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Abstract

Background: MMP-2 enzyme is a kind of matrix metalloproteinases that digests the denatured collagens and
gelatins. It is highly involved in the process of tumor invasion and has been considered as a promising target for
cancer therapy. The structural requirements of an MMP-2 inhibitor are: (1) a functional group that binds the zinc
ion, and (2) a functional group which interacts with the enzyme backbone and the side chains which undergo
effective interactions with the enzyme subsites.

Methods: In the present study, a QSAR model was generated to screen new inhibitors of MMP-2 based on
L–hydroxy tyrosine scaffold. Descriptors generation were done by Hyperchem 8, DRAGON and Gaussian98W
programs. SPSS and MATLAB programs have been used for multiple linear regression (MLR) and genetic algorithm
partial least squares (GA-PLS) analyses and for theoretical validation. Applicability domain of the model was performed
to screen new compounds. The binding site potential of all inhibitors was verified by structure-based docking according
to their binding energy and then the best inhibitors were selected.

Results: The best QSAR models in MLR and GA-PLS were reported, with the square correlation coefficient for
leave-one-out cross-validation (Q2

LOO) larger than 0.921 and 0.900 respectively. The created MLR and GA-PLS
models indicated the importance of molecular size, degree of branching, flexibility, shape, three-dimensional
coordination of different atoms in a molecule in inhibitory activities against MMP-2.
The docking study indicated that lipophilic and hydrogen bonding interactions among the inhibitors and the receptor
are involved in a ligand-receptor interaction. The oxygen of carbonyl and sulfonyl groups is important for hydrogen bonds
of ligand with Leu82 and Ala83. R2 and R3 substituents play a main role in hydrogen bonding interactions. R1 is sited in
the hydrophobic pocket. Methylene group can help a ligand to be fitted in the lipophilic pocket, so two methylene
groups are better than one. The Phenyl group can create a π-π interaction with Phe86.

Conclusions: The QSAR and docking analyses demonstrated to be helpful tools in the prediction of anti-cancer activities
and a guide to the synthesis of new metalloproteinase inhibitors based on L-tyrosine scaffold.
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Introduction
The matrix metalloproteinases (MMPs) function pre-
dominantly as enzymes that degrade structural compo-
nents of the extracellular matrix (ECM) [1-4]. MMPs
play a substantial role in tumor progression and invasion
of inflammatory cells. Among MMPs, MMP-2 easily di-
gests the denatured collagens and gelatins [5,6]. It is
highly involved in the process of tumor invasion and has
been considered as a promising target for cancer therapy
[3,7,8]. MMP-2 has a catalytic center) zinc (II) ion (and
two hydrophobic domains (S1´ pocket and S1 pocket).
S1´ pocket, the key domain of MMP-2, is deeper and
narrower than other MMP subtypes and S1 pocket is a
solvent exposure domain [3,9,10].
The structural requirements of an MMP-2 inhibitor

are: (1) a functional group that binds the zinc ion (zinc-
binding group; ZBG), capable of chelating the active site
zinc ion; (2) a functional group which interacts with the
backbone of enzyme; (3) side chains that undergo effect-
ive interactions with the enzyme subsites, such as S1´
pocket and S1 pocket [3,11,12].
Cheng et al. studied the L–hydroxy proline scaffold-

based MMP-2 inhibitors in 2008 [13], and, in order to
identify more potent MMP-2 inhibitors, replaced L-
hydroxy proline with the L-tyrosine scaffold to form a
new integrated structural pattern. They reported that the
alteration in substitution pattern at R1, R2 and R3 posi-
tions alter MMP-2 inhibitory activity [1].
In 2012, 30 L–hydroxy tyrosine scaffold-based MMP-2

inhibitors were identified. It seems that finding a rela-
tionship between the structure of these compounds and
their inhibitory activities in order to design structures
with better activities and to predict their activity would
be essential.
Quantitative structure activity relationships (QSARs),

one of the most extensively used methods in chemo-
metrics, and molecular docking are two of the helpful
methods for drug design and prediction of drug activity
[14-16]. QSAR models are mathematical equations
which generate a communication between chemical
structures and their biological activities, while molecular
docking is done to specify the structural features that
are important for interaction with a receptor.
In this report, we have performed a QSAR study and a

molecular docking examination on 30 compounds of L-
tyrosine derivatives which had been synthesized and
evaluated as metalloproteinase (MMP-2) inhibitors [1].

Materials and methods
QSAR
All calculations were implemented using an Intel Core
i5 2.4 GHz processor, with the windows 7 operating sys-
tem. Geometry optimization was done by Hyperchem
8.0 software. Descriptor generation was performed by
Hyperchem 8.0, DRAGON package and Gaussian 98 W
programs. SPSS software (version 11.5) and MATLAB
software (version 7.12.0) were used for model creation
and validation methods.

Activity data and descriptors generation
In this study, the biological data employed is MMP-2 in-
hibitory activity of 30 compounds. The synthesis and de-
termination of biological activity of these inhibitors have
been reported by Cheng et al. [1]. The structure of these
compounds and their biological activity are shown in
Table 1. The two-dimensional structures of molecules
were drawn using Hyperchem 8.0 software. At the be-
ginning, pre-optimization was conducted using the MM
+ molecular mechanic force field and then a more ac-
curate optimization was performed with the semi-
empirical PM3 method. The optimization was performed
using the Polak–Ribiere algorithm until the root mean
square gradient reached 0.01 kcal/ (Å mol). Hyperchem
8.0 program was also used to calculate chemical descrip-
tors including: surface area, molecular volume, hydration
energy, octanol/water partition coefficient (logP), molar
refractivity, molar polarisability and molar mass.
The output files of Hyperchem 8.0 software (.hin files)

were transferred to DRAGON package to calculate four
classes of descriptors (0D, 1D, 2D and 3D) including 28
constitutional descriptors, 10 functional groups, 18
atom-centered fragments, 216 topological descriptors,
15 molecular walk counts, 64 BCUT descriptors, 24
Galvestopol.charge indices, 96 2D autocorrelations, 14
charge descriptors, 41 Randic molecular profiles, 27
geometrical descriptors, 150 radial distribution function
descriptors (RDF), 160 3D-MoRSE descriptors, 99
WHIM descriptors and 196 GETAWAY descriptors.
The z-matrix files of compounds were also provided

by Hyperchem 8.0 program (.zmt files) and then were
transferred as input files to the Gaussian98W program
[17]. Semi-empirical molecular orbital calculation by
PM3 method was performed using Gaussian98W pro-
gram. Different quantum chemical descriptors were ob-
tained by this method including highest occupied
molecular orbital energy (EHOMO), lowest unoccupied
molecular orbital energy (ELUMO), and molecular dipole
moment. Local charge was obtained by PM3 method in
Gaussian98W. Hardness (η = 0.5 (EHOMO + ELUMO)),
softness (S = 1/η), electronegativity (χ = 0.5 (EHOMO -
ELUMO)) and electrophilicity (ω = χ2/2η) were calculated
according to the method proposed by Thanikaivelan
et al. [18].

Data processing and models building
All calculated descriptors were collected in a data matrix,
D, the number on rows was representative of molecule
numbers and the numbers on columns accounted for



Table 1 Chemical structures of L-tyrosine derivatives and their experimental and predicted activity by MLR and GA-PLS
models

Comp. R1 R2 R3 Experimental
pIC50

Predicted pIC50

MLR GA-PLS

4a C6H5CH2 C6H5CO OCH3 4.17 4.01 3.90

4b C6H5CH2 p-CH3C6H4CO OCH3 4.08 3.82 3.92

4c C6H5CH2 CH3CO OCH3 4.56 4.42 4.61

4d C6H5CH2 CH3SO2 OCH3 4.75 4.74 4.74

4e C6H5CH2 p-CH3C6H4SO2 OCH3 4.97 4.75 4.86

4f C6H5CH2CH2 C6H5CO OCH3 4.13 4.16 3.79

4 g C6H5CH2CH2 p-CH3C6H4CO OCH3 4.07 3.94 4.42

4 h C6H5CH2CH2 CH3CO OCH3 4.90 4.98 4.97

4i C6H5CH2CH2 CH3SO2 OCH3 5.62 5.82 5.98

4j C6H5CH2CH2 p-CH3C6H4SO2 OCH3 5.20 5.24 5.44

5a C6H5CH2 C6H5CO OH 5.01 4.39 4.78

5b C6H5CH2 p-CH3C6H4CO OH 5.09 4.77 4.3

5c C6H5CH2 CH3CO OH 5.52 5.68 5.66

5d C6H5CH2 CH3SO2 OH 5.85 6.03 6.06

5e C6H5CH2 p-CH3C6H4SO2 OH 5.60 5.99 5.91

5f C6H5CH2CH2 C6H5CO OH 5.12 5.57 5.33

5 g C6H5CH2CH2 p-CH3C6H4CO OH 5.35 5.90 5.82

5 h C6H5CH2CH2 CH3CO OH 6.12 6.67 6.08

5i C6H5CH2CH2 CH3SO2 OH 6.92 6.69 6.48

5j C6H5CH2CH2 p-CH3C6H4SO2 OH 6.57 6.49 6.52

6a C6H5CH2 C6H5CO NHOH 5.77 6.04 5.84

6b C6H5CH2 p-CH3C6H4CO NHOH 6.34 6.42 6.82

6c C6H5CH2 CH3CO NHOH 7.43 7.32 6.84

6d C6H5CH2 CH3SO2 NHOH 7.17 7.44 7.39

6e C6H5CH2 p-CH3C6H4SO2 NHOH 7.60 7.19 7.14

6f C6H5CH2CH2 C6H5CO NHOH 6.05 6.05 6.86

6 g C6H5CH2CH2 p-CH3C6H4CO NHOH 5.41 5.57 5.95

6 h C6H5CH2CH2 CH3CO NHOH 7.89 7.55 7.53

6i C6H5CH2CH2 CH3SO2 NHOH 7.54 7.91 7.94

6j C6H5CH2CH2 p-CH3C6H4SO2 NHOH 7.77 7.49 7.73
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descriptors (30 × 1168). At the beginning, the columns
which had constant and near constant values were removed
from the original data matrix. Since collinear variables dis-
rupt the models in MLR analysis, collinear descriptors
needed to be detected and removed. The correlation of de-
scriptors with one another and with activity data was then
investigated. In the pairs with collinearity higher than 0.9,
one which had the highest correlation versus the activity
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was retained and the rest were omitted. The number of
total descriptors for each molecule reached 291.
The data set (30 compounds) was split into a calibration

set and validation set. Validation subset was made of 20%
of the total data (here, 6 biological activity data). An MLR
analysis was performed by the stepwise regression SPSS
(version 12.0) software and the model was built.
Since the data splitting has a considerable influence on

the final selected model, a combined data splitting-feature
selection (CDFS) strategy was employed [19]. In the CDFS
methodology, several subdivisions of calibration and valid-
ation set were made (10 times). In each case, the best
model was chosen with a correlation coefficient higher
than 0.95. The created models were validated by leave-one
out (LOO) cross-validation method and Y-randomization
test to investigate their predictability.

Molecular docking
Molecular docking has become an increasingly main tool
for drug discovery. Docking is a method which predicts the
preferred orientation of one ligand when bound in an active
site to form a stable complex. In this study, molecular
docking of L-tyrosine derivatives with MMP-2 was studied
by AutoDock 4.2 program [20] to find their binding site
and the best direction based on the binding energy. Pdb file
of MMP-2 was obtained from www.pdb.org (PDB: 3AYU)
[21]. All water molecules were deleted, polar hydrogens
were added and the Kollman charge [22] was computed. A
120 x 120 x 120 Å size was chosen for the grid box, which
covers the whole protein. In all of the ligands, the same as
protein, polar hydrogens were added and the Gasteiger
charge was computed [23]. After preparation of ligand and
protein files, the map files were created. Docking process
with 50 runs and maximum number of evaluations
2500000 were performed. The final .dlg files were analyzed
Table 2 The best ten models were selected for future analysis

NO. Descriptor used

1 IC1, RDF135e, Mor24m, RDF035u, E3u, RDF120m, Mor15e

2 IC1, Mor24m, Mor15e, R7e0, G3p

3 IC1, Mor24m, Mor15e, dipx, GATS8p, RDF065m

4 IC1, SP20, RDF115m, RDF115e, Mor28e

5 IC1, Mor24m, Mor15e, Mor09e, G2u, Mor27u

6 IC1, Mor24m, Mor15e, Mor09e, G2u, Mor27u

7 IC1, Mor28e, HATS3p, RDF120m, RDF115m

8 IC1, Mor28e, HATS3p, RDF115m, RDF120m, G3m

9 IC1, Mor24m, RDF135e, RDF035v, RDF135m, Mor26m

10 IC1, Mor26m, G3p, GATS8p, HATS7e
aR2c = Correlation Coefficient of calibration set.
bS.E = Standard error of regression.
cR2p = Correlation Coefficient of prediction set.
dQ2

LOO = Leave-one-out cross-validation correlation coefficient.
eRMSECV = Root mean square error of cross validation.
and the interaction between ligands and the active site of
protein were studied. The ligand-protein interactions were
analyzed and visualized by Discovery studio Ver. 3.

Result and discussion
Multiple linear regression analysis (MLR)
This study made use of an MLR analysis, as a simple re-
gression method. The stepwise regression (using SPSS soft-
ware) was also utilized to choose the most relevant set of
descriptors for each type of the split data. The model coeffi-
cients were calculated using calibration data and then were
used to predict the biological activity of validation samples.
Several models were constructed by running a typical step-
wise regression which is ranked based on calibration correl-
ation coefficient (R2c). A model with calibration correlation
coefficient higher than 0.9 was selected. The created model
needed to be validated. The theoretical validation is gener-
ally classified into two groups: internal and external valid-
ation. Two of the internal validation methods include
Leave-one out cross validation (LOO) and Y-randomization
[24]. The offered model was evaluated for both over-fitting
and avoidance of chance correlations by the leave-one-out
cross-validation (LOO) method and Y-randomization test
respectively.
MLR method was repeated several times by different

splitting data. In each case, one model was proposed.
Leave-one-out cross-validation was performed and lastly,
the best ten models were obtained with R2 and Q2

LOO

higher than 0.9 in as reported in Table 2. The statistical
qualities of models were acceptable and all of them had
Q2

LOO larger than 0.92; hence, the predicted models can
make over 92% of variances in the inhibitory activity. In
addition, results were acceptable in the prediction sets.
The values of prediction correlation coefficient (R2

p) are
listed in Table 2 for the ten final models. All of the
in MLR

R2c
a S.Eb R2p

c Q2
LOO

d RMSCV
e

0.985 0.177 0.988 0.956 0.250

0.989 0.154 0.90 0.967 0.218

0.986 0.170 0.952 0.962 0.230

0.988 0.148 0.972 0.972 0.199

0.976 0.228 0.951 0.940 0.300

0.969 0.243 0.962 0.932 0.309

0.987 0.152 0.974 0.969 0.203

0.978 0.194 0.972 0.952 0.245

0.977 0.223 0.979 0.918 0.354

0.976 0.214 0.953 0.942 0.284

http://www.pdb.org


Table 3 Brief description of the descriptors in ten models

NO. Name Description

1 IC1 Information content index (neighborhood
symmetry of 1-order)

2 RDF135e Radial Distribution Function −3.5/ weighted
by atomic Sanderson electronegativities

3 Mor24m 3D-MoRSE – signal 24/ weighted by atomic
masses

4 RDF035u Radial Distribution Function −3.5/ unweighted

5 E3u 3rd component accessibility directional WHIM
index/ unweighted

6 RDF120m Radial Distribution Function −12.0/ weighted
by atomic masses

7 Mor15e 3D-MoRSE – signal 15/ weighted by atomic
Sanderson electronegativities

8 G3p 3st component symmetry directional WHIM
index/weighted by atomic polarizabilities

9 R7e0 R maximal autocorrelation of lag 7/weighted
by atomic Sanderson electronegativities

10 dipx Molecular dipole moment at X-direction

11 GATS8p Geary autocorrelation -lag 8/ weighted by
atomic polarizabilities

12 RDF065m Radial Distribution Function −6.5/ weighted
by atomic masses

13 SP20 Shape profile no. 20

14 Mor28e 3D-MoRSE – signal 28/ weighted by atomic
Sanderson electronegativities

15 Mor09e 3D-MoRSE – signal 09/ weighted by atomic
Sanderson electronegativities

16 G2u 2st component symmetry directional WHIM
index/ unweighted

17 Mor27u 3D-MoRSE – signal 27/unweighted

18 RDF115m Radial Distribution Function −11.5/
weighted by atomic masses

19 RDF115e Radial Distribution Function −11.5 / weighted
by atomic Sanderson electronegativities

20 HATS3p Leverage- weighted autocorrelation of lag
3/ weighted by atomic polarizabilities

21 G3m 3st component symmetry directional
WHIM index/ weighted by atomic masses

22 Mor26m 3D-MoRSE – signal 26/ weighted by
atomic masses
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squared correlation coefficients were higher than 0.90,
so the resultant linear models can predict 90% of vari-
ances in the inhibitory activity in the ten prediction sets.
The total number of descriptors, which existed in all

the ten models, was 22. These descriptors are briefly de-
scribed in Table 3. Among these, 3 descriptors were
common. Some of the descriptors such as E3u, HATS7e,
RDF065m, SP20, RDF115e, G3m and dipx were ob-
served only in one model. The repeated descriptors were
IC1, Mor24m and Mor15e. IC1 descriptor existed in all
the ten models. IC1 is topological descriptor and
Mor24m and Mor15e are 3D-MoRSE ones.
The repetition of IC1 in all the ten models indicated that

this descriptor has a main effect on L-tyrosine scaffold-
based MMP-2 inhibitors. 3D-MoRSE descriptors also have
significant effects. The quantum descriptors such as (dipx)
that were seen only in one model have lower effects on
MMP-2 inhibitors. The observation of the models, as listed
in Table 2, revealed that there is a high degree of resem-
blance between the subset of descriptors (without consider-
ing the difference between the chosen descriptors in
different models).
To create a general model, all of the 22 descriptors

were used and an MLR analysis was applied with the
stepwise variable selections. Finally, one model with bal-
ance between the highest R2, Q2

LOO and the lowest num-
ber of descriptors was opted for further analysis, as
reported in MLR Equation 1:

pIC50 ¼ ‐13:428 � 1:720ð Þ þ 5:965 � 0:488ð Þ IC1
þ 1:464 � 0:618ð Þ Mor24m ‐ 0:187 �0:044ð Þ

RDF115m þ 0:307 �0:067ð Þ SP20
þ 1:284 �0:514ð Þ Mor15e

ð1Þ

N ¼ 24; R2
c ¼ 0:958; S:E ¼ 0:285; Q2

LOO

¼ 0:921; RMSCV ¼ 0:346

In this equation, N represents the number of mole-
cules in the calibration set. R2

c and Q2
LOO are respectively

the squared correlation coefficients for calibration and
cross-validation. In addition, S.E is the standard error of
calibration and RMSCV is the root mean square error of
cross-validation. This equation has three common de-
scriptors (IC1, Mor24m and Mor15e), with high calibra-
tion statistics and prediction ability.
Topological descriptors, such as IC1, explain the size, de-

gree of branching, flexibility and overall shape. 3D-MoRSE
descriptors explain three-dimensional coordination of the
different atoms in a molecule. IC1, Mor24m and Mor15e
have positive signs which indicate that pIC50 is directly re-
lated to these descriptors. The radial distribution function
(RDF) descriptors are based on the distance distribution in
the molecule. RDF115m has a negative sign which indicates
that pIC50 is inversely related to this descriptor.
For the MMP-2 inhibition activity, a higher value of
molecular size, degree of branching, flexibility, shape,
three-dimensional coordination of the different atoms in
a molecule (IC1) and a lower value of radial distribution
function, RDF115m, are beneficial to the activity.
The general model has a Q2

LOO equal to 0.921; hence,
the predicted model can make over 92% of variances in
the inhibitory activity. The predicted values of pIC50

were obtained for all the molecules by MLR equation
which was listed in Table 1 and were plotted against the
experimental values (Figure 1A).



Table 4 R2 and Q2
LOO values after ten Y-randomization

tests

Iteration MLR GA-PLS

R2 Q2
LOO R2 Q2

LOO

1 0.204 0.001 0.319 0.102

2 0.048 0.265 0.048 0.244

3 0.314 0.068 0.206 0.016

4 0.075 0.260 0.040 0.235

5 0.118 0.022 0.097 0.028

6 0.106 0.069 0.132 0.020

7 0.256 0.010 0.394 0.194

8 0.096 0.099 0.038 0.296

9 0.068 0.175 0.062 0.175

10 0.191 0.007 0.177 0.002

Figure 1 Plot of predicted pIC50 versus the experimental values for MLR model (A), and GA-PLS model (B).
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The Y-randomization test was performed to evaluate the
robustness of the general model. In the Y-randomization
test, the activity data were randomly permuted in the ori-
ginal model and 10 models were generated. All of the
models were expected to have lower R2 and Q2

LOO values
than the original MLR model. If the reverse occurs, a suit-
able MLR model cannot be generated. The lower R2 and
Q2

LOO values are shown in Table 4.

Genetic algorithm partial least squares (GA-PLS)
Since the variable selection method, that is the stepwise
regression, may not be a suitable selection, variable se-
lection methods such as the genetic algorithm, which
demonstrate much better outcomes in comparison with
the stepwise regression, are more favorable [25,26].
In genetic algorithm, if its corresponding descriptor is

contained, a gene receives a value of 1 in the subset;
otherwise, it takes a value of zero. The number of genes
at each chromosome is equivalent to the number of de-
scriptors. The population size varied between 80 and
125 for different GA runs. The number of genes with
the values of 1 was relatively lower than the number of
genes with the values of 0. The genes with the values of
1 were maintained. The chromosomes with the smallest
numbers of chosen descriptors (total number of descrip-
tors for each molecule reached 105) and the highest fit-
ness were selected as the intended model. The predicted
model was tested by leave-n-out cross-validation [27]. A
leave-one-out cross-validation was triggered and the
value of Q2

LOO was obtained 0.850.
In GA-PLS, the resulted model with higher cross-

validation statistics is reported in Equation 2 and the
predicted values of pIC50 are shown in Table 1 and plot-
ted against the experimental values in Figure 1B.

pIC50 ¼ ‐12:589 � 1:208ð Þ þ 6:363 � 0:394ð Þ IC1
þ 2:119 � 0:485ð Þ Mor24m ‐ 0:665 � 0:189ð Þ

Mor15e ‐ 0:784 � 0:370ð Þ Mor32e ð2Þ
N ¼ 24 R2
c ¼ 0:932 S:E ¼ 0:328

Q2
LOO ¼ 0:900 RMSCV ¼ 0:391

This equation has three MLR descriptors (IC1,
Mor24m and Mor15e) with high calibration statistics
and prediction ability. IC1 and Mor24m have a display
positive effect and Mor15e and Mor32e have a display
negative effect on inhibitory activity in GA-PLS. Unlike
MLR, The radial distribution function (RDF) descriptors
have no effect on inhibitory activity in GA-PLS.
As observed from Equation 2, the variables used in this

equation can explain 93.2% of the variances in the inhibi-
tory activity of the MMP-2 inhibitors used in this study.
The Y-randomization test was performed to evaluate

the robustness of the created model in GA-PLS and 10
models were generated. All of the models were expected
to have lower R2 and Q2

LOO values than the original GA-
PLS model, as shown in Table 4.

Applicability domain of the model
A QSAR model is exploited to screen new compounds
when its domain of application has been defined [28]. The
prediction may be assumed reliable for only those



Figure 2 William’s plot of generated MLR model (A), and GA-PLS model (B).
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compounds which fall into this domain [29]. Standardized
residuals of the activity were computed and were plotted
versus leverage values (h). The value of leverage was calcu-
lated for every compound. Values are always between 0 and
1. A value of 0 is indicative of perfect prediction and usually
is not accessible, and a value of 1 indicates very poor pre-
diction. The lower the value, the higher confidence in the
prediction. Warning leverage (h*) is another standard for
explanation of the results and is, generally, fixed at 3 (k +
1)/ n, where k is the number of model parameters and n is
the number of calibration set [29]. Calculated leverage for
calibration set is useful for determining the compounds
which affect the model and, in terms of validation set, use-
ful for assigning the applicability domain of the model. The
William’s plot for the developed models in MLR and GA-
PLS are shown in Figure 2.
Response outliers are compounds that have standard re-

sidual points higher than ± 2.0 standard deviation units and
a leverage value higher than the warning leverage, which is
Figure 3 Interactions between ligand and MMP-2.
0.75 and 0.5 for MLR and GA-PLS respectively. As can be
seen in Figure 2, all studied molecules in calibration and
validation set lie with high degree of confidence in applica-
tion domain of the developed models in both methods.

Molecular docking studies
To explore the ligand binding modes, and to find amino
acids, which are essential in ligand binding to MMP-2,
molecular docking was performed on a ligand-binding
pocket. The way the compound was bound with the low-
est free energy was studied. Interactions between MMP-2
and ligand N-4-[(1-hydroxycarbamoyl-2-methyl-propyl)-
(2-morpholin-4-yl-ethyl)-sulfamoyl]-4- pentyl-benzamide
(SC-74020) were obtained by Feng et al. and were re-
ported. According to their results, the catalytic zinc is che-
lated by His120, His124, His130 and ligand, and the
structural zinc is coordinated by His70, Asp72, His85 and
His98. In addition, hydrogen bond was bound by Leu82
and Ala83 to a sulfoneoxygen atom of the inhibitor [30].



Table 5 The obtained binding energy by AutoDock

Compound Binding energy
(kcal/mol)

Compound Binding energy
(kcal/mol)

4a −5.90 5f −6.13

4b −5.57 5 g −6.34

4c −5.96 5 h −5.93

4d −5.39 5i −5.92

4e −6.88 5j −6.79

4f −5.88 6a −7.08

4 g −5.67 6b −7.07

4 h −6.23 6c −7.01

4i −6.21 6d −7.27

4j −5.98 6e −7.29

5a −6.68 6f −7.16

5b −6.76 6 g −6.92

5c −6.85 6 h −7.35

5d −6.47 6i −7.30

5e −6.67 6j −7.29
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Initially, to assure binding mode of ligand and protein, lig-
and docking with MMP-2 protein has been validated by
Feng. All of the interactions between the ligand and cata-
lytic zinc with the protein from our results are shown in
Figure 3. Root mean square deviation (RSMD) was lower
than 1. Both of the prior cases proposed high reliability of
docking program. Therefore, the AutoDock 4.2 could be
used to find the binding mode of other inhibitors of
MMP-2.
All of the 30 compounds were docked into the binding

site of protein by AutoDock 4.2 and were studied. The
binding energy of all the compounds is reported in Table 5.
The obtained energies were compared with the
Figure 4 The best orientation of 6 h ligand.
experimental IC50, and the 6a-6j compounds have the low-
est binding energy. This means that based on the binding
energy of the active site, these compounds, especially com-
pound (6 h), are the best L-tyrosine scaffold based inhibi-
tors. The binding orientation of compound (6 h) and
hydrogen bond of the ligand with Leu82 and Ala83 are
depicted in Figure 4. This compound was fitted into the ac-
tive site of MMP-2. In all of the compounds, the oxygen of
carbonyl and sulfonyl groups are important for hydrogen
bond of the ligand with Leu82 and Ala83. R2 and R3 sub-
stituents have the main role for hydrogen bonding interac-
tions. In 4a-4j compounds, IC50 is higher than 5a-5j and
6a-6j compounds. When R3 is OH and NHOH groups,
hydrogen bond can be created better than when R3 is –
OCH3. Moreover, when R2 is sulfonyl, because of two oxy-
gen groups, a stronger hydrogen bond can be created than
that of carbonyl.
R1 is sited in hydrophobic pocket. Methylene group can

help the ligand to be fitted in lipophilic pocket, so two
Methylene groups are better than one. Phenyl group can
create a π- π interaction with Phe86. Therefore, phenethyl
(C6H5CH2CH2) is better than benzyl (C6H5CH2).
To design L-tyrosine based inhibitors and prediction

of their activity against MMP-2 based on AutoDock 4.2
and QSAR studies, addition to a higher value of molecu-
lar size, degree of branching, flexibility, shape and three-
dimensional coordination of the different atoms in a
molecule, hydrophobicity and hydrophilicity of R1, R2

and R3 are highly important. When R1 is more hydro-
phobic, and R2, is more hydrophilic, there is a stronger
inhibition against MMP-2.

Conclusion
In this study, quantitative relationships between molecular
structure and inhibitory effect of L-tyrosine scaffold based
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MMP-2 inhibitors were investigated by MLR and GA-PLS.
In MLR, A combined data splitting-feature selection
method (CDFS) was offered to develop a quantitative struc-
ture–activity relationship model. It was found that topo-
logical parameter (IC1) has a main effect on the inhibitory
activity of the compounds, among the different QSAR
models. By this simple procedure, a multilinear 5-
parametric model was created out of 22 descriptors. This
method yielded acceptable results for the prediction set
which was measured by cross-validation and Y-
randomization. The findings indicate that the linear model
produced by CDFS methodology could reproduce more
than 92% of variances in the inhibitory activity. In addition
to MLR, genetic algorithms, which demonstrated much
better outcomes in comparison with stepwise regression,
were used. By GA-PLS, the model with higher cross-
validation statistics was created and the results indicated
that IC1, Mor24m, Mor15e and Mor32e are main descrip-
tors. It can be concluded from the two methods that higher
values of molecular size, degree of branching, flexibility,
shape and three-dimensional coordination of the different
atoms in a molecule are particularly important
The docking study revealed that two hydrogen bonds

between all of the inhibitors and the active site of MMP-
2 (Leu82 and Ala83) are formed, as well as a π-π inter-
action between phenyl group and Phe86.
The information above could be used to design new

inhibitors, and to show higher inhibitory activities and
chemical synthesis of new inhibitors.
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