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Abstract

genome scale impacts using microarrays.

binding to the aspB3 promoter.

Background: Archaea combine bacterial-as well as eukaryotic-like features to regulate cellular processes.
Halobacterium salinarum R1 encodes eight leucine-responsive regulatory protein (Lrp)-homologues. The function of
two of them, Irp (OE3923F) and IrpAT (OE2621R), were analyzed by gene deletion and overexpression, including

Results: It was shown that Lrp affects the transcription of multiple target genes, including those encoding enzymes
involved in amino acid synthesis, central metabolism, transport processes and other regulators of transcription. In
contrast, LrpAT regulates transcription in a more specific manner. The aspB3 gene, coding for an aspartate
transaminase, was repressed by LrpA1 in the presence of L-aspartate. Analytical DNA-affinity chromatography was
adapted to high salt, and demonstrated binding of LrpA1 to its own promoter, as well as L-aspartate dependent

Conclusion: The gene expression profiles of two archaeal Lrp-homologues report in detail their role in H. salinarum R1.
LrpA1 and Lrp show similar functions to those already described in bacteria, but in addition they play a key role in
regulatory networks, such as controlling the transcription of other regulators. In a more detailed analysis ligand
dependent binding of LrpA1 was demonstrated to its target gene aspB3.

Background

The basal transcription apparatus in Archaea shows simi-
larity to the eukaryotic RNA polymerase (RNAP) II sys-
tem [1-4]. Archaeal promoter sequences and the core
proteins RNA polymerase (RNAP), TATA-binding pro-
tein (TBP), and the transcription factor IIB homologue
(TFB) are structurally and functionally related to their
eukaryotic counterparts [2,5]. Although the basal tran-
scriptional complex is composed of eukaryotic-like com-
ponents, archaeal regulatory proteins are often
homologous to bacterial regulators [6]. One group of bac-
terial regulators which have been found in all archaeal
genomes belongs to the Lrp/AsnC family (leucine-
responsive regulatory protein (Lrp), asparagine synthase
C (AsnC)). Escherichia coli Lrp is the most extensively
studied member in bacteria [7,8] and controls the expres-
sion of up to 75 target genes. As a global regulator of
transcription, Lrp is believed to coordinate cellular
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metabolism in response to nutritional and environmental
alterations [9]. Most of these genes are involved in amino
acid metabolism. Lrp can bind to DNA in its homodi-
meric form and either represses or activates transcrip-
tion, modulated by the effector molecule L-leucine.
Negative autoregulation of Lrp, however, occurs in a leu-
cine independent way [10].

Genes encoding putative Lrp/AsnC-homologues have
been studied in several archaea [11], including Methano-
caldococcus jannaschii [12-14], Sulfolobus species [15-17]
and Pyrococcus species [18,19]. As demonstrated for the
Sulfolobus solfataricus Ss-Lrp and Lrs1l4, those Lrp/
AsnC-homologues were shown to bind to their own pro-
moter regions, thereby repressing transcription [20-22].
Besides controlling its own gene expression, Sulfolobus
solfataricus Ss-LrpB positively regulates the pyruvate
ferredoxin oxidoreductase (POR) encoding operon and
two permease genes [23,24]. Another Lrp-like protein,
LysM from S. solfataricus, regulates the expression of the
lysWXJK operon encoding lysine biosynthetic enzymes.
In fact, in vitro binding of LysM to the lysW promoter
takes place only if lysine is absent [25]. Footprint analysis
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of the Sa-Lrp gene from Sulfolobus acidocaldarius
revealed multiple binding sites in the promoter region
[26], a pattern that had been described earlier for bacte-
rial Lrp proteins [27]. Leucine has been suggested as a
possible cofactor for Sa-Lrp under certain physiological
conditions [26].

In M. jannaschii, not only do the Lrp-like proteins Ptrl
and Ptr2 regulate their own transcription, but Ptr2 can
activate transcription of the ferredoxin (fdx) and the
rubredoxin (rb2) genes by facilitating recruitment of TBP
to their promoters [13]. In a Pyrococcus furiosus cell-free
transcription system, LrpA exerts negative autoregula-
tion of its own transcription [19] by interfering with the
recruitment of RNA polymerase [28]. Crystal structures
determined for several bacterial and archaeal Lrp-like
proteins (for an overview, see [29] show that they contain
a N-terminal helix-turn-helix DNA-binding domain
(HTH). A flexible hinge connects this domain with the C-
terminal oligomerization and effector binding domain
[30-32]. The latter forms a so-called RAM-domain (regu-
lation of amino acid metabolism-domain) [33], designed
to bind an effector molecule in the interface between the
two dimers. A structure alignment of archaeal and bacte-
rial Lrp-homologues is shown in additional file 1.

In halophilic archaea relatively little is known about
Lrp-like-regulators. The current study focuses on the
Lrp-like-regulators, LrpAl and Lrp in H. salinarum R1.
To identify Lrp-targets, deletion mutants (Alrp, AlrpAl)
as well as strains upregulated in these genes ( Irp, lrpAl)
were compared pairwise against the parental strain R1 by
DNA-microarrays. These results demonstrated that Lrp
exerts a global transcriptional control in this organism.
On the other hand, LrpAl was shown to possess a spe-
cific regulatory function targeting the aspartate transami-
nase gene (aspB3). We demonstrated effector molecule
dependent binding of LrpAl to the aspB3 promoter by
DNA-affinity chromatography, as well as effector mole-
cule dependent gene expression of aspB3 by northern
analysis.

Results

Specific transcriptional control by LrpAl in H. salinarum R1
Of the eight Lrp-homologues found H. salinarum, lrpAl
and Irp are located next to genes involved in amino acid
metabolism (aspB3 aspartate transaminase, ginA glu-
tamine synthetase), suggestive of a direct regulatory
influence. To confirm this, and to identify other possible
targets of LrpA1l we used DNA-microarrays. Two genetic
approaches, either a deletion strain of lrpAl (AlrpAl) or
an overexpressing strain ( lrpAl), were compared pair-
wise against the H. salinarum R1 parental strain. Target
genes showing reciprocal regulatory changes between the
deletion strain and the overexpression strain, reflect the
regulatory effects of LrpAl (Table 1). The deletion and
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overexpressing strains grew as well as the parental strain
in complex medium (additional file 2). The deletion
mutant was verified by southern blot analysis (additional
file 3). Induction of lrpAl transcription in the overex-
pressing strain was shown by microarray-analysis. Level
of IrpA1l expression was 24-fold higher in overexpression
mutant than in wild type (Table 1) and a complete list of
significantly differentially expressed genes is presented in
(additional file 4)

As expected, transcription of aspB3, the gene adjacent
to IrpAl, was affected by the absence or overexpression of
IrpAl. In the IrpAl background (Table 1), aspB3 showed
slight repression, while deletion of lrpAl led to strong
induction. Another LrpAl target gene identified by the
microarray analysis was tfbB, the basal transcriptional
regulator gene. This gene was repressed by LrpAl-over-
expression. Additionally, strong repression was found for
OE6130F, the gene encoding a hypothetical protein of
unknown function. OE6130F is located on the plasmid
PHS2. Its adjacent genes are OE6128R encoding a con-
served hypothetical protein and OE6133R encoding a
transposase.

In the AlrpAl mutant, induction of aspB3 and
OE6130F was confirmed by RT-qPCR, which showed
reductions in transcript levels of 19- and 28-fold, respec-
tively (additional file 5)

Organisation of IrpA1 and aspB3 operons of H. salinarum RI
Since the DNA-microarray analysis showed that aspB3 is
the most prominent target for LrpAl, we performed fur-
ther investigations on the regulation of aspB3 by LrpAl.
LrpAl and aspB3 are orientated in opposite directions
and have separate promoters. In other halophilic organ-
isms, like Natronomonas pharaonis, Haloquadratum
walsbyi and Haloarcula marismortui, these genes are ori-
entated in the same direction and share one common
promoter (Fig 1).

The transcription start sites and 3'ends of /rpAl and
aspB3, were located using 5'3'-RACE, based on the circu-
larisation of RNA. lrpA1 was found to be transcribed as a
leaderless mRNA, starting at the first G of the start
codon, GTG (Fig. 2). The putative TATA-box of lrpAl is
located -27 bp upstream of the transcriptional start site
(Fig. 2). Possible regulator protein binding sites were
found at positions -31 to -25 and -12 to -6. In M. janna-
schii AT rich inverted repeat sequences have been dem-
onstrated to be DNA-binding motifs for Lrp-like
transcriptional regulators [12]. Another cis-element in
the lrpA1 promoter is two adenines at position -11/-10,
consistent with the basal promoter motif previously
described [34]. As a consequence of the overlap of these
genes, the /rpAl 3' untranslated region (3'UTR) shows
complementarity to the ORF of aspB3 over 25 bp (Fig. 2),
a consequence of the overlap of these genes. No uridine
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Table 1: Differentially expressed genes in AlrpA1 and IrpA1
AlrpA1 IrpA1
ID -fold change -fold change gene name
Transcriptional regulators (REG)
OE2621R -3.2 244 IrpA1 transcription regulator LrpA1
Amino acid metabolism (AA)
OE2619F 5.1 -1.2 aspB3 aspartate transaminase
Transcription (TC)
OE2084R 1.4 -24 tfbB transcription initiation factor TFB
Miscellaneous (MIS)
OE6130F 6.7 -6.3 - conserved hypothetical protein

rich terminator sequence was identified for the lrpAl
transcript (Fig. 2).

In contrast to lrpAl, the aspB3 transcript has a 5UTR
leader sequence of 31 bp, without a Shine-Dalgarno
sequence upstream of the AUG start codon (Fig. 2).
Inspection upstream of the aspB3 transcription start site
revealed, that the aspB3 promoter does not contain a
consensus TATA-box at the expected position (-24 to -
27). The 3'UTR of aspB3 included a 127 bp terminal

sequence that is complementary to the 3'end of /rpA1. No
characteristic termination signal was detected in this
region (Fig. 2).

LrpAl binds to the aspB3 and to its own promoter

Several bacterial and archaeal Lrp-homologues are
known to bind to their own promoter as well as to the
promoters of target genes [10,11,35]. The binding of
LrpAl to its own promoter and to the aspB3 promoter
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Figure 1 Arrangement of Irp and asp genes in halophilic organisms. In H. salinarum IrpA1 and aspB3 have separate promoters and the genes are
orientated in opposite directions. Irp and asp in N. pharaonis, H. marismortui and H. walsbyi have one promoter and their open reading frames overlap.
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Figure 2 Mapping of 5'UTR (IrpA1, Irp, aspB3) and 3'UTR (IrpA1, aspB3). The transcriptional start site is marked by an arrow, the start codon is un-
derlined. Putative TATA-box, BRE-element and the -11/-10-motif are boxed. Possible DNA-binding motifs are underlined (violet). The 5'leader se-
quence of aspB3is shaded in grey. 3'UTR of IrpAT and aspB3 are shaded in grey, the stop codon is underlined.
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region was examined using analytical DNA-affinity chro-
matography, adapted to halophilic conditions. Because
the exact binding sites for LrpA1l in the promoter regions
of IrpAl and aspB3 were unknown, the complete non-
coding region upstream of these two genes was amplified.
These PCR products were designated as lrpAlp;,  and
aspB3p,,; (promoter sequence inclusive; Fig. 3A,B) with
a length of 234 bp and 208 bp, respectively. An additional
PCR product was generated where the inverted repeat
sequence in the lrpAl promoter region was mutated
(indicated by red asterisk in Fig. 3A). There was no corre-
sponding inverted repeat sequence in the aspB3 pro-
moter (Fig. 3B). As a non-specific binding control in the
assay, we used the flagellin gene flgBI. The DNA frag-
ments lrpAlpy, aspB3pi,q and the control fragment
flgBI were amplified using a biotin labelled primer and
subsequently coupled to a streptavidin sepharose matrix.
Heterologously expressed LrpAl, tested for correct fold-
ing by CD-spectroscopy and size exclusion chromatogra-
phy (additional file 6), was then incubated with DNA
fragments and eluted protein fractions analyzed on SDS-
PAGE (Fig. 4).

As shown in Fig. 4A, LrpAl binds to the lrpA 1y, frag-
ment. Mutation of the inverted repeat in this sequence
(indicated by asterisks in Fig. 3A) prevented binding of
LrpAl (Fig. 4A). In conjunction with the current knowl-
edge about other Lrp-homologues, these results suggest
LrpAl is subject to negative autoregulation [11]. A
weaker binding of LrpAl to the aspB3p;, fragment was
also demonstrated (Fig. 4B). Lrp-homologues often con-
trol gene expression together with a ligand molecule.
Therefore we tested aspartate as a possible effector mole-
cule of the aspB3 gene expression. 5 mM aspartate was
added to the binding experiment, resulting in signifi-
cantly enhanced binding of LrpAl to the aspB3p,q
sequence (Fig. 4B). If 5 mM arginine was used instead of
aspartate, the binding efficiency of LrpAl to the

aspB3p;, fragment was not enhanced (Fig. 4C), indicat-
ing that the interaction shows specificity for aspartate.
Table 2 shows the relative binding efficiencies of LrpAl to
sepharose-bound DNA fragments calculated from 3
independent binding experiments. Both lanes, the mono-
mer and the dimer, were included in our calculations of
band densities. According to the estimated molecular
weight, the upper band represents protein dimers. The
presence of LrpA1l dimers after treatment with heat and
SDS indicates that they are stable to these denaturing
conditions. Thus, LrpA1-DNA binding studies showed
that LrpAl binds to its own promoter, as well as to the
aspB3 promoter enhanced by aspartate (Fig. 4).

LrpA1 regulates transcription of aspB3 in an aspartate
dependent manner

H. salinarum possesses three different aspartate transam-
inases, AspB1, AspB2 and AspB3 (see sequence compari-
son in additional file 7). All belong to subgroup Ib of the
aspartate transaminases [36], and share 35, 37 and 32%
sequence identity, respectively, with the Thermus thermo-
Pphilus enzyme [37]. Aspartate transaminases catalyze the
reversible conversion of aspartate and oxoglutarate to
oxaloacetate and glutamate.

Since LrpAl appears to regulate the expression of
aspB3, we first investigated the transcription of lrpAl
during different growth phases using northern blot
hybridization and a specific probe against lrpA1 (429 bp)
(Fig. 5). In the wild type strain, lrpAl transcripts
remained constant at cell densities of 0.2 to 0.8 (ODy).
Although the IrpA1l transcript could be detected during
stationary phase, its amount decreased (Fig. 5). These
results show that lrpAl transcripts accumulate during
exponential growth. Therefore, to test the regulation of
aspB3 by LrpAl in an aspartate and glutamate dependent
manner, wild type and the AlrpA1 cells were cultivated up
to cell densities in the range of 0.2 to 0.8 (ODy,) either in
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Figure 3 Promoter region of IrpA1and aspB3. LipA1-P,.and aspB3-P, . are the DNA fragments used for Protein-DNA interaction studies, including
the complete promoter region of IrpAT and aspB3, respectively (AB). The mapped transcription start site is marked by an arrow (A,B). The inverted
repeat in the IrpAT control region demonstrates a possible protein binding site for LrpA1 (grey frame). Mutations in the control region are marked by

red asterisks (A). TATA-box (A) and the -11/-10-motif (A,B) are shaded in grey.

a complex medium or in a synthetic medium, in the pres-
ence or absence of aspartate or glutamate. RNA was
extracted and analyzed on northern blots using an aspB3
specific probe (Fig. 6A-6B). This hybridized to a corre-
sponding transcript with the expected size of aspB3 (1107
nt). In complex medium, aspB3 was slightly induced at
the beginning of the exponential growth phase (Fig. 6A).
In contrast, in synthetic medium supplemented with
aspartate and glutamate, aspB3 was induced in the early
stationary phase (ODg,, = 0.8) (Fig. 6B-1). While in syn-
thetic medium with aspartate a slight induction of aspB3
was observed in the early stationary phase (Fig. 6B-2). In
synthetic medium with glutamate, aspB3 was already
abundant in the early exponential growth phase (ODy, =
0.2) (Fig. 6B-3). When both amino acids (asp, glu) were
omitted, aspB3 showed high induction at a cell density of
0.2 and slight induction at 0.8 (Fig. 6B-4).

In synthetic medium, H. salinarum showed similar
growth behaviour whether or not aspartate was present
(Fig. 6D). These results show that aspB3 transcription is

repressed in the presence of aspartate. If there is no
aspartate in the synthetic medium (Fig. 6B-3,4), or it has
been metabolized in the early stationary phase, repres-
sion is released, and synthesis of aspartate from gluta-
mate ensues.

At cell densities of > 10° cells/ml (ODy, = 1.0) H. sali-
narum R1 has been reported to rapidly metabolize aspar-
tate [38]. Previously reported growth studies of H.
salinarum R1 have shown that when media have both
aspartate and glutamate present, the former amino acid is
metabolized rapidly while the levels of the latter remains
constant [38]. To test the regulatory effect of LrpAl on
the aspB3 gene transcription, mRNA levels of aspB3 were
analyzed in AlrpA1 cells grown with or without aspartate
or glutamate (Fig. 6C). We observed an increased and
constitutive transcription, independent of the added
amino acids. This demonstrates unambiguously the
involvement of LrpAl in the regulation of the aspB3 gene
expression.
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Figure 4 Effects of LrpA1 binding to promoter fragments. Analytical DNA-affinity chromatography showing binding of LrpA1 to DNA fragments
(IrpA1-Py. o, aspB3-P,. and control DNA figB1) analyzed by SDS-PAGE. The lower band on the gel shows the monomer of LrpA1, whereas the upper
band is the dimeric form. Binding of LrpA1 to non specific DNA control (flgB7) (lane 1), to IrpA1-P, . (lane 2) and to mutated /rpA1-P
altered inverted repeat sequence (see Fig. 3A) (A). LrpA1 binding to non specific control DNA (flgB1) in the presence of 5 mM L-aspartate (lane 1), to
the aspB3-P,., (lane 2) and to the aspB3-P,.,in the presence of 5 mM L-aspartate (B). Binding of LrpA1 to non specific DNA (flgBT) with 5 mM L-arginine
(lane 1) and to the aspB3-P;, without (lane 2) and with (lane 3) 5 mM L-arginine (C).

incl (lane 3), with an

Multiple transcriptional control by Lrp in H. salinarum

Residues in the sequence of LrpAl and Lrp predicted to
be involved in ligand specificity of the binding pocket are
different in both regulators (additional file 1) and there-
fore a different control of targets was expected. Irp is
located next to the glutamine synthetase gene glnA, with-

Table 2: Relative binding efficiencies of LrpA1 to
sepharose-bound DNA fragments

DNA-fragment band density

%ﬂ
IrpAT-P; 846 + 280 100%
IrpA1-P,(mutated) 201 £33 24%
control-DNA (C) 313+70 37%
aspB3-P; (+5 mM asp) 1404 + 228 100%
aspB3-P, 473 +220 34%
control-DNA (+ 5 mM asp) (C) 92+33 7%
aspB3-P; (+5 mM arg) 175+ 94 100%
aspB3-P,, 52422 77%
control-DNA (+ 5 mM arg) (C) 135+ 69 30%

a Average and standard deviation values are based on three
separate experiments

out a sequence overlap. The mapped transcription site is
at the A of the start codon ATG (Fig. 2). Target genes for
Lrp were identified using the same approach as described
for LrpAl (additional file 2, 3). Target genes showing
reciprocal regulatory changes between the deletion strain
(Alrp) and the overexpression strain ( /rp), suggesting the
direct regulatory effects of Lrp (Table 3). Induction of lrp
transcription in overexpressing strains was shown by
microarray-analysis. In the overexpression mutant, levels
of Irp is 46-fold higher than in wild type (Table 3). The
successful overexpression of Lrp was proven by western
blot analysis using a specific antibody against Lrp (addi-
tional file 8). A complete list of significantly differentially
expressed genes is presented in additional file 9.

Besides genes of the amino acid metabolism, the targets
affected by Lrp were genes of central intermediary
metabolism, (Fig. 7; Table 3). For example, glnA, the gene
next to Irp, was induced in the Lrp-overexpression strain.
The glycerol dehydrogenase gene, gldA1 was repressed by
Lrp, whereas korAB, encoding the oxoglutarate oxi-
doreductase complex, which is part of the TCA-cycle was
induced. Additionally the car gene, encoding a transducer
protein involved in signal transduction processes was
repressed in the presence of Lrp-overexpression. Genes
involved in transcriptional regulation were also affected
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Figure 5 Northern analysis of the IrpAT1 transcript level. The upper
panel represents 16S and 23S rRNA bands on a 1% agarose gel after
ethidium bromide staining. The lower panel displays detected tran-
scripts (429 kb; marked by an arrow) using a probe against IrpAl. H. sal-
inarum R1 wild type cells were grown in complex media and harvested
at the indicated OD-values.

by Lrp. The transcriptional regulator sirR, a homologue
of the staphylococcal iron regulator repressor and the
basal transcription factor gene tfbF, were found to be
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induced by Lrp-overexpression (Fig. 7; Table 3) [39]. Lrp-
overexpression produced induction of transporter genes,
like pstC2 and phnC, which belong to phosphate trans-
port operons (Fig. 7; Table 3).

Discussion

Lrp-homologues have been described for several bacte-
rial and archaeal organisms, but not yet for halophilic
archaea. Here we investigated the function of a halophilic
Lrp-homologue, LrpAl. Additional file 1 shows an align-
ment of LrpAl with other archaeal and bacterial Lrp-
homologues. High sequence similarity was observed with
LrpA (PF1601) from P. furiosus. The low sequence iden-
tity in the ligand binding pocket, named RAM-domain
(additional file 1; B3p4) between LrpAl and Lrp suggests
different regulatory mechanisms (additional file 1). The
H. salinarum LrpAl binding pocket belongs to a sub-
group of the Lrp-like proteins, which includes some that
might be effector-independent [32] and some for which
the effector regulation is unknown (additional file 1). The
Lrp ligand binding site shows high amino acid conserva-
tion with S. solfataricus LysM which probably binds
lysine [25] (additional file 1). We therefore expect the H.
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Figure 6 Northern analysis of the aspB3 transcript level. The upper panel represents 165 and 23S rRNA bands on a 1% agarose gel after ethidium
bromide staining. The lower panel displays detected transcripts (1107 kb; marked by an arrow) using a probe against aspB3. H. salinarum R1 wild type
cells were grown either in complex (A) or synthetic media (B) and harvested at the indicated OD-values. Cells of AlrpAT grown in synthetic media were
harvested at indicated OD-values (C). Synthetic media (B1-4; C) was supplemented with aspartate and/or glutamate as indicated (+/-). Growth curve
of H. salinarum R1 grown in synthetic medium with an amino acid composition as indicated (D).
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Alrp Irp
ID -fold change -fold change gene name
Transcription (TC)
OE1478R -1.6 1.7 tfoF transcription initiation factor TFB
Transport processes (TP)
OE1678R -1.8 1.6 pstC2 ABC-phosphate transporter permease
OE3908R -1.8 1.8 phnC ABC-phosphate transporter ATP binding protein
OE4301R -2.2 1.8 dppF1 ABC-peptide transport ATP binding protein
OE4302R -24 1.9 dppD1 ABC-peptide transport ATP binding protein
OE4303R -1.9 1.8 dppC1 ABC-peptide transport permease
OE4552F -23 2.0 dppB2 ABC-peptide transport permease
Amino acid metabolism (AA)
OE3922F -1.5 2.1 glnA glutamine synthetase
Central intermediary processes (CIM)
OE1710R -1.9 2.0 korB oxoglutarate ferredoxin oxidoreductase (3-subunit
OE1711R -2.9 23 korA oxoglutarate ferredoxin oxidoreductase a-subunit
OE5160F 2.5 -1.9 gldA1 glycerole dehydrogenase
Signal transduction (SIG)
OE5243F 1.7 -2.7 car transducer protein Car

salinarum Lrp to be a ligand dependent regulator, which
is a subject of future investigation.

LrpAl was shown to be regulated by aspartate and
since this protein is a specific regulator of two different
promoter sequences, lrpAl and aspB3, we hypothesize
that the IrpA1l and aspB3 gene expression is reciprocally
regulated (Fig. 8). For LrpAl, we suggest an inverted
repeat in the [rpA1 promoter as a putative protein bind-
ing site, whereas the aspB3 promoter lacks such a
sequence. At first glance, it seems surprising that LrpAl
binds to two different promoter structures, but as shown
for E. coli Lrp, promoter target sites may share only weak
sequence conservation [7]. In the exponential phase
IrpA1 expression is maximal. Since L-aspartate is present
in the medium the binding of LrpAl to the aspB3 pro-
moter is enhanced. Once aspartate is metabolized, small
conformational changes in LrpA1l might occur that allow
it to bind to the lrpA 1 promoter (Fig. 8). As the repression
of the aspB3 gene is abrogated, transcription of aspartate
transaminase will be initiated in order to synthesize
aspartate from glutamate (Fig. 8). This model of LrpAl
regulation could explain a direct influence of LrpAl in
regulating its neighbour gene aspB3. The DNA-microar-

ray data indicate that LrpA1l regulates the expression of
aspB3.

In contrast to LrpAl, another Lrp-homologue named
Lrp affects the transcription of genes encoding proteins
involved not only in amino acid but also in central metab-
olism. For many organisms, Lrp acts as both an activator
and a repressor of transcription. Like E. coli Lrp, the Lrp
of H. salinarum R1 affects the regulation of amino acid
metabolism and genes encoding peptide transporter dpp
(Fig. 7; Table 3). Lrp binding sites in H. salinarum NRC-1,
a strain that shows a 99.9% sequence identity to H. sali-
narum R1 [40], have been previously reported [40]. In
NRC-1 Lrp-homologues are designated as Trh and nine
of them are annotated in the genome of H. salinarum
NRC-1. H. salinarum R1 LrpAl (OE2621R) and Lrp
(OE3923F) are 100% identical with the H. salinarum
NRC-1 Trh7 and Trh4, respectively, the latter one was
previously analyzed [41]. Comparison of our data with
the published NRC-1 data revealed that, out of all the
affected genes, only three were showing the same trends
in both: the glutamine synthetase gene, glnA, which is
located adjacent to /rp; the glycerol dehydrogenase gene,
gldA 1 and the transducer gene, car (Table 3). GIdAI was
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Figure 7 Overview of the regulatory effects of LrpA1 and Lrp. Metabolic pathways found to be regulated by Lrp and LrpA1, respectively, including
genes encoding enzymes involved in amino acid metabolism, regulator genes and genes involved in transport processes. (red arrows mean induction
and green arrows mean repression; grey arrows represent possible effects by a Lrp-homolog).

repressed by Lrp in H. salinarum R1. The metabolism of
glycerol is complex. It can either be converted to dihy-
droxyacetone (DHA) by glycerol dehydrogenase GldA1l
[42], or phosphorylated by glycerol kinase to glycerol-3-
phosphate. The latter can be fed into glycolysis as dihy-
droxyacetone phosphate (DHAP), or is converted to glyc-
erol-1-phosphate which is used as a substrate for the
production of archaeal phospholipids. However, the fate
of DHA remains unclear because the corresponding
kinase for the subsequent conversion of DHA to DHAP is
not yet known [43]. The repression of gldA 1 might favour
glycerol phosphorylation by reducing the flow of glycerol
to dihydroxyacetone (DHA). Besides the three affected
genes that were common between NRC-1 and R1, there
were distinct targets of Lrp in strain R1. For example,
activation of korAB, encoding the oxoglutarate oxi-
doreductase complex, a TCA cycle enzyme (Fig. 7; Table
3). KorAB belongs to the family of two oxoacid:ferredoxin
oxidoreductases (OR) and catalyzes the oxidative decar-
boxylation of oxoglutarate and is part of the following
conversion together with CoA to succinyl-CoA. For S.
solfataricus Ss-LrpB, activation of the pyruvate ferre-
doxin oxidoreductases por-operon has been reported by
Peeters; 2009 [24]. The OR-enzymes act on various sub-
strates that play key roles in amino acid metabolism [44].

In H. salinarum R1, korAB induction by Lrp suggests
that KorAB catalyzes the rate-determining step of the
TCA-cycle. This might influence the oxoglutarate/gluta-
mate balance and shift carbon flow towards glutamate
synthesis or degradation. In the Lrp-overexpression
strain, a slight induction was observed for the glutamate
dehydrogenase gene, gdhA2. Glutamate is incorporated
into the TCA-cycle by GdhA2 and metabolized by KorAB
to generate further metabolites or provide reducing
equivalents. As already mentioned, Lrp regulates the syn-
thesis of glutamine from glutamate by induction of ginA.
In H. salinarum, glutamate is accumulated as a carbon
storage compound and as a compatible osmolyte, and
reaches concentrations of 50-100 mM [45,46]. If needed,
glutamate can be converted into other metabolites, e.g.
amino acids.

Both regulators, LrpA1l and Lrp, influence the expres-
sion of ¢fb's. It has been proposed earlier that different
combinations of TFBs and TBPs may act in an analogous
way to bacterial sigma factors in order to control global
gene expression in H. salinarum NRC-1 [46-49]. Lrp acti-
vates tfbF, whereas LrpAl represses ¢fbB. In strain NRC-
1, TfbF is thought to control either directly or indirectly
the transcription of target genes [41].
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The transcriptional regulator sirR, a homologue of the
staphylococcal iron regulator repressor, was found to be
induced by Lrp (Fig. 7; Table 3) [39]. SirR is described as a
repressor of a putative Mn-dependent ABC-transporter
in H. salinarum NRC-1 [50]. In R1, induction of the puta-
tive Mn-dependent ABC-transport operon (OE5144R,
OE5146R, OE5147R) in a AsirR deletion strain was
shown (Schwaiger, unpublished data). In the current
study slight repression of the ABC-transporter gene,
OE5147R was detected in the Lrp-overexpression strain,
where sirR is induced. This is consistent with SirR acting
as a repressor of the ABC-transport operon. The data
also showed induction of pstC2 and phnC, which belong
to phosphate and phosphonate transport operons (Fig. 7;
Table 3). In NRC-1, SirR is thought to take part in the reg-
ulation of phosphate transport processes [50]. Lrp might
then indirectly influence phosphate metabolism by con-
trolling sirR expression.

Conclusion

In summary, these studies on Lrp-like homologues in the
halophilic branch of archaea have clearly demonstrated
that they share a similar general function to their homo-
logues in bacteria, i.e. they are transcriptional regulators
that may have narrow or global regulatory actions. Lrp
activates the gene expression of the glutamine synthetase
gene glnA, influences peptide- and phosphate transport,
as well as the central intermediary metabolism, and acti-
vates the expression of the transcriptional regulator sirR.
By the control of sirR gene expression through Lrp corre-
lation between amino acid metabolism and metal depen-
dent processes could be demonstrated. In contrast to Lrp,
LrpAl regulates gene expression of fewer genes, amongst
them the aspartate transaminase gene aspB3. LrpAl was
shown to bind to the /rpA1 promoter region, as well as an
aspartate dependent binding to the aspB3 promoter
region. To gain more insights into the LrpAl and L-
aspartate dependent aspB3 gene expression, northern
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blot analysis were performed, that showed an induction
of the aspB3 transcription in the absence of L- aspartate.
This occurs either in a medium lacking aspartate or after
aspartate is metabolized in the stationary phase. At the
same time, an induction of the [rpA1 gene expression was
observed. This can be illustrated in a model that postu-
lates a reciprocal regulation of the /rpA1 and aspB3 gene
expression. Much remains to be understood, but the cur-
rent work provides a solid foundation for further investi-
gations of the haloarchaeal Lrp protein family and their
regulatory networks.

Methods

Strains and growth conditions

H. salinarum R1 (DSM 671) and the deletion strains
(Alrp, AlrpAl) were grown in either complex or synthetic
medium, as described previously [51,52]. The E. coli
strains DH5a and BL21(DE3), used for cloning and pro-
tein expression, were grown in Luria-Bertani (LB)
medium, supplemented with antibiotics when necessary
[53].

Construction of deletion and overexpression mutants in H.
salinarum

The construction of lrpA1 and Irp deletion mutants was
performed according to [54]. Briefly, oligonucleotides
were used to amplify the adjacent region downstream and
upstream of the gene of interest (additional file 10). The
obtained PCR-products were digested with Pstl, fused by
ligation, reamplified and cloned into pMKK100 [54]
using BamHI and Xbal restriction sites. The lrp and
IrpAl strains were constructed by insertion of pKF203
and pKF204 plasmids into the /rp and lrpAI region of H.
salinarum, respectively. The plasmids were constructed
as described in additional file 11. Deletion plasmids and
overexpression plasmids were introduced into H. sali-
narum by the PEG-mediated method according to [50].
Deletion mutants were generated by a two-step proce-
dure of selecting separate single cross over events using
red-blue screening as described by [54]. The correct gen-
otype was verified by PCR and Southern blot hybridiza-
tion (additional file 3). The presence of the
overexpression plasmid in each transformant was deter-
mined by PCR followed by sequencing of the amplified
fragments.

Isolation of total RNA
H. salinarum cells were harvested at an ODy, of 0.2-0.8
by centrifugation for 5 min at 12000 g (4°C). The pellet
was resuspended in peqGold RNAPure extraction solu-
tion (Peqlab

Biotechnology, Erlangen) and total RNA was extracted
following the manufacturer's instructions. Finally, the
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RNA was dissolved in DEPC (diethylpyrocarbonate)-H,O
and stored at -80°C until further use. After incubation
with DNase (Promega-Kit RQ1) a DNA-free RNA sample
was obtained. To confirm the absence of remaining DNA
in the DNase digested RNA samples, a PCR-reaction was
performed using HotStarTaq (Qiagen, Hilden) and
selected gene specific oligonucleotide primers (see addi-
tional file 10 probes for southern blotting primers Irp).
Only RNA, which did not yield any product after amplifi-
cation (40 cycles) was used in subsequent RT-PCR's.
RNA integrity was proven by using the 2100 Bioanalyzer
(Agilent Technologies, Waldbronn) or alternatively with
denaturating 1% TBE-agarose-gels containing 20 mM
guanidinium thiocyanate.

Microarray analysis

Wild type R1 and the deletion strains (Alrp, AlrpAl) uti-
lized for the microarray approach were grown in complex
medium. Total RNA (5 ug), isolated from cells having an
ODg of 0.4 (4 x 108 cells/ml), was reverse transcribed
into Cy3/Cy5-labeled ¢cDNA using CyScribe First-Strand
c¢DNA Synthesis Kit with enclosed random nonamer
primers and Cy3-/Cy5-dUTP (both Amersham Biosci-
ences, Freiburg). Labelled cDNA was hybridized to in-
house fabricated whole genome DNA-microarrays [55] at
64°C overnight. To determine the fluorescence ratios the
slides were scanned (GenePix 4000 B, Axon Instruments)
and the data were extracted using the GenePix Pro 6 soft-
ware. After background substraction, pin-wise normal-
ization and data evaluation by a Student's T-test, those
transcripts displaying a p-value equal or lower than 5.10-5
and a ratio of +/- 1.3 were selected as significantly regu-
lated. A detailed description of the microarray design,
experimental procedure and data-evaluation is described
in [55]. We considered ratios with a p-value equal or
lower than 5 x 10-> as significant. This reflects a stringent
interpretation of data as a two times less stringent p-value
results in 4.8% false positives [56]. The data obtained
from the microarray experiment were deposited at http://

www.ebi.ac.uk/miamexpress under the accession number
(E-MEXP-1447).

Reverse transcription-quantitative PCR and RACE

5 pug DNA-free total RNA was reverse transcribed using
0.5 pg random hexamer primers (Promega, Mannheim)
and Superscript III reverse transcriptase (Invitrogen,
Karlsruhe) according to the manufacturer's instructions.
1 pl of the cDNA reaction mixture was quantified by
using the SYBR Green PCR Master Mix Kit (Applied Bio-
systems, Darmstadt) in a GeneAmp 5700 Sequence
Detection System (Applied Biosystems, Darmstadt) in a
final reaction volume of 25 pl. The primer pairs (addi-
tional file 10) for amplification were designed with
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Primer Express 2.0 (Applied Biosystems, Darmstadt) and
were added to a final concentration of 0.2 uM. The data
were analyzed via the 24ACt-method using the mean-C,-
value of 3 replicate reactions per primer pair. The consti-
tutively expressed gene OE4759F, encoding a S-layer gly-
coprotein, was chosen as internal standard. RACE (rapid
amplification of cDNA ends) was essentially performed
by an RNA circularization mediated method according to
[34] to determine the 5'ends and the 3'-ends of tran-
scripts.

Northern blot hybridizations

15 pg total RNA was separated by electrophoresis on 1%
TBE-agarose-gel, containing 20 mM guanidinium thiocy-
anate. Gels were then equilibrated in alkaline buffer [57]
and transferred onto Hybond N* membrane (GE-Health-
care, Miinchen), by vacuum blotting for 3 hours. For gen-
eration of DIG-dUTP-labelled RNA-probes a PCR
amplified DNA-fragment (additional file 10), including
the T7-promoter sequence was generated in order to
function as a template for in vitro transcription with T7-
RNA-polymerase (DIG RNA labelling kit (SP6/T7),
Roche Applied Science, Mannheim). Furthermore,
hybridization and chemiluminiscent detection were car-
ried out using the "DIG Wash and Block Buffer Set"
(Roche Applied Science, Mannheim) according to "DIG
system user's guide for filter hybridization" (Boehringer,
Mannheim). All oligonucleotides used for generating the
probes are mentioned in additional file 10.

Expression and purification of LrpA1

LrpAl was amplified by PCR using oligonucleotides
(additional file 10) including the sequence for the restric-
tion sites of Ndel and Xhol. After digestion with these
enzymes the PCR fragment was cloned into the vector
pET26b (Novagen, Darmstadt). The obtained LrpAl-
expression vector was transformed into E. coli
BL21(DE3). The expressed polypeptide contained a C-
terminal Hisc-tag. A single colony was picked in order to
inoculate 30 ml Luria-Bertani (LB) medium supple-
mented with 50 pg/ml kanamycin. The culture was grown
overnight in a rotary shaker at 37°C. On the next day the
culture was used to inoculate 1 liter of the identical
medium also supplemented with 50 pg/ml kanamycin.
Protein expression was induced with 0.6 mM isopropyl-
B-D-thiogalactopyranoside (IPTG) at an ODg, of 0.8.
The cells were harvested after 3 hours of growth by cen-
trifugation for 10 min at 5000 g (4°C). The pellet was
resuspended in 30 ml buffer A (8 M urea; 100 mM
NH,PO,; 10 mM Tris-HCI, pH 8.0) with 10 mM imida-
zole and disrupted by sonification (3 x 15 sec; 50% duty
cycle; Branson Sonifier). The lysate was centrifuged for
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80 min at 50000 g. Subsequently, 1.5 ml of Ni-NTA fast
flow matrix (Qiagen, Hilden) was added to the superna-
tant and was incubated on a rotary wheel for 2 h (4°C).
Afterwards the Ni-NTA matrix was packed on a column,
washed three times with 7.5 ml of buffer A plus 20 mM
imidazole and eluted in three times 1.5 ml fractions with
buffer A plus 150 mM imidazole. To restore the native
conditions the purified LrpA1-His, was dialyzed against
cell-free extract (CFE) buffer (3 M KCI; 1 M NaCl; 10 mM
HEPES, pH 7.1) over night at room temperature. To
prove successful refolding we performed CD spectros-
copy (method see below). For the determination of multi-
merisation, we performed size exclusion chromatography
by using a 3.2/3 Superdex 200 column (GE-Healthcare,
Miinchen) on a SMART chromatography device (GE-
Healthcare, Miinchen) (flow-rate 50 pl per min CFE buf-
fer). Presence of protein was detected at 280 nm.

Circular dichroism spectroscopy

To determine the secondary structures of LrpAl after
renaturation (see Expression and purification of LrpAl
(Methods)) we used circular dichroism in the far-UV
(190-250 nm). CD-Spectra were monitored using a
JASCO-J-810 spectrometer. After renaturation against
the high salt CFE buffer (3 M KCl; 1 M NaCl; 5 mM
MgCl,; 10 mM HEPES, pH 7.1) LrpA1 had a final protein
concentration of 1.2 mg/ml and was measured in 0.01
mm quartz cuvettes (Helma). All measurements were
performed in CFE buffer at 21°C. The spectra were calcu-
lated from the average of 12 scans and repeated in two
independent measurements, followed by the subtraction
of spectra measured only with CFE buffer. Percentages of
secondary structure were determined with the CDNN-
program [58]. For secondary structure prediction we
used the program "Scratch Protein Predictor"(Expasy).

Protein-DNA-binding assay for halophilic proteins

Analytical DNA-affinity chromatography was performed
by a modification of the method described by [59]. For
each experiment, 150 pl of streptavidin sepharose high
performance (GE-Healthcare, Miinchen) suspension was
spun down at 340 g in a column (MoBiTec M1002S, Gott-
ingen) to remove ethanol. After five consecutive washing
steps (500 pl of binding buffer: 0.15 M NaCl; 20 mM
Na,PO,, pH 7.5) streptavidin sepharose was incubated
with biotin-labelled DNA probes (61 pmol) for 2 h at
room temperature with gentle shaking. Biotinylated DNA
was prepared by PCR using biotin-labelled primers (Met-
abion, Martinsried) for amplification of the lrpA1 and the
aspartate transaminase (aspB3) promoter, as well as a
fragment of the flgB1 gene as negative-control. For bind-
ing of LrpAl to the aspB3 promoter, reactions were per-
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formed in CFE buffer (3 M KCl; 1 M NaCl; 5 mM MgCl,;
10 mM HEPES, pH 7.1) in the presence of either 5 mM L-
aspartate or 5 mM L-arginine. Columns were washed
three times with CFE buffer. Unbound DNA was moni-
tored spectrophotometrically. Protein-DNA-binding
reactions were carried out by incubation of LrpAl with
the DNA-affinity matrix at room temperature for 4 h with
shaking. We applied a stoichiometric excess of protein (2
nmol) relative to the molar amount of DNA (61 pmol).
The mixture was then transferred to a column, centri-
fuged and washed twice with 200 pl CFE. LrpAl was
eluted from the DNA-Sepharose with 100 pl of 1% SDS
and analyzed by SDS-PAGE (NuPAGE Pre-Cast Gel Sys-
tem, Invitrogen) with subsequent silver staining. We per-
formed three independent binding experiments. From
these data we quantified band intensities in each single
gel using densitometry (Total Lab Version 1.11). Both,
monomeric as well as dimeric bands account for the
depicted final values. The band with the highest intensity
in each gel represents 100% (see Fig 4A lane 2, Fig 4B lane
3, Fig 4C lane 3). The two other bands with weaker bind-
ing intensity were calculated in relation to 100% highest
intensity. Oligonucleotides used for the amplification of
the DNA fragments are mentioned in additional file 10.

Additional material

Additional file 1 Structure-based sequence alignment of the H. sali-
narum LrpA1 (OE2621R) with other archaeal and bacterial Lrp-homo-
logues. The percentages in parenthesis represent a sequence comparison
between LrpA1 and the aligned sequences. The alignment includes P, furio-
sus LrpA (PF1601; 38%), M. jannaschii Ptr2 (MJ0723; 30%), H. walsbyi Lrp-like
protein (HQ3354A; 76%), H. salinarum Lrp (OE3923F; 25%), S. solfataricus
LysM (SS00157; 21%), B. subtilis LrpC (BSU04250; 24%), E. coli AsnC
(APECO1_2720; 26%), and E. coli Lrp (b0889; 23%). The HTH DNA-binding
motif (aB-aC) and the RAM-domain (32aDB3B4aER5) are boxed, including
the asparagine binding site of £. coli AsnC. Amino acids are shaded in grey
according to sequence conservation. Conserved methionine/prolines of
the LrpA1-subgroup are shaded in blue. LrpA1 shares highest sequence
identity (76%) with the Lrp-like regulator (HQ3354A) from Haloquadratum
walsbyi. A comparison between LrpAT and other Lrp-homologues revealed
38% identity with LrpA (PF1601) from P, furiosus, 30% identity with Ptr2
(MJ0723) from M. jannaschii, 21% identity with S. solfataricus LysM
(SSO0157) and 24% identity with LrpC (BSU04250) from Bacillus subtilis. E.
coli Lrp (b0889) showed 23% and E. coli AsnC (APECO1_2720) 26% identity.
Secondary structure elements are indicated as red a-helices and green f-
strands. In both H. salinarum Lrp proteins the N-terminal helix-turn-helix
(HTH) motif and the C-terminal regulation of amino acid metabolism
(RAM)-domain were identified based on the structure of cristallized Lrp/
AsnC homologues. The figure was made by using the INDONESIA align-
ment package (D. Madsen, P. Johansson and GJ. Kleywegt manuscript in
preparation).

Additional file 2 Growth curves of Alrp, AlrpA1, Irpand IrpAT.
Growth curves of the deletion strains Alrp and AlrpAT as well as the overex-
pressing strains Irpand  IrpAT were compared to the wild type strain R1.
All strains were grown in complex medium. Growth occurred aerobic in the
dark for the deletion strains (A) and anaerobic in the light for the overex-
pression strains (B). The optical density of the cultures was determined at
ODsgo-
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Additional file 3 Southern blot analysis to verify the correct genotype
of the deletion mutants (AlrpAT Alrp). In a first approach deletion strains
were pre-selected by PCR (oligonucleotides see additional file 10; probes
for southern blotting). We used two primer pairs, one, which amplifies the
entire gene to be deleted (only in wild type, not in the mutant) and
another, which anneals to flanking regions up-and downstream of that ORF.
Typically a mutant strain does not yield the first, but the second product of
the size: (wild type amlicon-gene length). As a positive control we have
used chromosomal DNA of wild type cells. To ensure that the deleted gene
has not been relocated by chromosomal rearrangements we subsequently
confirmed the mutant genotype by southern blotting. Genomic DNA from
the PCR-positive clones as well as wild type DNA was cut with the restric-
tion enzyme Bgll. Southern blot hybridization was performed using two dif-
ferent types of digoxygenin labelled probes generated by PCR. (see
additional file 10: flanking probe (AlrpAT, Alrp) and gene probe (IrpAT, Irp)).
Samples were separated by denaturing agarose gel electrophoresis (1%),
and vacuum blotted onto a nylon membrane. Hybridization and detection
were performed with "DIG Easy Hyb" (Roche Diagnostics) according to the
manufacturer's instructions. The obtained fragments are marked by an
arrow (A1, 2 and B1, 2) and explained in additional table S1. Figure A shows
the southern blot for the PCR-positive deletion strains AlrpA1. PCR-positive
clones (lane 1-9), wild type DNA (lane 11) and a Dig-labelled DNA-standard
(lane 12). Using two different types of probes (flanking probe A1 and gene
probe A2) fragments obtained from southern blot are marked by an arrow
and described in additional table S1. PCR-positive deletion strains Alrp (lane
1-3), wild type DNA (4, 5) and a Dig-labelled DNA-standard (lane 7) were
loaded to a 1% agarose gel (B). The resulted fragments after using the flank-
ing probe (B1) and the gene probe (B2) are marked by an arrow and corre-
sponding sizes are shown in additional table S1.

Additional file 4 Differentially expressed genes in AlrpA1. All signifi-
cantly differentially expressed genes in AlrpAT having a ratio higher than +/
-1.7 and those between +/-1.7 and +/-1.3 are depicted in this table. The
regulated genes are sorted by their Identification number (ID).

Additional file 5 RT-qPCR data compared to microarray data in AlrpA1
compared against wild type R1. Additional table S2 shows a comparison
of RT-gPCR data with the microarray data. Total RNA was isolated from the
deletion mutant AlrpAT and wild type at a cell density ODg, 0.4. We deter-
mined the transcript amount of the genes aspB3 and OE6130F, which
encodes for a conserved hypothetical protein.

Additional file 6 Expression, oligomerization and folding of LrpA1.
Heterologous expression of the Hiss-tagged H. salinarum LrpA1 in E. coli
BL21(DE3) and protein purification analyzed by SDS-PAGE. £. coli extracts
before induction (lane 1), two and three hours after induction with 0.6 mM
IPTG (lane 2, 3) and purified protein, displayed by an arrow (lane 4-6) (A).
After dialysis against a high salt buffer correct folding of LrpA1 was proved
by CD-spectroscopy, were 56% a-helices, 11% -sheet, 14% (3-turn and 24%
random coil structure was determined (B). The theoretical calculated values
for LrpA1 are 42% a-helices, 27% (-sheet and 319% random coil structure
was determined. Folded LrpAT in high salt has a predominant a-helical
structure. An aberrance of ~10% between the measured and the theoreti-
cal value is in the range of error and has been shown in previous studies
[60] (B). The size exclusion chromatography elution profile showed dimeri-
sation of LrpA1 after renaturation (C). Calibration standards used for this run
are indicated in additional table S2 (C). LrpA1 elutes at a volume of 1.32 ml
which is a corresponding molecular weight 31.1 kDa showing a LrpA1
dimer. The theoretical size of a LrpAT monomer is 15.2 kDa.

Additional file 7 Sequence comparison of the three H. salinarum
aspartate transaminases. AspB1, AspB2 and AspB3 were compared with
aspartate transaminases subgroup la (having a conserved R at the position
marked by an OJ) and aspartate transaminases Ib (having an conserved K at
the position marked by an x).
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Additional file 8 Western blot analysis to detect the overexpression
of Irp on protein level. Transcription of the Irp gene was under the control
of the bacteriorhodopsin (bop) promoter resulting in the KF203 ( /rp)
mutant. The bop promoter is maximally induced under light exposure and
anaerobic conditions. Therefore wild type cells and cells from the Lrp-over-
expression strain were grown anaerobically under light exposure and har-
vested at an ODy, of 0.8. For detection of the Lrp protein we used an
antibody against Lrp. Proteins from strains as indicated in the figure were
separated on a gradient gel (4-12%), blotted on a nitrocellulose membrane
and finally subjected to an immune detection reaction with an antibody
against Lrp. Low expression was observed for the wild type (lane 1),
whereas significant overexpression was detected in the Lrp-overexpression
strain (lane 2). Furthermore we tested the Alrp deletion mutant, grown aer-
obically in the dark. Using an antibody against Lrp (lane 3) no signal could
be obtained, as expected.

Additional file 9 Differentially expressed genes in Alrp. All significantly
differentially expressed genes in Alrp having a ratio higher than +/-1.7 and
those between +/-1.7 and +/-1.3 are depicted in this table. The regulated
genes are sorted by their Identification number (ID).

Additional file 10 A table of oligonucleotides. Oligonucleotides used in
these experiments

Additional file 11 Scheme of integration of pKF204 into the genome
of H. salinarum resulting in KF204 ( IrpA1) mutant. The plasmid pKF204
contains a portion of the 5'end of the IrpAT gene. The bop promoter Pbop
(violet box) was inserted upstream of the truncated IrpAT gene (black
arrow). The plasmid contains a selection marker (MeVR). After integration of
pKF204 into the H. salinarum genome, only the IrpAT gene downstream the
bop promoter is functionally transcribed, while transcription product under
the native promoter is truncated and presumably not functional. The KF203

( Irp) mutant was constructed similarly using plasmid pKF203.
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