coupled through

the superpotential

W = ĉtrµ̂ ˆ̃µ+
∑
j

(MA)j,−j(µ̂A)j,j + trMCΩµ̂CΩ , (3.25)

The R- and F-charges are shifted to

F = F0 + 2ρA(σ3) ,

R = R0 − ρA(σ3) .
(3.26)

One interesting aspect of this dual description compared to the N = 2 counterpart is

that this dual theory has the same gauge group as the electric one. In the N = 2 case, this

type of duality changes the gauge group to be SU(2) subgroup of TΓ [11, 13], whereas in

the present case the gauge group is still SO(2N) unbroken.
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Figure 12: Crossing type dual USOc2 of SO(2N) SQCD.

Non-Lagrangian dual 3: crossing type. One more dual frame can be obtained from

Higgsing B and C punctures of T SOc of figure 8b and relabeling A ↔ B and C ↔ D. We

call this the crossing type dual and denote it by USOc2 (see figure 12). It consists of two

T̃SO(2N) blocks coupled to each other along their SO(2N) flavor symmetry. Also there will

be mesons MA and MD with a vev 〈MA〉 = 〈MD〉 = ρ∅. The low energy superpotential

for the theory becomes

W = ĉtrµ̂ ˆ̃µ+
∑
j,m

(MA)j,−m(µ̂A)j,m +
∑
j,m

(MD)j,−m(µ̂D)j,m , (3.27)

and shifted R- and F-charges

F = F0 + 2ρA(σ3)− 2ρD(σ3) ,

R = R0 − ρA(σ3)− ρD(σ3) .
(3.28)

3.4 ’t Hooft anomaly matching

Now we test our dualities by computing the anomaly coefficients in different dual frames.

Non-Lagrangian duals. Upon giving a mass to the adjoint chiral superfield in the vector

multiplet of an N = 2 theory and hence reducing SUSY down to N = 1, the residual U(1)R
symmetry that is preserved by this deformation is given by

RN=1 =
1

2
RN=2 + I3 , (3.29)

where I3 is the Cartan of SU(2)R in the parent theory. Thus we can write the trRN=1 and

trR3
N=1 anomalies in terms of the anomalies of the parent N = 2 theory as

trRN=1 =
1

2
trRN=2 = nv − nh , (3.30)

and

trR3
N=1 =

1

8
trR3
N=2 +

3

2
trRN=2I

2
3 = nv −

1

4
nh , (3.31)

where nv is the effective number of vector multiplets and nh is the effective number of

hyper-multiplets in the parent theory.
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It is now straight-forward to check that the trR and trR3 anomalies of the duality

frames shown in figure 8 match. This is because the mesons have R-charge 1 and hence

do not contribute to the R-anomalies. Thus all the R-anomalies of these theories are

destined to match as a direct consequence of their matching in the N = 2 parent theories.

This also implies that the flavor central charge given by Kδab = −3trRT aT b will only get

contributions from the coupled T̃SO(2N) blocks and hence match in all the three duality

frames.

Let us now consider the matching of trFT aT b across the various duality frames. The

global current F =
∑

i σiJi is given by the sum of Ji where the global symmetry J is

given by

J = RN=2 − 2I3, (3.32)

for the each building block T̃SO(2N). Note that if the corresponding T̃SO(2N) block has a

U(1)F -charge σ then

trFT aT b = σtrRN=2T
aT b = −σ

2
kg . (3.33)

To begin with, consider the anomaly coefficient for T a ∈ sp(2N − 2)A. Note that ksp(2N−2)

for T̃SO(2N) is 4N as can be checked by comparing the dual theories of figure 28. Thus for

the electric theory, T SO (figure 8a) we have

trFT aAT bA = −2Nδab . (3.34)

This matches trivially to the anomaly coefficient of the theory, T SOc (figure 8b). It is much

more interesting to compare this with the anomaly coefficient of T SOs (figure 8c) which,

after taking the contributions of the meson MA into account, becomes

trFT aAT bA = 2Nδab − 2tradjT
a
AT

b
A

= 2Nδab − 2(2N)δab

= −2Nδab ,

(3.35)

which agrees with the original theory. The anomalies of USp(2N −2)B, USp(2N −2)C and

USp(2N − 2)D match in all the duality frames in an analogous manner.

Dual theories of SO(2N) SQCD. The various duality frames obtained after Higgsing

some of the USp(2N −2) punctures are shown in figure 13. The theories USO and USOc1 are

related by Intriligator-Seiberg duality and their anomalies match in the usual manner. For

the purpose of matching the anomalies between USO and USOs , we observe that we only

have to match the anomalies of the SO(2N)×USp(2N−2) bifundamental to the anomalies

of the T̃SO(2N) block appropriately coupled to mesons (figure 14). For the bifundamental

we have

trR
∣∣
bifund

=

(
−1

2

)
(2N)(2N − 2) = −N(2N − 2) . (3.36)

Note that on the dual side, after giving a vev to the meson MA, the R-charge gets shifted:

R → R − ρ(σ3). This will not affect the contribution of the T̃SO(2N) block, since its

– 18 –



J
H
E
P
0
3
(
2
0
1
4
)
1
3
3

+

2N-2 B

µ
2N

µ̃-

2N-2C

(a) SO(2N) gauge theory: USO.

+

2N-2 C

MC

µ̂
2N

ˆ̃µ-

2N-2B

MB

(b) Intriligator-Seiberg dual: USO
c1 .

2N-2 D

〈MD〉

+

2N-2 C

MC

µ̂
2N

ˆ̃µ-

2N-2B

MB

2N-2A

〈MA〉

(c) Swapped dual: USO
s .

2N-2 B

+

2N-2 C

MC

µ̂
2N

ˆ̃µ-

2N-2A

〈MA〉

(d) Argyres-Seiberg type dual: USO
as .

2N-2 A

〈MA〉

-

2N-2 C

ˆ̃µ2N
µ̂+

2N-2B

2N-2D

〈MD〉

(e) Crossing type dual: USO
c2 .

Figure 13: Dual frames of SO(2N) SQCD.

+
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2N

-

2N-2

B

MB 2N-2
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〈MA〉

(b) T̃SO(2N) with Meson and Higgsing.

Figure 14: Building blocks used to construct the electric and the swapped frames.

trρ(σ3) = 0. For the mesons, we will only consider the contributions of (MA)j,−j since the

others decouple. This implies

trR
∣∣
〈MA〉

=
∑
j

j =

N−1∑
n=1

(2n− 1) = (N − 1)2 . (3.37)
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The meson MB does not contribute to the R-anomalies since its R-charge is not shifted

and is equal to 1. Putting these together, we find that in this frame

trR = trR
∣∣
T̃SO(2N)

+ trR
∣∣
〈MA〉

= −N(2N − 2) , (3.38)

which matches with the corresponding anomaly of the bifundamental.

Moving on, we now compare the trR3 anomalies on the two sides and find

trR3
∣∣
bifund

=

(
−1

2

)3

(2N)(2N − 2) = −1

2
N(N − 1) . (3.39)

On the dual side, since R = R0 − ρ(σ3), where R0 = 1
2RN=2 + I3, therefore

trR3 = trR3
0 + 3trRρ2 . (3.40)

Also 3trRρ2δab = 3I
2 trRN=2T

a
AT

b
A, where I is the SU(2) embedding index. Since our em-

bedding takes 2N−2 dimensional representation of USp(2N−2) to the 2N−2 dimensional

representation of SU(2), therefore

I = 2

N−3/2∑
jz=1/2

j2
z =

1

6
(N − 1)(4N2 − 8N + 3) . (3.41)

Thus, due to the shift in R-charges the T̃SO(2N) now contributes

trR3 = trR3
0 + 3trRρ2

= −1 +
13

2
N − 23

2
N2 + 8N3 − 2N4 .

(3.42)

Also

trR3
∣∣
〈MA〉

=
∑
j

j3 =
N−1∑
n=1

(2n− 1)3 = 1− 6N + 11N2 − 8N3 + 2N4 . (3.43)

Adding the contributions of the T̃SO(2N) block and the mesons we find that the trR3

anomalies match with those of the bifundamental. The trRT aBT
b
B and trFT aBT bB anomalies

for the bifundamental are given by (−1
2)(2N) and (−1)(2N) respectively. On the dual side

these have the same values as in the scenario before Higgsing. This is because trρT aBT
b
B = 0

for the T̃SO(2N) block. We therefore conclude that these anomalies have the same value in

the electric and the swapped theory.

Similarly, we can match the anomaly coefficients of USO and USOas . In USOas we have

(up to the gaugino-contributions)

trR = trR|T̃SO(2N)
+ trR|〈MA〉 + 2N

∑
m

(
− 1

2
−m

)
= −2N(2N − 2) (3.44)

trR3 = trR3|T̃SO(2N)
+ trR3|〈MA〉 + 2N

∑
m

(
− 1

2
−m

)3

= −N(N − 1) (3.45)
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Figure 15: Building blocks used to construct the electric and the crossing frames.

which match with those in the electric theory. The coefficients of trRT aBT
b
B, trRT aCT

b
C ,

trFT aBT bB and trFT aCT bC are not affected by Higgsing and therefore match with their electric

counterparts.

The anomaly coefficients in USOc2 can also be matched to those in the other duality

frames. This follows from the matching between the anomalies of the bifundamental and

the T̃SO(2N) block (with mesons) shown in figure 15.

4 Dualities for USp(2N − 2) gauge theory

We now repeat the same procedure as the previous section for USp(2N − 2) gauge theory

with 4N fundamentals.

4.1 Dualities for USp(2N − 2)-coupled T̃SO(2N)w theories

We begin by considering two T̃SO(2N) blocks coupled to each other at a USp(2N − 2)

puncture via an N = 1 vector multiplet, giving the electric theory of figure 16a. The

superpotential for this theory is

W = ctrµΩµ̃Ω (4.1)

We will henceforth denote this theory by T Sp. The frames dual to T Sp can be obtained by

using the rules of section 2 to move the punctures around. This gives us the set of theories

shown in figure 16.

We will call the theory in figure 16b as ‘crossing frame 1’ and denote it by T Spc1 . It

is obtained by exchanging punctures B and C. Since these punctures will no longer have

the same color as their pants, we will therefore have to integrate in mesons MB and MC

transforming as the adjoints of the respective symmetries. The superpotential of the theory

becomes

W = ĉtrµ̂Ωˆ̃µΩ + trMC µ̂C + trMBµ̂B , (4.2)

Similarly when we exchange the puncture A and D, we end up with the theory in

‘crossing frame 2’ (figure 16c) which is denoted by T Spc2 . Once again we will have to couple

mesons MA and MD via the superpotential

W = ĉtrµ̂Ωˆ̃µΩ + trMAΩµ̂AΩ + trMDΩµ̂DΩ , (4.3)
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(e) Swapped theory: T Sp
s .

Figure 16: The T Sp theory, obtained by coupling two T̃SO(2N) blocks along a USp(2N−2)

puncture with an N = 1 vector multiplet, and its duals obtained by moving the punctures

around. Here we omit the anti-symmetric forms in the superpotential. The red/blue color

means σ = ±.

The theory in ‘crossing frame 3’ (figure 16d) is obtained by exchanging punctures B

and D. This will correspond to a pair of pants decomposition where one of the pants has

no outer automorphism twists. In other words it consists of an T̃SO(2N) block coupled to

a TSO(2N) block at its SO(2N) puncture. To compensate for the mismatch in the color of

the punctures their respective pants, we will have to integrate in mesons MB and MD with

the superpotential being

W = ĉtrµ̂ ˆ̃µ+ trMBµ̂B + trMDΩµ̂DΩ , (4.4)

Interestingly this gives us a duality between an N = 1 theory with a USp(2N − 2) gauge

group and a theory with SO(2N) gauge group. We will denote the theory in this duality

frame by T Spc3 .
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Figure 17: Intriligator-Pouliot duality.

The theory in figure 16e will be called the ‘swapped’ theory and we will denote it by

T Sps . It is obtained by moving the 4 punctures around such that none of them have the

same color as the pants in which they reside. This will require us to integrate in mesons

at each puncture. The superpotential will now become

W = ĉtrµ̂Ωˆ̃µΩ + trMAΩµ̂AΩ + trMBµ̂B + trMC µ̂C + trMDΩµ̂DΩ . (4.5)

4.2 Dualities for USp(2N − 2) SQCD

Now, let us consider the dual theories of SQCD.

The Intriligator-Pouliot duality. By Higgsing punctures A and D of T Sp and T Spc1

(figure 16a and 16b), with a vev to their adjoint representation operators, we obtain the

usual pair of Intriligator-Pouliot dual theories [3]. The electric theory is given by figure 17a.

We will use the short-hand notation USp to denote this theory. It is a USp(2N − 2) gauge

theory with 4N fundamental quarks. It has an SO(2N)B × SO(2N)C ⊂ SU(4N) global

symmetry. Its superpotential is given by

W = ctrµΩµ̃Ω , (4.6)

where now µij = (QαiQαj)B and µ̃ij = (QαiQαj)C . Here (QB)αi is the quark transforming

as the bifundamental of SO(2N)B × USp(2N − 2) while (QC)αi is the bifundamental of

SO(2N)C ×USp(2N − 2).

Applying Intriligator-Pouliot duality to the above electric theory, we get a theory

with 4N quarks Q̂ transforming under a USp(2N − 2) gauge group. In the absence of any

superpotential this theory will enjoy SU(4N) global symmetry. The spectrum of the theory

will also include mesons transforming in the anti-symmetric representation of SU(4N). In

terms of the SO(2N)B × SO(2N)C subgroup of the flavor symmetry the quarks split into
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Figure 18: Non-Lagrangian dual USps of USp(2N − 2) SQCD.

bifundamentals of SO(2N)B×USp(2N −2) and SO(2N)C ×USp(2N −2) while the meson

splits into the following irreducible representations.

1. anti-symmetric tensor of SO(2N)B : MBαβ

2. anti-symmetric tensor of SO(2N)C : MCαβ

3. bifundamental of SO(2N)B × SO(2N)C : Mαβ

Note that Mαβ is dual to the meson of the electric theory formed by (QB)αiΩ
ij(QC)βj .

The dual superpotential becomes

Wm = ctrMM + trMBQ̂BΩQ̂B + trMCQ̂CΩQ̂C + trMQ̂BΩQ̂C (4.7)

Integrating out the massive mesons Mαβ then gives us the theory of figure 17b. We will

use USpc1 to denote this theory.

Non-Lagrangian dual 1: swap. A non-Lagrangian dual (figure 18) of the electric

theory USp is generated upon Higgsing the punctures A and D in T Sps . This Higgsing

is implemented by giving vev ρ∅(σ+) from eq. (3.11) to the mesons MA and MD. Upon

considering the mesonic fluctuations around their vev and taking into account the breaking

of flavor symmetries and the resulting non-conservation of their currents, we obtain the

superpotential of our proposed non-Lagrangian dual:

W = ĉtrµ̂Ωˆ̃µΩ + trMC µ̂C + trMBµ̂B +
∑
j

(MA)j,−j(µ̂A)j,j +
∑
j

(MD)j,−j(µ̂D)j,j . (4.8)

As usual the R- and F-charges get shifted to:

F = F0 + 2ρA(σ3)− 2ρD(σ3) ,

R = R0 − ρA(σ3)− ρD(σ3) .
(4.9)

We will denote this theory by USps .

Non-Lagrangian dual 2: Argyres-Seiberg type dual. A more interesting non-

Lagrangian dual is obtained if one considers Higgsing the A and D punctures of T Spc3

(figure 16d). Closing the puncture for USp(2N − 2)A reduces the corresponding T̃SO(2N)

block to a bifundamental of USp(2N −2)×SO(2N). Giving vev to MD then gives mass to
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Figure 19: Argyres-Seiberg type dual USpas to USp gauge theory.

one of the quarks. We therefore end up with a theory of 2N − 3 fundamentals of SO(2N)

coupled to a TSO(2N) block as shown in figure 19. The dual superpotential now becomes

W = ĉtrµ̂ ˆ̃µ+ trMBµ̂B +
∑
j

(MD)j,−j(µ̂D)j,j , (4.10)

where (µ̂D)αβ = (Q̂mαΩmlQ̂lβ)D and the new U(1)F and U(1)R charges are

F = F0 − 2ρD(σ3) ,

R = R0 − ρD(σ3) .
(4.11)

We will use the short-hand notation USpas for this theory.

Non-Lagrangian dual 3: crossing type dual. The crossing type dual of USO can be

obtained by exchanging its (closed) punctures A and D. This will bring A (and similarly D)

into a pair pants whose color is opposite to that of A. The statement that these punctures

are closed in USp is then equivalent to saying that the puntures are Higgsed by giving a

vev to the mesons that we had to couple to the pants. We will denote this theory by USpc2 .

The quiver diagram for USpc2 is shown in figure 20. Its superpotential is

W = ĉtrµ̂Ωˆ̃µΩ +
∑
j,m

(MA)j,−m(µ̂B)j,m +
∑
j,m

(MD)j,−m(µ̂C)j,m , (4.12)

while R- and F-charges are

F = F0 + 2ρB(σ3)− 2ρC(σ3) ,

R = R0 − ρB(σ3)− ρC(σ3) ,
(4.13)

where R0 and F0 are the charges in the theory without a vev for the mesons i.e. T Spc2 (see

figure 16c).

4.3 ’t Hooft anomaly matching

Let us go on to put the dualities to test.

Non-Lagrangian duals. It is a simple exercise to check that the trR and trR3 anomalies

of the electric theory, the theories in the crossing frames 1 and 2, and the theory in the

swapped frame match since the mesons have R-charge 1 and hence do not contribute to the

R-anomalies. This also implies that the flavor central charge given by Kδab = −3trRT aT b
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Figure 20: The Crossing type dual USpc2 of USp(2N − 2) SQCD.

will also only get contributions from the T̃SO(2N) blocks and hence will match in all the

these frames.

It is instructive to match the trR and trR3 anomalies of T Sp and T Spc3 . Thus in

the electric frame these anomalies get contributions from the two T̃SO(2N) blocks and the

gauginos in the USp(2N − 2), N = 1 vector multiplet. Each T̃SO(2N) block contributes

trR
∣∣
T̃SO(2N)

= nv − nh = −2(N − 1)2 −N2 + 1 , (4.14)

while the gauginos give

trR
∣∣
gaugino

= 1(N − 1)(2N − 1) . (4.15)

This implies

trR
∣∣
T Sp = 2trR

∣∣
T̃SO(2N)

+ trR
∣∣
gaugino

= −4N2 + 5N − 1 .
(4.16)

Similarly,

trR3
∣∣
T Sp = 4N3 − 10N2 + 7N − 1 . (4.17)

Let us calculate the above anomalies in T Spc3 . The mesons will not contribute since they

have R-charge 1. Thus the contributions come from a TSO(2N) block, a T̃SO(2N) block and

the SO(2N) gauginos. For the TSO(2N) block we find that

trR
∣∣
TSO(2N)

= nv − nh = (2− 3N)N , (4.18)

and

trR3|TSO(2N)
= nv −

1

4
nh = N(3− 6N + 2N2) . (4.19)

The anomalies of T Spc3 can now be computed:

trR
∣∣
T Spc3

= trR
∣∣
TSO(2N)

+ trR
∣∣
T̃SO(2N)

+ trR
∣∣
gaugino

= −4N2 + 5N − 1 ,
(4.20)
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and

trR3
∣∣
T Spc3

= trR3
∣∣
TSO(2N)

+ trR3
∣∣
T̃SO(2N)

+ trR3
∣∣
gaugino

= 4N3 − 10N2 + 7N − 1 .
(4.21)

Thus we see the anomalies of the duality frames proposed here match perfectly.

Let us now consider the matching of trFT aT b across the various duality frames. For

the T̃SO(2N) block with U(1)F -charge σ, we have

trFT aT b = σtrRN=2T
aT b = −σ

2
kg . (4.22)

To begin with, consider the anomaly coefficient for T a ∈ sp(2N − 2)A. Note that ksp(2N−2)

for T̃SO(2N) is 4N as can be checked by comparing the dual theories of figure 28. In the

electric frame T Sp, we find

trFT aAT bA = −2Nδab (4.23)

This matches trivially to the anomaly coefficient of T Spc1 and T Spc3 . It is much more

interesting to compare this with the anomaly coefficient of T Spc2 and T Sps . After taking the

contributions of the meson MA into account, the anomaly evaluates to

trFT aAT bA = 2Nδab − 2tradjT
a
AT

b
A.

= 2Nδab − 2(2N)δab

= −2Nδab

(4.24)

This agrees with the original theory. We can analogously match the anomaly coefficient

when T a ∈ sp(2N − 2)D.

We now consider the case when T a ∈ so(2N)B. This time, by comparing the dual

theories of figure 29, we find that the contribution of T̃SO(2N) to kso(2N) is 4N − 4 and

hence in T Sp, the requisite coefficient is

trFT aBT bB = −(2N − 2)δab . (4.25)

After adding the contributions of the meson MB in the theories corresponding to T Spc1 and

T Sps respectively , it is simple to check that their coefficients match the original theory. The

above discussion also applies when comparing the anomaly coefficients with T a ∈ so(2N)C
or T a ∈ sp(2N − 2)D. The matching of these coefficient between T Sp and T Spc2 is trivial.

It is much more non-trivial and interesting to match the anomalies of SO(2N)B and

SO(2N)C in T Sp and T Spc3 . Let us start by comparing the SO(2N)C anomalies. In the

electric theory we find that

trFT aCT bC = −trRN=2T
a
CT

b
C

= (2N − 2)δab
(4.26)

Using the linear quiver to evaluate trRN=2T
a
CT

b
C in the TSO(2N) block we find that the

anomaly in the magnetic theory matches that in the electric theory. We can then imme-

diately see that the anomalies of SO(2N)B will match in the electric and magnetic theory

after including the contributions of the mesons, MB.
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Figure 21: Dual frames of USp SQCD.

Dual theories of USp(2N − 2) SQCD. The various duality frames obtained after

Higgsing some of the USp(2N − 2) punctures are summarized in figure 21. Since USp and

USpc1 are related by Intriligator-Pouliot duality and their anomalies match without much

ado. For the purpose of matching the anomalies between USp and USps , we observe that

we only have to match the anomalies of the SO(2N) × USp(2N − 2) bifundamental to

the anomalies of the T̃SO(2N) block appropriately coupled to mesons (figure 22). For the

bifundamental we have

trR
∣∣
bifund

=

(
−1

2

)
(2N)(2N − 2) = −N(2N − 2) . (4.27)

On the dual side, after giving a vev to the mesons, MA, the R-charge gets shifted: R →
R− ρ(σ3). This will not affect the contribution of the T̃SO(2N) block, since its trρ(σ3) = 0.

However for the mesons, we will only consider the contributions of MA,j,−j since the rest

decouple. This implies

trR
∣∣
〈MA〉

=
∑
j

j =
N−1∑
n=1

(2n− 1) = (N − 1)2 . (4.28)
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Figure 22: The building blocks of USp, USps and USpc2 .

Also MB does not contribute to the R-anomalies since their R-charge is not shifted and is

equal to 1. Putting these together, we find that in this frame

trR = trR|T̃SO(2N)
+ trR|MA

= −N(2N − 2) , (4.29)

which is identical to the corresponding anomaly of the bifundamental.

Moving on, we now compare the trR3 anomalies on the two sides and find

trR3|bifund =

(
−1

2

)3

(2N)(2N − 2) = −1

2
N(N − 1) . (4.30)

On the dual side, since R = R0 − ρ(σ3), where R0 = 1
2RN=2 + I3, therefore

trR3 = trR3
0 + 3trRρ2 . (4.31)

Adding the contributions of T̃SO(2N) and the mesons using (3.42) and (3.43), we find that

the trR3 anomalies match with those of the bifundamental. The trRT aBT
b
B and trFT aBT bB

anomalies for the bifundamental are given by (−1
2)(2N −2) and (−1)(2N −2) respectively.

On the dual side these have the same values as in the scenario before Higgsing. This is

because trρT aBT
b
B = 0 for the T̃SO(2N)block. We therefore conclude that these anomalies

have the same value in USp and USps . The anomalies of USp and USpc2 can also be matched

in a similar manner by comparing the contributions made by their building blocks shown

in figure 22a and 22c.
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We now compare the anomalies of the Argyres-Seiberg type dual, USpas . Note that

in USp

trR = 2

(
−1

2

)
(2N)(2N − 2) + (N − 1)(2N − 1)

= −2N2 +N + 1 ,

(4.32)

and

trR3 = 2

(
−1

2

)3

(2N)(2N − 2) + (N − 1)(2N − 1)

= (N − 1)2 .

(4.33)

In the USpas , the R-charges are shifted to R = R0 − ρ(σ3). Also, the meson, MB, does not

get a vev. It therefore has an R-charge 1 and hence does not contribute. In the TSO(2N)

block, trρ(σ3) = 0, which implies

trR
∣∣
TSO(2N)

= trR0

∣∣
TSO(2N)

= (2− 3N)N . (4.34)

The contribution from those components of MD which continue to stay coupled to the

theory after giving a vev is

trR|〈MD〉 =
∑
j

j =
N−1∑
n=1

(2n− 1) = (N − 1)2 . (4.35)

For the purpose of anomaly matching we can consider the 2N −3 fundamentals coupled to

the TSO(2N) block as a bifundamental of SO(2N) × USp(2N − 2) with shifted R-charges.

As usual the shift will correspond to the embedding of SU(2) in USp(2N − 2). The shift in

the R-charge of the bifundamental does not change its contribution to trR, since trρ = 0

for the bifundamental. Thus we find that trR in USpas is given by

trR = trR
∣∣
TSO(2N)

+ trR
∣∣
MD

+ trR
∣∣
bifund

+ trR
∣∣
gaugino

= (2− 3N)N + (N − 1)2 −N(2N − 2) +N(2N − 1)

= −2N2 +N + 1 .

(4.36)

This shows perfect agreement with the corresponding anomaly in USp. Similarly, we find

trR3|TSO(2N)
= trR3

0|TSO(2N)

= N(3− 6N + 2N2) .
(4.37)

As was mentioned before, the meson, MB will contribute trivially while the contribution

from those modes of MD that are still coupled to the theory becomes

trR3
∣∣
〈MD〉

=
∑
j

j3 =
N−1∑
n=1

(2n− 1) = 1− 6N + 11N2 − 8N3 + 2N4 . (4.38)
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Figure 23: Three punctured sphere with USp(6) and G2 punctures.

The contribution of the bifundamental is given by

trR3
∣∣
bifund

= trR3
0

∣∣
bifund

+ 3trRρ2

= −1

2
N(N − 1) +

1

2
(N − 1)(4N2 − 8N + 3)(−N)

= −N(N − 1)(2N2 − 4N + 2) .

(4.39)

Combining all these contributions we find

trR3 = trR3
∣∣
TSO(2N)

+ trR3
∣∣
MD

+ trR3
∣∣
bifund

+ trR3
∣∣
gaugino

= (N − 1)2 , (4.40)

hence providing a nontrivial check of our proposal. It can also be checked, via a pretty

direct calculation, that the trRT aT b and trFT aT b anomalies also match in these theories.

5 Dualities for the G2 gauge theory

In this section, we study a G2 gauge theory and its dual frames. The G2 gauge group can

be obtained from Γ = D4 theory with Z3 outer-automorphism twist. Since the D4 theory

allows both Z2-twisting σ2 and Z3-twisting σ3. We should take the twist lines with slightly

more care to go to various different dual frames.

We study the G2 gauge theory with 8 fundamental quarks in the 7 dimensional repre-

sentation of G2. A dual theory for the G2 gauge theory was first proposed in [10] where

the dual theory is given by SU gauge group with anti-symmetric tensors. We find new

dual descriptions for the G2 gauge theory flowing to the same fixed point in the IR. We

test the duality via anomaly matching and comparison of superconformal indices.

5.1 G2 gauge theory and its dual from coupled E7 blocks

To obtain the G2-dual we propose the following procedure: start with the strongly coupled

block of [18] given by D4 theory on a three punctured sphere with a twisted null puncture,

a USp(6) puncture and a G2 puncture as in figure 23. Even though the E7 flavor symmetry

is not manifest, the theory exhibits enhanced E7 symmetry which is the theory of Minahan-

Nemeschansky [30]. We will demonstrate in section 6 that the superconformal index of the

theory of figure 23 agrees with the E7 theory.

Now prepare two copies of this theory. By gauging the G2 symmetry common to the

two blocks we obtain an N = 2 SCFT with a G2 gauge group which can be represented

by figure 24a. We can obtain its S-dual by exchanging the punctures. One of its S-dual

can be obtained by exchanging two null punctures. It is given by an N = 2 SCFT with
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Figure 24: S-duality for the G2-coupled two E7 theories.

Spin(8) gauge symmetry along with three hypermultiplets in 8V and three hypermultiplets

in 8S representations which can be represented as in the figure 24b. This duality was first

found in [33]. Another frame can be found by colliding two null punctures and two USp(6)

punctures. This is similar to the Argyres-Seiberg duality, where in this case we partially

gauge the theory with USp(6)2 ×G2 flavor symmetry.

N = 1 duality from E7 blocks. Let us go to the N = 1 construction. It can be done

by giving colors to the punctures and the pair of pants. In figure 24a, let’s color the two

punctures on the bottom to be red, and the other two punctures to be blue. Also color

the pair of pants on the bottom to be red and the other to be blue. Since the color of the

punctures and the pants are the same, we can identify the ‘matter content’ to be the same

two E7 blocks as before. Then we glue two G2 punctures by N = 1 vector multiplet with

the superpotential

W = ctrµµ̃ , (5.1)

where µ and µ̃ transform in the adjoint representation of G2.

A dual frame is described by a Spin(8) gauge theory, with quarks in the 8V × 6

of Spin(8) × USp(6)A and another in the 8S × 6 representations of Spin(8) × USp(6)B.

There are also mesons transforming in the adjoint representations of USp(6)A and USp(6)B
respectively. One can also prove the duality starting from N = 2 construction and then

giving mass to the chiral adjoint in the vector multiplet if we assume the chiral ring relation

trµG2
2 = tr(µUSp(6)Ω)2 , (5.2)

and then following the procedure of [4]. The dual superpotential is given by

W = ĉtrµ̂ ˆ̃µ+ trMAµ̂A + trMBµ̂B , (5.3)

where µ̂A = QAQA and µ̂B = QBQB.

Upon Higgsing the USp(6) flavor symmetries, in the electric frame, down to USp(4),

we obtain two copies of bifundamentals of G2×USp(4) with the G2 being gauged. Higgsing

is achieved by giving a vev to the adjoint of USp(6) along the partition: 6 = [2, 14]. We

will use the short-hand notation UG2 to denote this theory. In the dual frame we will have
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Figure 25: Lagrangian duals to the G2 gauge theory with 8 fundamentals.

to give the same vev to the mesons MA and MB. This will generate a mass for the dual

quarks with SU(2) quantum numbers (j = 1
2 ,m = −1

2). We integrate these out and obtain

the low energy theory which is described by 5 vectors and 5 spinors of the Spin(8) gauge

group and transforming as 4 ⊕ 1 of their respective USp(4) flavor symmetries. The low

energy superpotential in the dual frame becomes

W = ĉtrµ̂ ˆ̃µ+
∑
j

MAj,−jµ̂Aj,j +
∑
j

MBj,−jµ̂Bj,j , (5.4)

with µ̂Aj,j being quadratics Spin(8) invariants. The R-charge in magnetic frame is shifted

by R→ R− ρA(σ3)− ρB(σ3), where as usual ρ specifies the SU(2) embedding in USp(6).

The U(1)F gets shifted to F → F − 2ρA(σ3) + 2ρB(σ3). Some of the mesons decouple.and

we are left with the mesons Mj,j,k coupled to the magnetic theory. This theory will be

denoted by the symbol UG2
c1 .

Non-Lagrangian duals. We can also get several non-Lagrangian duals to the G2 theory

using different colored pair-of-pants decompositions. See the figure 26.

Non-Lagrangian dual 1: Argyres-Seiberg type. The Argyres-Seiberg type dual of

figure 26a is obtained by colliding the punctures A and B on the Riemann surface. This

will land us upon a theory consisting of an E7 block (with G2 × USp(6) ⊂ E7 manifest)

coupled to a USp(6) × USp(4) × G2 block via an N = 1, G2 vector multiplet. We will

also have to integrate in mesons (with appropriate vevs) to compensate for the mismatch

between the colors of the punctures and the pair of pants. Its superpotential is

W = ĉtrµ̂ ˆ̃µ+ tr
∑
j

(MA)j,−j(µ̂A)j,j +
∑
j

(MC)j,−j(µ̂C)j,j (5.5)

with the shifted charges being

R→ R− ρA(σ3)− ρC(σ3) , (5.6)

F → F − 2ρA(σ3) + 2ρC(σ3) . (5.7)

We will use the symbol UG2
as to denote this theory.
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Figure 26: Non-Lagrangian dual theories for the N = 1 G2 gauge theory with 8 funda-

mentals.

Non-Lagrangian dual 2: swapped G2. We arrive at the swapped G2 frame by per-

muting all the four punctures such that we exchange A with B and C with D. This is

equivalent to coupling two USp(6)2 × G2 theories along their G2 puncture. We will have

to integrate in 4 mesons MA, MB, MC and MD. We give vevs to these mesons such that

USp(6)C and USp(6)D get completely Higgsed while USp(6)A and USp(6)B get Higgsed

down to their respective USp(4). This theory will henceforth be denoted by UG2
s . Its

superpotential becomes

W = ĉtrµ̂ ˆ̃µ+ tr
∑
j

(MA)j,−j(µ̂A)j,j +
∑
j

(MB)j,−j(µ̂B)j,j+∑
j

(MC)j,−j(µ̂C)j,j +
∑
j

(MD)j,−j(µ̂D)j,j ,
(5.8)

while the charges get shifted such that

R→ R− ρA(σ3)− ρB(σ3)− ρC(σ3)− ρD(σ3) , (5.9)

F → F − 2ρA(σ3) + 2ρB(σ3) + 2ρC(σ3)− 2ρD(σ3) . (5.10)

Non-Lagrangian dual 3: crossing-type. The crossing-type frame is shown in fig-

ure 26c. It consists of two blocks with USp(6) × USp(4) × SO(8) flavor symmetry glued

along their SO(8) puncture. The spectrum of the theory also includes mesons MC and MD

as the punctures C and D lie in pants that are colored oppositely to their own color. We

will give a vev to the mesons such that the USp(6) flavor symmetry of these punctures gets
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completely Higgsed. The superpotential then becomes

W = ĉtrµ̂ ˆ̃µ+
∑

j(MC)j,−j(µ̂C)j,j +
∑

j(MD)j,−j(µ̂D)j,j , (5.11)

and the new charges are given by

R→ R− ρC(σ3)− ρD(σ3) , (5.12)

F → F + 2ρC(σ3)− 2ρD(σ3) . (5.13)

We will use the symbol UG2
c2 to represent this theory.

5.2 Anomaly matching

We now show that the anomalies of our proposed dual frames match.

trR and trR3. In the G2 electric theory, we find that

trR = 14 +

(
−1

2

)
(8× 7) = −14 , (5.14)

trR3 = 14 +

(
−1

2

)3

(8× 7) = 7 . (5.15)

After considering the shift in the charges, we find that in UG2
c1 frame

trR = 28 + 2
∑
j,m

(
−1

2
−m

)
× 8 + 2

∑
j

j

= 28− 48 + 6 = −14 ,

(5.16)

which is same as the result obtained for the electric theory. Similarly for the trR3 anomaly

in the Spin(8) theory we obtain

trR3 = 28 + 2
∑
j,m

(
−1

2
−m

)3

× 8 + 2
∑
j

j3

= 28− 24 + 3 = 7 ,

(5.17)

which matches with the electric theory.

The effective number of hypers and vectors in a block with USp(6)×USp(4)× SO(8)

flavor symmetry is 102 and 72 respectively [16]. Using this result we find that the trR

anomaly in the UG2
c2 is

trR = 2(72− 102) + 28 + 2× 9 = −14 , (5.18)

here the first term on the r.h.s. corresponds to the contribution of the non-Lagrangian

blocks to trR, the second term is the contribution from SO(8) gauginos while the last term

is the contribution of the mesons used to Higgs the USp(6) flavor symmetry of the blocks.

Using (3.40) and (3.41) along with the fact that in T̃SO(2N), ksp(2N−2) = 4N we find that

in UG2
c2

trR3 = −327 + 28 + 306 = 7 . (5.19)
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As before the various terms on the r.h.s. are obtained from the contribution of the non-

Lagrangian blocks, the SO(8) gauginos and the mesons respectively.

The effective number of hypers and vectors in the block with USp(6)2×G2 symmetries

can be obtained by comparing the N = 2 theory obtained by gluing two such blocks

along their G2 puncture and its S-dual corresponding to two copies of the block with

USp(6)2 × SO(8) punctures glued along their SO(8) puncture with a Z3 twist around the

cylinder. This will also provide us with the central charges of the various flavor symmetries.

Following this procedure we find that in the USp(6)2 × G2 block, nv = 86 and nh = 112.

Using this and including the contribution of the mesons that stay coupled to the theory

(after Higgsing one of the USp(6) down to USp(4) and completely Higgsing the other

USp(6)), we find that in UG2
s

trR = 2× (86− 112) + 14 + 2× 9 + 2× 3 = −14 . (5.20)

If we now calculate the trR3 anomaly in this theory, we find

trR3 = −316× 2 + 14 +
3

2
× 2 + 153× 2 = 7 , (5.21)

This is in agreement with our proposal.

We can use our knowledge of the number of hypers and vectors and central charges in

the USp(6) × USp(4) × SO(8) block to evaluate this data for the USp(6) × USp(4) × G2

block which are: nv = 79 and nh = 102. The trR anomaly can now be calculated in UG2
as

and is found to match with that in the other duality frames:

trR|UG2
as

= (79− 102) + (7− 24) + 14 + 9 + 3 = −14 , (5.22)

here the first term on the r.h.s. is the contribution from the USp(6)× USp(4)×G2 block

while second term is the contribution from the E7 theory. The third term is the contribution

of G2 gauginos while the last two terms are the contributions of the mesonic excitations.

The coefficient of trR3 in this theory is

trR3 = −209 +
95

2
+ 14 + 153 +

3

2
= 7 . (5.23)

This is consistent with our expectations.

trRF2. In the G2 theory, each block contributes

trRF2 =

(
−1

2

)
(4× 7) = −14 . (5.24)

In the SO(8) theory, the F charges are shifted such that F → F −2ρA(σ3) + 2ρB(σ3). The

contribution of the pants with color ‘σ’ is therefore given by

trRF2 =
∑
j,m

(
− 1

2
−m

)
(σ + 2σm)2 × 8 +

∑
j

j(−2σ − 2σj)2 = −14 . (5.25)

This shows a perfect match with the G2 theory.
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In the non-Lagrangian duals, the shifted charges R = R0−ρ(σ3) and F = F−2σρ(σ3),

(for pants with color ‘σ’) give rise to the following expression for trRF2:

trRF2 = tr(R0 − ρ)(F0 − 2σρ)2 = trR0F2
0 + 6ItrRN=2T

aT b (5.26)

where we have used the SU(2) embedding index I to evaluate trRρ2 and trFρ2. The final

expression in (5.26) is independent of the color of pants, as should be the case. Also, on

each pair-of-pants trR0F2
0 = −nh. Using this and taking the contribution of mesons into

account, it can be verified that each pair-of-pants in the decomposition of UG2
c2 and UG2

s ,

contributes a −14 to the anomaly, thereby establishing the match with the electric frame.

In UG2
as , since the pair-of-pants decomposition is not symmetric thus the pants contribute

different amounts to the total anomaly. The pants with USp(6)×USp(4)×SO(8) punctures

contributes −92 while the other pant contributes 64, thereby bringing the total to −28

which is same as in the electric theory.

trRT aT b and trFT aT b. After Higgsing the USp(6) punctures in the G2-frame of fig-

ure 24a, we are left with a USp(4)A × USp(4)B flavor symmetry which is enhanced to

USp(8) in the electric theory when there is no superpotential. We now match the ’tHooft

anomalies of these flavor symmetries in the electric and the magnetic frames. In the G2

theory we find that

trRT aAT
b
A = 7×

(
−1

2

)
× tr2T

a
AT

b
A = −7

2
δab , (5.27)

trFT aAT bA = 7× (−1)× tr2T
a
AT

b
A = −7δab . (5.28)

It is straight forward to check that these match with those in the SO(8) theory, once we

use the shifted R and F charges. Thus in the SO(8) theory we have

trRT aAT
b
A = 8× tr

(
−1

2
+ ρ

)
T aAT

b
A +

∑
j

trjT aAT
b
A = −7

2
δab , (5.29)

and

trFT aAT bA = 8× tr(1 + 2ρ)T aAT
b
A +

∑
j

tr(−2− 2j)T aAT
b
A = −7δab , (5.30)

which is same as the corresponding anomalies of the G2 theory. The same discussion will

also apply in the case of anomalies for the USp(4)B flavor symmetries.

In UG2
c2 the anomaly coefficients can be obtained from the flavor central charges:

trRT aAT
b
A = 1

2trRN=2T
a
AT

b
A and trFT aAT bA = trRN=2T

a
AT

b
A. Since ksp(4) = 7, we find that

the anomaly coefficients match those in the electric frame. The same holds for the anoma-

lies of USp(4)B.

The anomalies of in UG2
s can be obtained from the embedding index of USp(4) in

USp(6). Thus for the pair-of-pants containing the puncture A we find

trRN=2T
a
AT

b
A = ItrRN=2T

a
sp(6)T

b
sp(6) . (5.31)
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Since the 6 of USp(6) becomes 4⊕ 1⊕ 1 of USp(4), therefore I = 1. We will also have to

add the contribution of the mesons. Thus

trRT aAT
b
A|UG2

s
=

1

2
ItrRN=2T

a
sp(6)T

b
sp(6) +

∑
j

trjT aAT
b
A

=

(
−4 +

1

2
× 1

)
δab = −7

2
δab .

(5.32)

Similarly we can show that trFT aAT bA|UG2
s

= −7δab. The anomalies of USp(4)B match those

in the electric frame in an analogous manner.

The anomalies of UG2
as can also be shown to match after using the fact that ksp(4)B = 7

and proceeding in the same way as in UG2
s for the anomalies of USp(4)A.

6 Superconformal index

In this section, we put our new dualities to test by comparing the superconformal indices

for the dual theories. We first review superconformal indices for the N = 2 theories of class

S studied in [34–37] which was extended to the case of type D by [38]. In the process, we

close some of the loose ends regarding the Z2,3-twisted punctures of Dn theories. Then we

compute the superconformal indices for the N = 1 theories studied in section 3, 4, 5 using

a similar formalism developed in [4, 39].

6.1 N = 2 index

The N = 2 superconformal index is defined as

I = Tr(−1)F
(
t

pq

)r
pj2+j1qj2−j1tR

∏
i

xfii , (6.1)

where (j1, j2) are the Cartans of the Lorentz group SU(2)1×SU(2)2, r and R are the U(1)R
and SU(2)R generators respectively. The fi denote the Cartans for the flavor symmetry

group. For any class S theories, the indices can be thought of as a correlation function for

a topological field theory. It turns out that the indices for a class S theory defined by a

Riemann surface C with genus g and n twisted or untwisted punctures labeled by ρ1,··· ,n
can be written as

I =
∑
λ

∏n
I=1KρI (aI)Pλ(aρI )

(K∅Pλ(t∅))2g−2+n
, (6.2)

where the summation is over the representations λ of Γ. Let us explain the meaning of

various symbols.

• The function Pλ is some special function defined by requiring the function fλ(a) =

Kfull(a)Pλ(a) to be orthonormal under the measure given by the vector multiplet

index IV (a): ∮
[dz]IV (z)fλ(a)fλ′(a) = δλλ′ . (6.3)
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The function Pλ can be Schur function or Macdonald polynomial or related to

the wave function of elliptic Ruijsenaars-Schneider model depending on the num-

ber of fugacities (p, q, t) we want to keep. The Pλ also depend on the choice of

twisted/untwisted puncture.

• The K-factor Kρ is labeled by a embedding ρ of SU(2) into G, where G = Γ for

the untwisted puncture and G is the group formed by folding the Dynkin diagram

with the choice of outer-automorphism as in the table 1. The embedding ρ induces

a decomposition of adjoint into the form ⊕jRj ⊗ Vj where Vj is the spin-j irrep of

SU(2) and Rj are representations for the flavor symmetry group associated to the

puncture. For the case of the Macdonald index (p = 0), the K-factor can be written

as [40]

KΛ(a) = PE

∑
j

tj+1

1− q
trRj (a)

 , (6.4)

where PE stands for the plethystic exponential. For example, for the full puncture,

it is simply given by

Kfull(a) = PE

[
t

1− q
χadj(a)

]
. (6.5)

For the null puncture ∅, it is given by

K∅ = PE

[
tdi

1− q

]
=

rank(Γ)∏
i=1

(tdi ; q)−1 , (6.6)

where di are the degrees of invariants of G and (x; q) =
∏∞
i=0(1−xqi) is the Pochham-

mer symbol. The general form of KΛ(a; p, q, t) has been conjectured in [4] to be

KΛ(a) = PE

∑
j

tj+1 − pqtj

(1− q)(1− p)
trRj (a)

 . (6.7)

• The argument aρI can be determined by looking at the embedding of ρ(SU(2))×GF
into G where ρ(SU(2)) is image under the map ρ and GF is the flavor symmetry group

associated to the puncture. The fundamental of G can be decomposed in terms of

spin-j irreps of SU(2) as fundG = ⊕jRFj ⊗ Vj . One can match the fugacities by

using characters. First write down the character for the fundamental of G. And then

compare it with the characters of the representations of SU(2)×GF . By comparing

the two, one can map the fugacities for the GF to the fugacities of G appear in Pλ(a).

See the section 4.2.1 of [38] for more details.

Now, let us focus on the examples of twisted Dn-type theories. We will restrict our discus-

sion to the case of Macdonald index p = 0.
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We implemented computation of Macdonald polynomials using the procedure out-

lined in appendix B of [40] through direct Gram-Schmidt process using Mathematica and

LieART [41]. There is more efficient method of computing Macdonald polynomials for

A,B,C,D,E6,7 through determinantal construction [42]. We refer to appendix A of [38]

for a nice review on the construction of Macdonald and Hall-Littlewood polynomials.

Dn-type theories with Z2-twist. The function Pλ in our case becomes the normalized

Macdonald polynomial of type G where G is either Γ = Dn or G = Cn−1 depending on the

choice of untwisted and twisted puncture.

Pλ(a) = N
−1/2
λ P λM,G(a; q, t) , (6.8)

where PM,G is the Macdonald polynomial given by the root-system of G.9 The Nλ(q, t) is

a normalization factor given by inner product of two Macdonald polynomials

Nλ = 〈P λM,G, P
λ
M,G〉 =

∫
[dz]GPE

[
−q + t

1− q
χadj(z)

]
P λM,G(z)P λM,G(z) , (6.9)

where [dx]G stands for the Haar measure of the group G. For the D4 case, we have two

different choice of twisting, namely Z2 and Z3 which gives C3 and G2. We will treat this

special case later in this section.

The superconformal index for the TSO(2n) theory is given by

I =
KSO

full (a1)KSO
full (a2)KSO

full (a3)

KSO
∅

∑
λ∈RSO(2n)

PSOλ (a1)PSOλ (a2)PSOλ (a3)

PSOλ (t∅)
, (6.10)

where the Pλ is given by the SO(2n) Macdonald polynomial. One can start from this

theory and then by partially closing or Higgsing the punctures, to obtain general theory

corresponding to a 3 punctured sphere. In more extreme limit, one can consider completely

closing the punctures. Then the index should be trivial, which completely fixes the factor

in the denominator which is the structure constant of the TQFT.

More generally, when we have twisted punctures, the structure constant can be fixed

by requiring it to become trivial when we close all the three punctures. Therefore we can

write the index for the T̃ (SO(2n)) theory as

I =
KSO

full (a)KUSp
full (b1)KUSp

full (b2)

KSO
∅

∑
λ∈RUSp(2n−2)

PSOλ (a)PUSpλ (b1)PUSpλ (b2)

PSOλ (t∅)
, (6.11)

where the sum is over the representations of USp(2n− 2) not SO(2n). For the P SO(2n), we

restrict the sum to the case of outer-automorphism invariant representations. In terms of

Dynkin labels, they are of the form [λ1, λ2, · · · , λn−1, λn−1].

9In general, PM is labeled by an affine root system. There is many to one map between the affine root

systems and the group G. In our case, only the Macdonald polynomial for G appears. The other ones

such as the dual root system G∨ and the non-reduced affine root system (C∨n , Cn) appear when we consider

outer-automorphism twisted index. [40]
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One can completely close one of the USp puncture to obtain the free theory of SO(2n)×
USp(2n− 2) bifundamental half-hypermultiplets. It is given by

Ibifund =
KSO

full (a)KUSp
full (b)KUSp

∅
KSO

∅

∑
λ∈RUSp(2n−2)

PSOλ (a)PUSpλ (b)PUSpλ (t∅)

PSOλ (t∅)
. (6.12)

We have checked this relation up to n = 5 and to a few orders in q.

When we glue three punctured spheres, we integrate with a vector multiplet measure.

From the orthonormality condition (6.3), we arrive at the same result of (6.2). One in-

teresting aspect here is that whenever there is a twisted puncture, summation over the

representations of Γ reduces to that of G.

D4-type theories with Z3-twist. The Γ = D4 theory can be twisted in two different

ways because the outer-automorphism group is generated by Z2 and also Z3. The Z2

twisting gives C3 = USp(6) puncture and the Z3 twisting gives G2 puncture. Consider the

three punctured sphere given by one USp(6) puncture and one G2 puncture with twisted

null puncture as in the figure 23. From the TQFT structure, we can write its index as

IE7(a, b) =
KG2

full(a)KUSp
full (b)KUSp

∅
KSO

∅

∑
λ∈RG2

PG2
λ (a)PUSpλ (b)PUSpλ (t∅)

PSOλ (t∅)
. (6.13)

Here the sum is over the representations of G2. For the SO(8) and USp(6) punctures, this

means summing over the representations invariant under the Z3 action. In terms of the

Dynkin labels, they are [λ1, λ2, λ1, λ1] and [λ1, λ2, λ1] for the G2 representation [λ2, λ1].

The TQFT structure requires S-duality invariance of the index. In our case, it trans-

lates to the condition that the indices for the first two frames of G2-coupled two E7 theories

as in figure 24 being equal. We should have∮
[dω]IG2

vec(ω)IE7(ω,a)IE7(ω, b) =

∮
[dz]ISO(8)

vec (z)Ibifund(z,a)Ibifund(z̃, b) , (6.14)

where IGvecl is the vector multiplet index for the gauge group G and Ibifund denotes the

index of the SO(8) × USp(6) bifundamentals (6.12). We represent the G2 fugacities with

ω while the SO(8) fugacities are given by z = (z1, z2, z3, z4) and z̃ = (z4, z2, z3, z1). The

transformation of SO(8) fugacities from z to z̃ implements the Z3 twist around the SO(8)

cylinder in figure 24b. Orthogonality of the SO(8) wave-functions upon integration with

respect to the SO(8) vector multiplets implies that only those representations that are of

the Z3 invariant form mentioned before, contribute to the r.h.s. of (6.14). This is enough

to show the identity of (6.14)

As a remark, we find that the index for the E7 theory can also be written as

IE7(a, b) =
KG2

∅ KG2
full(a)KUSp

full (b)

KUSp
∅

∑
λ∈RG2

PG2
λ (t∅)PG2

λ (a)PUSpλ (b)

PUSpλ (t∅)
. (6.15)
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We can get this form from the identity(
PUSpλ (t∅)

)2
= PSOλ (t∅)PG2

λ (t∅) , (6.16)

where the representations λ are now restricted to belong to the Z3 invariant form discussed

above. We do not have an analytic proof of the identity (6.16), but we were able to check

this relation for several low-dimensional representations.

From the form (6.15), the index becomes 1 upon closing all the punctures. For the case

of UV curves without twisted punctures, we always get 1 upon closing all the punctures.

It is not clear whether it should be the case with twisted punctures, because even after

closing a twisted puncture it still carries non-trivial information. Nevertheless, it turns out

that the superconformal index is unity for the theory having a UV curve with only null

punctures (with or without twist) of type An, Dn.

Enhancement of global symmetry USp(6) × G2 to E7. As we have discussed in

section 5, the theory given by USp(6) and G2 punctures is expected to have enhanced E7

global symmetry [18]. Here we check this explicitly through the computation of index. We

find that the index of this theory computed by (6.13) can be indeed written in terms of

the characters of E7.

The product algebra G2 ×USp(6) is embedded into E7 such that [43]

56 → (7, 6)⊕ (1, 14) , (6.17)

133 → (7, 14)⊕ (14, 1)⊕ (1, 21) , (6.18)

7371 → (27, 90)⊕ (14, 70)⊕ (64, 14)⊕ (7, 189)⊕ (77′, 1)

⊕(27, 14)⊕ (7, 70)⊕ (14, 21)⊕ (1, 126′)⊕ (1, 90) (6.19)

⊕(7, 21)⊕ (7, 14)⊕ (27, 1)⊕ (1, 14)⊕ (1, 1) .

We find that the index of the USp(6) × G2 theory can be written in terns of the E7

characters. For example, the Schur index (p = 0, q = t) can be written as

ISchur = 1 + χE7
133(a, b)q + (χE7

7371(a, b) + χE7
133(a, b) + 1)q2 + · · · , (6.20)

where we used the above decompositions to write as χE7
133(a, b) = χG2

7 (a)χ
USp(6)
14 (b) +

χG2
14 (a) · 1 + 1 · χUSp(6)

21 (b) and so on.

Especially, the Hall-Littlewood index (p = 0, q = 0) is known to reproduce the Hilbert

Series of the Higgs branch when the UV curve has genus 0 [36]. The Higgs branch of

Minahan-Nemeschansky E7 theory is known to be the moduli space of E7 instantons with

instanton number 1. The Hilbert series of 1 instanton moduli space is entirely given in

terms of the characters for the symmetric product of adjoint representations:

Hilb(MG,k=1) =
∑
n≥0

χSymn(adj)t
n . (6.21)

This relation for the exceptional group was proven in [44, 45] and studied in the physics

literatures by [46–48]. We verified that the Hall-Littlewood index for the USp(6) × G2
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theory is indeed written in terms of the characters of the adjoint representations of E7

IHL =
∑
n≥0

χ[n, 0, 0, 0, 0, 0, 0]tn , (6.22)

where we used the Dynkin label here.

Bifundamentals of G2 × USp(4) through Higgsing the E7 theory. As we have

discussed in section 5, we can obtain a free theory of G2 × USp(4) bifundamentals by

partially Higgsing the USp(6) global symmetry down to USp(4) of the E7 theory. We

obtain the K-factor from decomposing the adjoint of USp(6) to the representations of

SU(2)×USp(4) which is

KUSp(4) = PE

[
1

1− q

(
χ[2,0]t+ χ[1,0]t

3/2 + χ[0,0]t
2
)]

, (6.23)

where we used Dynkin labels to write the representation of USp(4). The fugacities for the

USp(4) puncture is (t, t1/2b1, t
1/2b2) in the α-basis meaning all the weights are given as a

linear combination of the simple roots. The fugacities for the null puncture is (t, t−1) for

the G2 and (t5/2, t4, t9/2) for the USp(6) in the α-basis.

6.2 N = 1 index

Now, let us move on to the discussion of the superconformal indices of N = 1 class S
theories. The N = 1 superconformal index is defined as

I(z; p, q, ξ) = Tr(−1)F pj1−j2+R/2qj1+j2+R/2ξ−F/2zQ , (6.24)

where F is the U(1)F global symmetry preserved in the class S theory.

The N = 1 index of theories constructed in the present paper can be obtained from the

N = 2 index of their building blocks. These building blocks can be classified into the colored

T σN blocks (σ = ±) and the N = 1 and N = 2 vector multiplets that couple them together.

Their contribution to the N = 1 index is given by IN=1 = IN=2(p, q, t = ξσ
√
pq), where ξσ

gives their charge with respect to the U(1)F flavor symmetry.10 As mentioned previously,

the underlying TQFT structure implies that the N = 2 superconformal index of class S
theories can be written in terms of orthogonal functions fλ(a; p, q, t). It is expected that

in general fλ(a; p, q, t) are related to the wave-functions of elliptic Ruijsenaars-Schneider

model. There is some evidence that for theories of type AN these functions satisfy the

identity [37]

fλ(a; p, q, t) = PE

[
t− pq/t

(1− p)(1− q)
χadj(a)

]
fλ

(
a; p, q,

pq

t

)
. (6.25)

We will henceforth assume that this identity continues to hold for theories of type DN and

their outer-automorphism twists. This identity implies that the functions Pλ(p, q, t) are

10Here for the sake of brevity, we have omitted the fugacities for all flavor symmetries of the three

punctured spheres. Nevertheless they are there and will be important for matching the index across various

duality frames.
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invariant under t ↔ pq/t. Upon reducing this to the case of N = 1 index, it ensures the

invariance of Pλ(p, q, ξσ
√
pq) under ξ ↔ ξ−1. The superconformal index of two T σN blocks

coupled by an N = 1 vector multiplet can be written as

I(a, b; c,d) =

∮
[dz]IN=1

vec (z)IT+
N

(z,a, b)IT−N
(z, c,d) , (6.26)

where a, b, c,d are the fugacities for the flavor symmetries of the theory while z are the

fugacities for the gauge group. ITσN is the N = 1 index of T σN theory obtained from its

N = 2 index. Due to orthonormality of the wavefunctions, the index in (6.26) formally

simplifies to

I(a, b; c,d) =
∑
λ

f+
λ (a)f+

λ (b)f−λ (c)f−λ (d)

f+
λ (∅)f−λ (∅)

. (6.27)

Here fσλ (a) is short-hand for fλ(a; p, q, t = ξσ
√
pq) and has to be chosen appropriately

according to the flavor symmetry of puncture “a”. f±λ (∅) correspond to the structure

constants in the N = 2 index. The sum in (6.27) is over the set of representations whose

Dynkin labels are of the form explained earlier in the paper.

SO dualities. We first compare the superconformal index of the unHiggsed theories

across the various duality frames. In the electric theory, T SO, we find that the index can

be written as

IT SO(a, b; c,d) =

KUSp
+ (a)KUSp

+ (b)KUSp
− (c)KUSp

− (d)

KSO
∅,+K

SO
∅,−

∑
λ

PUSpλ (a)PUSpλ (b)PUSpλ (c)PUSpλ (d)

PSOλ (t∅)PSOλ (t∅)
.

(6.28)

In the crossing frame, T SOc , the punctures B and C are exchanged with each other. Their

U(1)F charges switch signs and we had to integrate in mesons MB and MC with U(1)F
charges being −2 and +2 respectively. The index of T SOc then becomes

IT SOc (a, c; b,d) = M+(b)M−(c)IT SO(a, c; b,d) , (6.29)

where Mσ(x) is the contribution of the mesons having F-charge −2σ and flavor fugacities x

Mσ(x) = PE

[√
pq(ξσ − ξ−σ)

(1− p)(1− q)
χadj(x)

]
. (6.30)

The equality of the indices in (6.28) and (6.29) then follows from the identity

Mσ(x)K−σ(x) = Kσ(x) . (6.31)

We can repeat this exercise for the index of the theory T SOs , in the swapped frame wherein

we find

IT SOs (d, c; b,a) = M+(a)M+(b)M−(c)M−(d)IT SO(d, c; b,a) . (6.32)

The identity in (6.31) can now be used to match the indices in the various duality frames.
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The procedure of Higgsing the USp(2N − 2) punctures can be implemented in the

index by transmuting the USp(2N − 2) fugacities into the fugacities of the partially closed

puncture. As has been mentioned earlier this can be achieved by comparing the character

of the USp(2N − 2) fundamental written in terms of the fugacities of the USp(2N − 2)

symmetry, to the character written in terms of the SU(2)×GF ⊂ USp(2N−2). The SU(2)

here is embedded into USp(2N − 2) through the vev we use to Higgs the puncture while

GF is residual flavor symmetry left invariant by the vev. The fugacity for SU(2) characters

is required to be τ = (ξσ
√
pq)1/2. The redundancy in the choice of fugacities corresponds

to the Weyl symmetries of USp(2N − 2). The prefactor KΛ(a; p, q, t = ξσ
√
pq) is given

by (6.7).

Applying this to close the punctures A and D we find that the index for the electric

theory USO can be written as

IUSO(∅, b; c,∅) =

KUSp
∅,+ K

USp
∅,−K

USp
+ (b)KUSp

− (c)

KSO
∅,+K

SO
∅,−

∑
λ

PUSpλ ((ξ
√
pq)∅)PUSpλ ((ξ−1√pq)∅)PUSpλ (b)PUSpλ (c)

PSOλ ((ξ
√
pq)∅)PSOλ ((ξ−1√pq)∅)

.

(6.33)

In the Intriligator-Seiberg (magnetic) frame USOc1 , the superconformal index is

IUSOc1
(∅, c; b,∅) = M+(b)M−(c)IUSO(∅, c; b,∅) , (6.34)

which matches with the index of the electric theory upon using (6.31).

In the swapped frame it is the mesons that get a vev, leading to a shift in the R-and

F-charges. The shift of the charges can be accommodated into the index by the following

substitution: in the T̃ σN block of the swapped theory, replace the fugacities for USp(2N−2)

with those for SU(2) × GF ⊂ USp(2N − 2) using ξσ/
√
pq as the fugacity for SU(2). The

index of the swapped theory, USOs , is therefore given by

IUSOs = M+
∅M

−
∅M

+(b)M−(c)IT SO((ξ/
√
pq)∅, c; b, (ξ−1/

√
pq)∅) , (6.35)

where Mσ
∅ is the contribution from the mesonic excitations MAj,−j and MDj,−j that stay

coupled to the theory:

Mσ
∅ =

∏
j

PE

[
(ξσ
√
pq)1+j − pq/(ξσ√pq)1+j

(1− p)(1− q)

]
. (6.36)

Similarly the index for the theory, USOas , in the Argyres-Seiberg frame can be written as

IUSOas = M+
∅M

−(c)IT SO(c, b; (ξ−1/
√
pq)∅,∅) , (6.37)

while the index for the theory, Uc2, in the crossing frame is given by

IUSOc2
= M+

∅M
−
∅ IT SO((ξ/

√
pq)∅, b; c, (ξ−1/

√
pq)∅) . (6.38)

– 45 –



J
H
E
P
0
3
(
2
0
1
4
)
1
3
3

The equality of the indices in the various duality frames can be established by using the

identity

Mσ
∅K

USp
−σ ((ξ−σ/

√
pq)∅) = KUSp

∅,σ . (6.39)

along with (6.31) and the invariance of PUSpλ under the Weyl symmetries of USp(2N−2).11

USp dualities. Following a similar procedure as in the case of the SQCD with SO(2N)

gauge group, we can now write down the index of the various duality frames of SQCD with

USp(2N − 2) gauge group. Before Higgsing some the punctures, we compare the indices of

the unHiggsed theories in the various duality frames we obtain by moving the punctures

around. The index for the electric theory, T Sp is

IT Sp(a, b; c,d) =
KUSp

+ (a)KSO
+ (b)KSO

− (c)KUSp
− (d)

KSO
∅,+K

SO
∅,−

∑
λ

PUSpλ (a)PSOλ (b)PSOλ (c)PUSpλ (d)

PSOλ (t∅)PSOλ (t∅)
,

(6.40)

where the sum now is over the representations of USp(2N − 2), as was explained earlier.

In the duality frame T Spc1 obtained by exchanging punctures B and C, we find

IT Spc1
(a, c; b,d) = M+(b)M−(c)IT Sp(a, c; b,d) , (6.41)

Similarly the index of the crossing theory T Spc2 , obtained by exchanging punctures A and

D, is

IT Spc2
(d, b; c,a) = M+(a)M−(d)IT Sp(d, b; c,a) . (6.42)

In the frame T Spc3 , obtained by exchanging puncture B and D, the index becomes

IT Spc3
(a,d; c, b) = M+(b)M−(d)IT Sp(a,d; c, b) . (6.43)

The index for the theory T Sps in the swapped frame is

IT Sps
(d, c; b,a) = M+(a)M+(b)M−(c)M−(d)IT Sp(d, c; b,a) . (6.44)

Equality of the above indices follows from (6.31).

Upon appropriately Higgsing the punctures A and D we find that the index in the

electric theory USp can be written as

IUSp(∅, b; c,∅) =

KUSp
∅,+ K

USp
∅,−K

SO
+ (b)KSO

− (c)

KSO
∅,+K

SO
∅,−

∑
λ

PUSpλ ((ξ
√
pq)∅)PUSpλ ((ξ−1√pq)∅)PSOλ (b)PSOλ (c)

PSOλ ((ξ
√
pq)∅)PSOλ ((ξ−1√pq)∅)

.

(6.45)

11More specifically we use the fact that PUSpλ (a) = PUSpλ (a−1).
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The index of Intriligator-Pouliot theory USpc1 is

IUSpc1
(∅, c; b,∅) = M+(b)M−(c)IUSp(∅, c; b,∅) . (6.46)

For the crossing theory USpc2 , the index is given by

IUSpc2
= M+

∅M
−(∅)IT Sp((ξ/

√
pq)∅, b; c, (ξ−1/

√
pq)∅) . (6.47)

Similarly in the swapped frame USps and the Argyres-Seiberg dual frame USpas , the respective

superconformal indices are:

IUSps
= M+

∅M
−
∅M

+(b)M−(c)IT Sp((ξ/
√
pq)∅, c; b, (ξ−1/

√
pq)∅) , (6.48)

IUSpas
= M+

∅M
−(c)IT Sp(c, b; (ξ−1/

√
pq)∅,∅) . (6.49)

The indices in the various duality frames match owing to the identities (6.31) and (6.39)

and the Weyl invariance of PUSpλ .

G2 dualities. The index of the theories involved in the G2 dualities proposed by us can

be written in terms of the N = 1 index of the theory T G2 obtained by coupling two T̃SO(8)

blocks with an N = 1, SO(8) vector multiplet and a Z3 twist around the cylinder that

couples two spheres. The superconformal index for this theory is

IT G2(p, q; r, s) =

KUSp
+ (p)KUSp

+ (q)KUSp
− (r)KUSp

− (s)

KSO
∅,+K

SO
∅,−

∑
λ

PUSpλ (p)PUSpλ (q)PUSpλ (r)PUSpλ (s)

PSOλ (t∅)PSOλ (t∅)
,

(6.50)

where the sum is over G2 representations. The electric theory UG2 is built from bifunda-

mentals of G2 ×USp(4) and its index is

IUG2 (a; b) = IT G2(∅,a(ξ
√
pq)♥; b(ξ−1√pq)♥,∅) . (6.51)

Here a and b are the fugacities for USp(4)A and USp(4)B respectively and ♥ represents

the embedding of SU(2) in USp(6) that reduces the flavor symmetry of the puncture down

to USp(4).

In the Spin(8) frame, the superconformal index of the theory is given by

IUG2
c1

= M+
♥ (a)M−♥ (b)IT G2(∅, b(ξ/

√
pq)♥;a(ξ−1/

√
pq)♥,∅) , (6.52)

where Mσ
♥(a) are the mesons that remain in the theory after Higgsing the corresponding

USp(6)puncture down to USp(4) which is given by

Mσ
♥(a) = PE

[
(ξσ
√
pq)− pq/(ξσ√pq)
(1− p)(1− q)

χadj(a)

]
× PE

[
(ξσ
√
pq)

3
2 − pq/(ξσ√pq)

3
2

(1− p)(1− q)
χf(a)

]
(6.53)

× PE

[
(ξσ
√
pq)2 − pq/(ξσ√pq)2

(1− p)(1− q)

]
.
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In the crossing-type frame we find

IUG2
c2

= M+
∅M

−
∅ IT G2((ξ/

√
pq)∅,a(ξ

√
pq)♥; b(ξ−1√pq)♥, (ξ−1/

√
pq)∅) . (6.54)

The superconformal index for the Argyres-Seiberg type dual can be written as

IUG2
as

= M+
♥ (a)M−∅ IT G2((ξ/

√
pq)∅,∅; b(ξ−1√pq)♥,a(ξ−1/

√
pq)♥) . (6.55)

Similarly the index of the theory in the swapped G2 frame is

IUG2
s

= M+
∅M

−
∅M

+
♥ (a)M−♥ (b)IT G2((ξ/

√
pq)∅, b(ξ/

√
pq)♥; (ξ−1/

√
pq)♥,a(ξ−1/

√
pq)♥) . (6.56)

The indices in all these frames match upon using the Weyl invariance of PUSpλ along

with (6.31) and the generalized form of (6.39) given by

Mσ
ΛK

USp
−σ ((ξ−σ/

√
pq)Λ) = KUSp

Λ,σ . (6.57)

Therefore we find the indices all agree on five dual frames of the G2 gauge theory.
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A Chiral ring relations of TSO(2N) and T̃SO(2N) theories

A.1 TSO(2N)

Consider the N = 2 superconformal quiver gauge theory with the gauge groups

USp(2N − 2)× SO(2N)× · · · × SO(2N)×USp(2N − 2) ,

with a total of 2N −3 gauge factors and also N fundamentals at the two end of the quiver,

from which we realize the SO(2N) flavor symmetry at each ends. This is dual to a TN
block with SO(2N)3 flavor symmetry, coupled to a superconformal tail given by

SO(2N − 1)×USp(2N − 4)× SO(2N − 2)× · · · ×USp(2)× SO(3) .

Pictorially we can represent the two dual theories by figure 27.

Note that in the dual frame the SO(2N−1) sub-group of one of the three SO(2N) flavor

symmetries of the TN block is gauged while the other two SO(2N) flavor symmetries are

in one to one correspondence with flavor symmetries at the ends of the linear quiver. We
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2N 2N-2 2N 2N 2N-2 2Nq1 q2

(a) Linear quiver with SO(2N) ends.

2N 2N

2N ⊃ 2N-1 2N-4 2N-3 2 3

(b) Dual frame with TSO(2N) block.

Figure 27: The linear quiver dual to TSO(2N) coupled to a superconformal tail.

thus expect the operator µ1αβ transforming in the adjoint representation of SO(2N)1 to be

identified with Ωijq
i

1αq
j

1β in the linear quiver. Here Ω is the invariant anti-symmetric form

of the USp(2N − 2) group. Similarly we can also identify the operator that corresponds to

the dual of µ2αβ. We now want to establish the chiral ring relation

trµ2
1 = trµ2

2 . (A.1)

To see this note that the F -term equation of motion of the linear quiver are given by

q i
1αq

j
1α + q i

2βq
j

2β = 0 ,

Ωij(q
i

2αq
j

2β + q i
3αq

j
3β) = 0 , (A.2)

q i
3αq

j
3α + q i

4βq
j

4β = 0 ,

...

Using these relations we find that

trµ2
1 = µ1αβµ1βα

= ΩijΩlmq
i

1αq
j

1βq
l

1βq
m

1α

= ΩijΩlmq
i

1αq
m

1α q
j

1βq
l

1β

= ΩijΩlmq
i

2αq
m

2α q
j

2βq
l

2β

= (Ωijq
i

2αq
j

2β)(Ωlmq
l

2βq
m

2α ) (A.3)

= ΩijΩlmq
i

3αq
j

3βq
l

3βq
m

3α

= ΩijΩlmq
i

4αq
j

4βq
l

4βq
m

4α

= trµ̇2 ,

where µ̇αβ is the operator transforming in the adjoint of the SO(2N) gauge group in the

linear quiver. Propagating this relation across the quiver we then establish that trµ2
1 = trµ2

2.
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(b) Dual frame with T̃SO(2N) block.

Figure 28: The linear quiver dual to T̃SO(2N) coupled to a superconformal tail.

By symmetry we thus expect that in the strongly coupled TSO(2N) block the following chiral

ring relation holds

trµ2
1 = trµ2

2 = trµ2
3 . (A.4)

A.2 T̃SO(2N)

We now consider the linear quiver given by gauge groups SO(2N)× USp(2N − 2)× · · · ×
USp(2N − 2) × SO(2N). There are a total of 2N − 3 gauge groups and each end has

USp(2N−2) flavor symmetry. This is dual to a T̃SO(2N) block coupled to a superconformal

tail SO(2N − 1) × USp(2N − 4) × · · · × USp(2) × SO(3) where the SO(2N − 1) node of

the tail is a sub-group of the SO(2N) flavor symmetry of T̃SO(2N). See figure 28. The two

USp(2N − 2) flavor symmetries of the T̃SO(2N) block can then be identified with the flavor

symmetry at either end of the linear quiver. It is then straight forward to use the F -term

relations of the linear quiver to establish the chiral ring relation

trΩµ1Ωµ1 = trΩµ2Ωµ2 , (A.5)

where µ1 and µ2 are the dimension 2 operators transforming as the adjoint of USp(2N −2)

flavor symmetries of T̃SO(2N).

We can also consider the superconformal linear quiver of 2N − 2 nodes given by

SO(2N) × USp(2N − 2) × · · · × USp(2N − 2). The quiver then ends in a USp(2N − 2)

flavor symmetry on the left and a SO(2N) symmetry on the right. This theory can be

shown to be S-dual to a T̃SO(2N) block coupled to a superconformal tail whose nodes are

USp(2N − 2)× SO(2N − 1)×USp(2N − 4)× · · · × SO(3). The USp(2N − 2) node of the

tail is obtained by gauging one of the two USp(2N − 2) flavor symmetries of the T̃SO(2N)

block. We will also need to couple a half-hyper to this node in order to ensure that its

β-function vanishes. These theories can be visualized as in figure 29.

Now if µij1 is the dimension 2 operator of T̃SO(2N) theory transforming in adjoint repre-

sentation of USp(2N − 2) flavor symmetry while µ3αβ is the dim. 2 operator transforming

as the adjoint of the SO(2N) flavor symmetry then we identify their duals in the linear
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Figure 29: The linear quiver dual to T̃SO(2N) coupled to a superconformal tail.

quiver to be such that

µij1 = q i
1αq

j
1α , (A.6)

µ3αβ = Ωijq
i

2N−1,αq
j

2N−1,β . (A.7)

The F -term relations of the linear quiver are

Ωij(q
i

1αq
j

1β + q i
2αq

j
2β) = 0 ,

q i
2αq

j
2α + q i

3βq
j

3β = 0 , (A.8)

Ωij(q
i

3αq
j

3β + q i
4αq

j
4β) = 0 ,

...

Using these we can then write

trΩµ1Ωµ1 = Ωijq
j

1αq
k

1αΩklq
l

1βq
i

1β

= ΩklΩijq
i

2βq
j

2αq
k

2αq
l

2β

= ΩklΩijq
i

3βq
j

3αq
k

3αq
l

3β

= (Ωijq
i

3βq
j

3α)(Ωklq
k

3αq
l

3β) (A.9)

...

= (Ωijq
i

2N−1βq
j

2N−1α)(Ωklq
k

2N−1αq
l

2N−1β)

= trµ2
3 .

Thus we establish that for T̃SO(2N) theories, the following chiral ring relation holds

trΩµ1Ωµ1 = trΩµ2Ωµ2 = trµ2
3 . (A.10)
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