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Abstract Path marginal cost (PMC) is the change in total

travel cost for flow on the network that arises when time-

dependent path flow changes by 1 unit. Because it is hard

to obtain the marginal cost on all the links, the local PMC,

considering marginal cost of partial links, is normally

calculated to approximate the global PMC. When analyz-

ing the marginal cost at a congested diverge intersection, a

jump-point phenomenon may occur. It manifests as a

likelihood that a vehicle may unsteadily lift up (down) in

the cumulative flow curve of the downstream links. Pre-

viously, the jump-point caused delay was ignored when

calculating the local PMC. This article proposes an ana-

lytical method to solve this delay which can contribute to

obtaining a more accurate local PMC. Next to that, we use

a simple case to calculate the previously local PMC and the

modified one. The test shows a large gap between them,

which means that this delay should not be omitted in the

local PMC calculation.

Keywords Transportation network � Path marginal cost �
Cumulative flow curve � Dynamic traffic � System

optimization

List of symbols

Qt
a The capacity of cell a at time interval t

Nt
a The maximum number of vehicles that can be

presented in cell a at time interval t

nt
a The vehicle occupancy of cell a at time interval t

St
a The sending flow from cell a at time interval t

Rt
a The receiving flow to cell a at time interval t

yt
a; b The transmission flow from cell a to b at time

interval t

yt
a The outflow from cell a at time interval t, expressed

as yt
a ¼

P
b2Iþa

yt
a;b

bt
a

The vehicle occupancy heading for branch cell

a from upstream adjacent diverge cell divided by all

the vehicle occupancy in this upstream diverge cell

at time interval t

I�a The upstream cell set of cell a

Iþa The downstream cell set of cell a

1 Introduction

Path marginal cost (PMC) is the change in total travel cost

for flow on the network that arises when time-dependent

path flow changes by 1 unit. In the fields of transport

economy and intelligent transportation, PMC has remained

the normally computed value for finding the congestion toll

[1, 2] or the system-optimal dynamic traffic [3, 4]. How-

ever, until now, no method can calculate the marginal cost

on all the links after the perturbation of unit vehicle. So

generally, different types of local PMC are used to
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approximate the global PMC. Based on cumulative flow

curve, Ghali et al. [5] provided a sound analytical formu-

lation for marginal cost on each link along the path where

new vehicle was added. These link marginal costs were

summed up as a local PMC. However, the link interactions

were not considered. Shen et al. [6] proposed a perturbation

propagation time method to modify the marginal cost,

where the interaction of sequential links was considered.

More recently, Qian et al. [7] stated that link interactions on

congested diverge links may present a jump-point feature.

However, they have not provided an approach to take the

jump-point caused delay into the local PMC. Aforemen-

tioned definition of PMC can be clearly presented in Fig. 1.

We take Fig. 1 to explain jump-point phenomenon. It is

the fluctuation of cumulative vehicles caused by vehicle

sequence at link 1 and the rounding calculation procedure

for diverging flows. Jump-point phenomenon is related to

the dynamic traffic loading method. Generally, simulation

methods are selected to load dynamic traffic, because the

actual travel time, which is needed to calculate local PMC,

can be obtained by traffic simulation. Among them, the cell

transmission model (CTM) proposed by Daganzo [8] is

relatively an accurate dynamic traffic simulation method,

because not only physical queue but also the feature of

traffic shockwave is considered. When employing this

method to calculate the transmission flow at diverge inter-

section, a rounding operation is implemented to guarantee

the integer formality for flow. If the upstream diverge link is

congested, the rounding operation combined with vehicle

sequence information could make the delayed vehicle at

each time interval not always head for the same downstream

branch link as the additional vehicle move toward. For

instance, suppose a new vehicle is inserted at the congested

upstream cell (a presentation of link segment) at time

interval t, and the vehicle heading for another downstream

branch cell (not the same as the direction of the additional

vehicle) is delayed by unit time interval after the rounding

calculation for transmission flow. Then, this delay makes

the cumulative flow curves in the branch cells lift up (or

down) by unit vehicle at time interval t. This phenomenon

of jumping up and down may continue until the vanishment

of upstream bottleneck. Qian et al. [7] names it as a jump-

point phenomenon. In their sense, it seems difficult to

identify each jump point at the branch cells. Thus, they

ignore the jump-point caused delay in the calculation of

local PMC. However, it may lead to problems of stability

with the application like iterative system-optimal dynamic

traffic assignment methods that incorporate calculation of

local PMC, such as the method of successive average.

This article provides a modified local PMC for diverge

cells. Specifically, calculate its key component, which is

the delay generated by jump point. In the first section,

CTM at diverge cell is reviewed. In the second section, the

calculation of local PMC considering jump-point phe-

nomenon is given. In the third section, using a simple

diverge network, we compare the results of the previously

local PMC and our modified one.

2 Review of CTM for diverge cells

Let the length of each time interval be identical and equal

to the free-flow time on each link at diverge intersection.

Then, the links in Fig. 2a can be converted to a cell net-

work including three diverge cells in Fig. 2b. Although

only two branch links are shown here for convenience, the

analysis of more than two branch links is similar.

Because sending and receiving flow, transmission flow,

and vehicle occupancy are key variables in the simulation

process, we review their formulae at time interval t in

advance.

When the backward wave propagation speed is assumed

to be the free-flow speed, the formulae for receiving and

sending flows of cell a can be described by

St
a ¼ min Qt

a; nt
a

� �
;

Rt
a ¼ min Qt

a;Nt
a � nt

a

� �
;

ð1Þ

where nt
a can be obtained from the traffic simulation iter-

ation of previous time interval t - 1.

The transmission flow formula for flow from cell a to

cell b is denoted by

yt
a ¼ min St

a;min Rt
b

�
bt

b b 2 Iþa
�
�

� �� �
;

yt
a;b ¼ bt

b � yt
a; 8b 2 Iþa ;

ð2Þ

If bt
b is equal to zero, the corresponding term inside the

brace should be deleted.

1
3

5
4

2

Link
Position for jump-point phenomenon

1->2 Route for additional vehicle

LEGEND

DEFINITION

NETWORK

• Global PMC: Cost influence happens at all the links
• Local PMC at Ghali et al  (1995) and Shen et al  (2006): Cost influence 

happens at link 1 and 2
• Local PMC at Qian et al (2012) and this article: Cost influence happens at 

link 1, 2 and 3

Fig. 1 Case chart for the definition of PMC

i
j

k
i

j

k

(a) links (b) cells

Fig. 2 Presentation of diverge cells converted from links
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Equation (3) is used to update the vehicle occupancy of

cell i:

ntþ1
a ¼ nt

a þ
X

b2I�a
yt

b;a � yt
a: ð3Þ

Note that transmission flow in Eq. (2) should be rounded

during each time interval to ensure that the flow and

vehicle occupancies are integers.

3 Calculation of local PMC

We use the example network shown in Fig. 2 to analyze the

local PMC caused by additional vehicle through cell i and

j. The local PMC is defined to consist of two types of

additional cost. One is unmodified marginal cost, which is

equal to the previously local PMC that puts the jump-point

phenomenon aside; the other is J-P cost, which is specifi-

cally used to describe the jump-point caused delay. Qian

et al. [7] introduced these two parts. We borrow their theory

in the follows. A modification is that the J-P cost trend when

uncongested downstream cell is different from their ana-

lysis. Finally, we provide the method to attain the J-P cost.

3.1 Unmodified marginal cost

We depict unmodified cost according to three types of

traffic condition: (1) cell i is uncongested; (2) cell i is

congested, and cell j is uncongested; (3) cell i and cell j are

congested.

If the first type occurs, the insertion of additional vehicle

at cell i will not cause extra delay to its following vehicles.

Therefore, the unmodified cost generated for the vehicles at

the diverge cells is identical to the travel time of the

additional vehicle, which is equal to the free-flow time

passing through cell i and j.

If the second type occurs, it means that flow perturbation

only occurs at cell i not j. We depict the unmodified cost

generated at cell i here (shown in Fig. 3a). At the beginning

of flow-perturbation time interval (the arrival time of

additional vehicle), the cumulative arrival flow of cell i lifts

up by 1 unit. Until the queue-vanishing time interval ti
C,

can the following vehicles not be influenced by the flow

perturbation anymore. Therefore, only those vehicles that

arrive among the time range [s, ti
C] are delayed by the flow

perturbation. Each vehicle is delayed by l, which is the

inverse of traffic capacity (or discharging rate) at cell i. In

terms of the whole delayed vehicles M2 - M1, the total

delay time will be ti
D - ti

B. Another component of the

unmodified cost is the travel time spent by the added

vehicle, which is equal to ti
B - s. Therefore, summing

them up can obtain the unmodified cost in cell i, which is

equal to ti
D - s.

If the third type occurs (shown in Fig. 3a, b), the flow

propagation process should be considered. It is required

that all the diverge cells should be taken as a whole to

calculate the unmodified cost which possesses two com-

ponents. The first component is the travel time of addi-

tional vehicle through cell i and j, which is equal to tj
B - s.

The second component is the delay for the vehicles

M4 - M3 (Note that M4 - M3 is part of M2 - M1 in Fig. 3

although the vertical coordinate intervals may be different

for convenience) and M5 - M4, which is equal to tj
D - tj

B.

In other word, we can take cells i and j as a single virtual

cell to obtain the unmodified cost which is equal to tj
D - s.

Therefore, there is a hidden assumption that no vehicle

toward cell k is influenced by the additional vehicle.

However, the vehicle sequence information combined with

the rounding calculation in the dynamic traffic simulation

may make some vehicles toward cell k be delayed, which is

a jump-point phenomenon explained in the subsequent

subsection.

3.2 J-P cost

The jump-point phenomenon may occur when cell i is

congested. However, the analysis processes for the second

and third types are the same; thus, we would only show the

analysis for simplicity.

In the first place, we should explain the jump-point

phenomenon graphically. When an additional vehicle is

added to cell i, we should compute Eq. (2) after each time

interval to obtain the number of vehicles in the queue of

cell i heading for each branch cell. After rounding the

number to the nearest integer, we may discover a changed

outflow. For instance, it is possible that for a specific time

horizon tA; tA0� �
of the period following time interval s, the

arrival rate of cell j may lift up (down) by 1 unit, whereas a

corresponding decrease (increase) may occur in cell

k (shown in Fig. 3). These time horizons are named jump

points.

Subsequently, show jump-point phenomenon from the

analytical explanation. Suppose that the number of vehicles

in queue on cell i heading for cell j during time interval t is

denoted as xi
t
,j. So the traffic ratio bj

t is expressed by

bt
j ¼ xt

i;j

.
xt

i;j þ xt
i;k

� 	
: ð4Þ

As a special case of Eq. (2), transmission flow is

expressed as

yt
i;j ¼ yt

i � xt
i;j

.
xt

i;j þ xt
i;k

� 	
;

yt
i;k ¼ yt

i � xt
i;k

.
xt

i;j þ xt
i;k

� 	
:

ð5Þ

Suppose that a vehicle at cell i heading for cell j is

postponed for unit time interval at time interval t - 1 when

14 Z. Huang et al.
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compared to its previously simulated position. Then, the

delayed vehicle will be added to the next time interval. The

transmission flow at time interval t can be expressed:

yt 0
i;j ¼ yt

i � xt
i;j þ 1

� 	.
xt

i;j þ xt
i;k þ 1

� 	
;

yt 0
i;k ¼ yt

i � xt
i;k

.
xt

i;j þ xt
i;k þ 1

� 	
:

ð6Þ

Numerically, we round the transmission flow to the

nearest integer. In the rounding operation, although some

abnormal transmission flow may not make the equation

yt
i;j0 þ yt

i;k0 ¼ yt
i be satisfied, we can avoid this shortcoming

by adjusting rounding rule. To describe the jump-point

phenomenon clearly, we do not discuss this rounding rule

here. If the cumulative flow of cell j or k at time interval

t - 1 is the same with the previously simulated results, but

the cumulative flow at time interval t after calculating

Eq. (6) is different to the corresponding simulated results, it

is indicated that the jump point is generated at time interval

t. The lifted-down vehicle is postponed to the next time

interval t ? 1 and be added to the vehicle occupancy of

that time. The above jump point can keep the ‘‘jumping’’

shape if the following transmission flow is unchanged

compared to the previously simulated transmission flow at

time interval t ? 1. Totally, there could be multiple jump

points, which depend on the demands from both paths

queued on cell i.

We use Fig. 3b, c, d to explain different types of J-P

cost. Regarding cell j, the unit flow is assumed to be lifted

up at time horizon tA; tA0� �
, so its J-P cost should be added

by tA0 � tA. This added part can be explained in other word:

a vehicle joins in the queue line of cell j with unit time

interval ahead of original time interval, whereas its outflow

time is unchanged. Regarding cell k, a reduction of one

inflow vehicle in the corresponding time horizon is

assumed. If cell k is congested, the J-P cost would be

decreased by tA0 � tA, whose explanation is similar to the

former one. If cell k is not a bottleneck, the J-P cost would

be increased by tA0 � tA. The reason is that there is an

assumption that the free-flow travel time at cell k cannot be

shortened. Therefore, when the vehicles travel through the

uncongested cell k with a free-flow travel time, the time

interval of outflow will be changed to the same step size

with the one of inflow. This could lead to the increase of

J-P cost. Undoubtedly, unit time interval would be saved if

one inflow vehicle is increased to uncongested cell k during

certain time interval. It is noted that the delay modification

to uncongested cell k here differs from Qian et al. [7]’s

argument which deemed it unchanged.

To obtain the J-P cost during congested time horizon [ti
B,

ti
D], we should prepare the merging queue rule in the

upstream intersections in priority. It can obtain the vehicle

sequence information or rank the position of each vehicle

in the upstream diverge cell, which can help to determine

the ratio of the vehicle occupancy from different routes.

Assuming that the merging queue rule is given, we can use

an analytical method to estimate the J-P cost at the diverge

τ B
it

C
it

D
it

Vehicles

Time

Arrival curve

Departure curve

At D
it

C
jt D

jt
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Time

B
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′AtAt C
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B
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C
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D
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(a) upstream cell i

(d) uncongested downstream cell k

(b) congested downstream cell j

(c) congested downstream cell k

B
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Fig. 3 Cumulative flow curves
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intersection. In the first place, we define two variables. The

assignment of these variables and the subsequent J-P cost

calculation are described below.

3.2.1 Congestion level variable

Assume that ht
a represents the congestion level of cell a(Va2

Ii
?) at time interval t; 1 signifies bottleneck and -1 signifies

no bottleneck. The ‘‘no bottleneck’’ also accords to the free-

flow speed state in the CTM. Flow profile with respect to

density is a trapezoidal pattern, which guarantees that no

bottleneck occurs at most of the low occupancy states.

3.2.2 Perturbation variable

Assume that perturbation variable dt
a represents a change in

the aspect of cumulative vehicles for cell a(Va 2 Ii
?) at time

interval t. The assigned number 1 (0 or -1) represents 1

vehicle exceeding (no change compared to or 1 vehicle less

than) the previously simulated cumulative vehicles. Next,

we acquire the perturbation variable time interval by time

interval using the information including the perturbation

variable and the postponed vehicle at previous time interval

and the postponed vehicle at current time interval.

First define ct
a to describe the relation between path and

cell a, and initialize this variable and dt
a with 0 for different

time intervals and cells; then perform the following steps to

assign dt
a beginning from the time interval ti

B:

Step 1 Add the previous perturbation variable dt - 1
a to

the current perturbation variable dt
a, if t is larger

than ti
B;

Step 2 Identify the route of the new entering vehicle at

cell i of the current time interval, which is

postponed from the previous time interval or just

the additional vehicle we added for the PMC

calculation; and assign ct
a with 1 if this vehicle is

heading for cell a;

Step 3 Round the outflow of cell i; based on the vehicle

sequence in the queue, identify the upcoming

postponed vehicle compared to the previously

simulated vehicle occupancy; update ct
a with

ct
a = ct

a - 1, if the delayed vehicle is heading

for cell a;

Step 4 da
t ¼ da

t þ ca
t ;

Step 5 let t = t ? 1 and perform sequential steps 1–4; it

will not be completed until the time is out of range

[ti
B, ti

D].

3.2.3 Formula for J-P cost

We use
P

t2 tB
i
;tD

i½ �
P

a2Iþ
i

ha
t � d

a
t to calculate the J-P cost.

To test the validation of our formula for J-P cost, we will

do a comparison here. We list the most probable six cases of

cell condition in the first row of Table 1, where different

traffic conditions and vehicle variations compared to previ-

ously simulated cumulative vehicles are given. The param-

eters of our method in accord with them can be shown in the

middle rows of Table 1. The trend of J-P cost can be known

directly from the cell condition and listed at the last line.

Fortunately, their corresponding trend of J-P cost is the same

to the one by our analytical formula. Thus, it indicates that

our calculation method can attain the accurate J-P cost.

4 Case study I

We give a case (shown in Fig. 2) to describe the distinct

difference between the previous and modified PMC.

Because the jump-point phenomenon may occur only when

cell i is congested, whatever the state of downstream cell

Table 1 List of conditions and parameters and J-P cost for downstream cell a time interval

Condition of

cell a 2 Iþif g
Uncongested and

vehicle added

Uncongested and

vehicle erased

Uncongested and

vehicle unchanged

Congested and

vehicle added

Congested and

vehicle erased

Congested and

vehicle unchanged

ht
a -1 -1 -1 1 1 1

dt
a 1 -1 0 1 -1 0

Trend of J-P

cost

-1 1 0 1 -1 0

Table 2 Comparison of inflow at downstream cells

Time interval T T ? 1 T ? 2 T ? 3 T ? 4 T ? 5

Inflow at cell j not consider jump point 3 4 4 4 3 0

Inflow at cell k not consider jump point 3 2 2 2 1 0

Inflow at cell j consider jump point 4 4 4 4 2 0

Inflow at cell k consider jump point 2 2 2 2 2 0

16 Z. Huang et al.
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j and k. We select the condition that cell j is congested and

k is uncongested as an example for clearly explanation.

Other conditions are listed as follows.

• The unit time interval is set equal to 3 s;

• The capacity at cell i is set to be six vehicles per time

interval;

• The receiving flow of cell j and the maximal vehicle

occupancy of cell i are assumed to be large enough to

let yi
t = Si

t = 6 be possible;

• The vehicle occupancies toward different diverge cells

at cell i at T are xi
T

,j = 5 and xi
T

,k = 4;

• The input flow at cell i toward cell j and k before T ? 3

is always equal to 4 and 2 per time interval separately;

then the input flow at cell i is stopped at T ? 3 and the

following time intervals;

• Assume that the arrival time interval of additional

vehicle at cell i is T - 2, and use T to replace its

departure time interval ti
B.

If the jump-point phenomenon is ignored, the previously

simulated inflows at cell j and k still work. The only dif-

ference is that a vehicle is added to the inflow of cell

j when the bottleneck is vanished. We can use Eq. (7) to

obtain the inflow from T to T ? 5 at cell j and k, which are

shown in the second and third rows of Table 2.

yt
i;j ¼ St

i � xt
i;j

.
xt

i;j þ xt
i;k

� 	
: ð7Þ

Because cell j is congested, we let the travel time of

arrival vehicle among the time interval from T to T ? 5 be

equal to 2 units. The shape of their flow arrival curves can

T

Vehicles

Time

Arrival curve

Departure curve
M1

M1+18

1+T
2+T

3+T
4+T

5+T
T

Vehicles

Time

Arrival curve

Departure curveM1

M1+10

1+T 2+T 3+T 4+T 5+T

(a) congested cell j                 (b) uncongested cell k 

Fig. 4 Cumulative flow curve when cell i is congested
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be shown in Fig. 4 (green line). In this case, T ? 7 accords

to the time interval tj
Dof Fig. 4b. So, the previous PMC (or

unmodified cost) is equal to nine, which is the subtract

result of T ? 7 and T - 2.

If we consider the jump point, the vehicle occupancy

would be xi
T

,j = 6 and xi
T

,k = 4. After rounding calculation,

the inflow is shown in the fourth and fifth rows of Table. 2.

The changed curve is depicted with blue line in Fig. 4. It is

obviously that the J-P cost is equal to eight. So, the mod-

ified PMC is 17. The J-P cost accounts for 47 % of the

modified PMC, which should not be ignored.

5 Case study II

To illustrate the feasibility of applying the method in larger

network Fig. 5, we use the following cell network to cal-

culate the system-optimum dynamic traffic assignment

(SO-DTA) by using method of successive averages that

embed least PMC searching. Qian et al. [7] demonstrated

the feasibility of using this method to solve SO-DTA

problem.

Varied cells make up for the network. The origin and

destination and approaching cells have the same length

with basic cell; the length of other cells equals six basic

cells. We assume all the vehicles depart origins cells

toward the same destination. The assigned occupancies

changing with the time are shown in Fig. 6. No spillback

occurs in the cells, indicating that the SO-DTA is

reasonable.

6 Conclusions

The J-P cost caused by jump-point phenomenon is con-

sidered in the calculation of local PMC. An analytical

method for solving J-P cost is proposed. This treatment

contributes to obtaining a more accurate local PMC. In the

first place, based on the historical data and vehicle

sequence information, we figure out congestion state and

perturbations valuables at each time interval; then, sum-

ming up all the products of these two valuables during the

whole time intervals can obtain the J-P cost. A comparison

of the J-P cost under different cell conditions shows the

correctness of our method. A case study shows that the J-P

cost may make up a high proportion of local PMC, which

should not be ignored.

The application of the modified local PMC in the con-

gestion charging is beyond our study scope. But, it can be

realized in theory. For two parallel routes between an OD

pair, the actual route costs rather than marginal ones are

equal under UE assumption. Theoretically, we can charge

toll for the link in the larger PMC route to transfer con-

gested flow to achieve SO network flows as managers

desire to see. Congestion toll case with this method in a

small network has been tested by Qian et al. [9]. In prac-

tice, other newly developed congestion toll related tech-

niques such as tradable credits, flat toll, and tactical waiting

[10, 11] are more effective, because the ideally time-

varying fine toll is hard to solve. However, the comparison

of PMC in different routes can still serve as a measurement

method for these practical charging types.
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