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Abstract

More and more attention has been paid to the invariant texture analysis, because the training and testing samples
generally have not identical or similar orientations, or are not acquired from the same viewpoint in many practical
applications, which often has negative influences on texture analysis. Local binary pattern (LBP) has been widely
applied to texture classification due to its simplicity, efficiency, and rotation invariant property. In this paper, an
integrated local binary pattern (ILBP) scheme including original rotation invariant LBP, improved contrast rotation
invariant LBP, and direction rotation invariant LBP is proposed which can effectively overcome the deficiency of
original LBP that is ignoring contrast and direction information. In addition, for surmounting another major
drawback of LBP such as locality which can result in the lack of shape and space expression of the holistic texture
image, Zernike moment features are fused into the improved LBP texture features in the proposed method
because they comprise orthogonal and rotation invariant property and can be easily and rapidly calculated to an
arbitrary high order. Experimental results show that the proposed method can be remarkably superior to the other
state-of-the-art methods when rotation invariant texture features are extracted and classified.
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1 Introduction
Texture analysis is an attractive topic in image processing
and pattern recognition. It plays a vital role in many im-
portant applications such as object tracking or recogni-
tion, remote sensing, image retrieval based on similarity,
and so on [1-4]. Guo et al. [5] summarized four primary
problems about texture analysis which are respectively
image classification based on texture content, image seg-
mentation of homogeneous texture regions, texture syn-
thesis for graphics applications, and shape information
acquisition from texture cue.
It is a very difficult problem to analyze existing texture

in the real world mainly because of some uncertain fac-
tors such as inhomogeneity, illumination changes, and
variability of texture appearance, etc. In the early stage,
researchers focus on using statistical features to classify
texture images. Haralick et al. [6] firstly proposed to use
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cooccurrence statistics to describe texture features. In the
nineties, the Gabor filtering method of Manjunath and Ma
[7] is credited as the current excellent technique in texture
analysis. Although these methods obtained good perform-
ance, generally they need be made an explicit or implicit as-
sumption that the training and testing samples have
identical or similar orientations or are acquired from the
same viewpoint [8]. In many practical applications, how-
ever, this assumption often cannot be guaranteed. Based on
the practical experience, this phenomenon can be found
that no matter how to rotate the texture images, these tex-
ture images always can be exactly classified from human vi-
sion point of view. Therefore, invariant texture analysis is
highly demanded in both theoretical research and practical
application.
More and more attention has been paid to the invari-

ant texture analysis. An excellent review is summarized
by Zhang and Tan [8]. Among these methods, Kashyap
and Khotanzad [9] firstly researched rotation invariant
texture classification by using a circular autoregressive
model whose parameters are invariant to image rotation.
n Open Access article distributed under the terms of the Creative Commons
g/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
roperly credited.

mailto:wangyu@btbu.edu.cn
http://creativecommons.org/licenses/by/4.0


Wang et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:182 Page 2 of 12
http://asp.eurasipjournals.com/content/2014/1/182
Choe and Kashyap [10] proposed an autoregressive frac-
tional difference model to possess rotation invariant pa-
rameters. Hidden Markov model [11] also was used to
explore rotation invariant texture classification. In
addition, wavelet analysis is an excellent tool to obtain
rotation invariant texture feature. For example, Jafari-
Khouzani and Soltanian-Zadeh [12] proposed to extract
wavelet energy features containing the texture orien-
tation information to classify the texture images. In
addition, a polar, analytic form of a two-dimensional
Gabor wavelet [13] was used to deduce rotation invariant
texture feature. Recently, some methods based on statis-
tical learning was proposed by Varma and Zisserman
[14,15], in which a rotation invariant texton library is first
built using a training set, and then a testing texture image
is classified according to its texton distribution. Crosier
and Griffin [16] use basic image features (BIF) for texture
classification and obtain excellent results. Furthermore,
some pioneering work on scale and affine invariant texture
classification has been done by using fractal analysis [17]
and affine adaptation [18].
Local binary pattern (LBP) has been being reputable

due to its effectiveness, speed, and rotation invariant
property since it was mentioned by Harwood et al. [19].
Later it was introduced to the public by Ojala et al. [20].
Many researchers developed LBP methods based on
Ojala’s idea. For example, Zhao et al. [21], Maani et al.
[22], and Ahonen et al. [23] respectively improved the
LBP method using frequency domain analysis methods.
Mäenpää [24] pointed out that texture can be regarded
as a two-dimensional phenomenon characterized by two
orthogonal properties: patterns and the strength of the
patterns, and these two measures are supplementary to
each other in a very useful way. However, it is ‘the
strength of the pattern’ that the original LBP ignores be-
sides direction information. Guo et al. [5] proposed an
adaptive LBP method including the directional statistical
information of texture for rotation invariant texture classi-
fication. Motivated by their work, original rotation invari-
ant LBP, improved contrast rotation invariant LBP, and
direction rotation invariant LBP are combined, called inte-
grated LBP (ILBP) shown using the dashed line and box in
Figure 1, to represent the texture information of the
image, which can effectively overcome the inherent defi-
ciency of original LBP that is ignoring contrast and direc-
tion information.
Although an LBP descriptor can get an excellent per-

formance, it only describes the difference of local gray
level and lacks the shape and space expression of the
holistic texture image. Furthermore, compared to homo-
geneous textures such as bricks or sands which have the
uniform statistical features, inhomogeneous textures like
clouds or flowers generally cannot be extracted robust
texture features using conventional algorithms focusing
on homogeneous textures [25]. In effectively making up
the missed shape and space information of the holistic
texture image when LBP texture features are extracted,
Zernike moment is a desirable choice.
Moments and functions of moments have been suc-

cessfully utilized as pattern features in many applications
such as image recognition [26] and image retrieval [25]
which can capture global information of the image.
Zernike moments are deduced based on the theory of
orthogonal polynomials. Khotanzad and Hong [26]
have suggested that orthogonal moments like Zernike
moments are better than other types of moments in
terms of information redundancy and image represen-
tation. Compared to other orthogonal moments, Zernike
moments are possessed of rotation invariant property
and can be easily and rapidly calculated to an arbitrary
high order.
Therefore, a promising rotation invariant texture clas-

sification method is proposed which combines ILBP fea-
tures with Zernike moment rotation invariant features.
These two features respectively describe local and holis-
tic information of texture images. Using the fusion strat-
egy effectively, excellent performances are obtained by
means of elaborate experiments and comprehensive tex-
ture databases including the Columbia-Utrecht Reflec-
tion and Texture (CUReT) database [27], the Outex
database [28], and the KTH-TIPS database [29]. The
framework of the proposed method is shown using a
solid line and box in Figure 1.
The rest of the paper is organized as follows. Section 2

explains the original LBP. Section 3 presents the proposed
method in which contrast and direction information of
LBP are considered, and shape and space information of
the holistic image obtained by Zernike moments are
fused during the course of feature extraction. The ex-
perimental results of the proposed method and the
other compared methods are shown in Section 4. Fi-
nally, a conclusion is drawn.

2 Original LBP texture model
2.1 Basic LBP model
Ojala et al. [20] used LBP as a texture descriptor of the
image as shown in Figure 2, which is composed by cen-
tral pixel and neighborhoods. Considering the central
pixel as the threshold of texton, LBP code can be de-
scribed using the following equation:

LBP xc; ycð Þ ¼
XP−1
p¼0

s gp − gc
� �

2P ð1Þ

where s(x) is a signal function, and s xð Þ ¼ 1 x≥0
0 x < 0

:

�
(xc, yc) is the allowable position as the central pixel. gc is



Figure 1 The framework of the proposed method. (The integrated LBP is shown using the dashed line and box).
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the central pixel, gp is the pixel value of neighborhood,
P is the number of the neighbors.
By making statistics about the frequencies of the oc-

curred LBP codes at all allowable positions in the image,
the texture spectrum histogram S[h] (h = 0, 1, …, 2P) can
be obtained using the following equation:

S h½ � ¼

Xu−1
xc¼0

Xv−1
yc¼0

f xc;yc
� �

u� v
ð2Þ

where f xc; yc
� � ¼ 1

0
LBP xc; yc

� � ¼ h
otherwise

;u� v

�
is the

size of image.
Subsequently, Ojala et al. [1] improved the square LBP

to be a circular form with discretionary radius R and
neighborhoods P. Supposing that the coordinate of cen-
tral pixel gc is (xc, yc), then the coordinate of the neigh-
bor gp is (xc + Rcos(2πi/P), yc − Rsin(2πi/P)). The pixel
values of the neighbors which are not in the image grids
can be calculated using an interpolation method. The
relative position of central pixel and neighbors is shown
in the Figure 3.

2.2 Uniform and rotation invariant LBP
A hidden trouble exists in the abovementioned LBP. As
the number of neighbors increases, the dimension of the
histogram grows rapidly. For example, if P is 16, then the
dimension of the histogram is 216 = 65,536. Therefore, the
Figure 2 An example of the pattern and LBP.
texture spectrum is so long that it is inconvenient to be
applied in practice.
In the LBP code, the number of spatial transitions (bit-

wise 0/1 changes) can be described as:

U LBPP;R
� � ¼ s gP − gc

� �
− s g1 − gc
� ��� ��

þ
XP
i¼2

s gi − gc
� �

− s gi‐1 − gc
� ��� �� ð3Þ

When U(LBPP,R) ≤ 2, the LBP pattern is defined as uni-
form patterns LBPu2

P;R which has P(P − 1) + 2 discrimina-
tive patterns [1]. Although the histogram spectrum
feature can be simplified using the uniform pattern, this
processing way is feasible. By experiments and observa-
tion, uniform LBPs are fundamental properties of tex-
ture, providing the vast majority of patterns, sometimes
over 90%. Detailed experimental results are listed in
Section 4.
Furthermore, by observing, it is not difficult to find

that no matter how to rotate the LBP, its structure is
identical, which means that the original LBP and the ro-
tated LBP have the same order and bitwise 0/1 changes
as shown in Figure 4. For obtaining the rotation
Figure 3 The relative position of central pixel and neighbors.



Figure 4 Some LBPs belonging to the same family.
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invariant texture description, Ojala et al. [1] gave the
following definition:

LBPri
P;R ¼ min ROR LBPP;R; p

� �� 	
; p ¼ 0;…;P‐1ð Þ

ð4Þ

where ri means the rotation invariance, ROR(x, p)
represents that the LBP code x is rotated p times around
the center pixel. That is to say, using the LBP with the
minimal decimal value stands for other LBPs belonging
to the same family. Figure 4 shows some LBPs pertain-
ing to the same family. The rotation invariant uniform
LBP LBPriu2

P;R can be calculated using the following
equation:

LBPriu2
P;R ¼

XP−1
p¼0

s gp − gc
� �

if U LBPP;R
� �

≤2

P þ 1 otherwise

8><
>:

ð5Þ

where riu2 means rotation invariant uniform pattern
which has P + 2 discriminative patterns. Thus the dimen-
sion of texture spectrum histogram is greatly simplified.
By making statistics about the frequencies of the oc-
curred LBPriu2P;R at all allowable pixel positions in the
image, the texture spectrum histogram Soriginal can be
obtained.

3 Integrated LBP and Zernike moments model
As mentioned above, attention is paid to the detailed in-
formation when texture features are extracted by LBP.
But the major drawback of LBP texture analysis is its lo-
cality. Zernike moment features are just opposite. That
is to say, Zernike moments emphasize holistic and shape
information of images but lack specific information.
Therefore, LBP and Zernike moments complement each
other in terms of information description of images.
What is more, these two measure ways can be both de-
scribed as a histogram spectrum, so it is very convenient
to fuse them.

3.1 Integrated rotation invariant LBP model
Other two kinds of rotation invariant LBPs are proposed
besides the original rotation invariant pattern LBPriu2

P;R .
They are respectively contrast rotation invariant LBPs
represented by CLBPriu2
P;R and direction rotation invariant

LBP represented by OLBPri
P;R. These three kinds of rotation

invariant LBPs are collectively referred to as an ILBP
model.

3.1.1 Contrast rotation invariant LBP
Although rotation invariant pattern LBPriu2P;R can obtain an
excellent performance, this kind of LBP texture represen-
tation only describes the change between the central pixel
and neighbors. As to how much change occurs between
them on earth, LBPriu2

P;R cannot give an explicit description.
For example, both of the central pixels are 50 in two local
textons whose neighbors are respectively {82,90,30,75,124,
69,39,104} and {79,68,24,82,136,73,45,233}. Although their
LBP codes are both {1,1,0,1,1,1,0,1}, the absolute values of
their contrast change between the central pixel and neigh-
bors are different which are respectively {32,40,20,25,74,
19,11,54} and {29,18,26,32,86,23,5,183}. For supplementing
these missed information, contrast rotation invariant LBP
is added to describe the texture images besides the original
LBPriu2

P;R . Using Cp represents the absolute value of contrast
change between the central pixel and neighbors in every
texton, i.e., Cp = |gp − gc|; LBP of Cp can be obtained by the
following equation:

C LBPP;R xc; yc
� � ¼

XP−1
p¼0

s Cp − μC
� �

2P; ð6Þ

where μC is the mean of the absolute value Cp of con-
trast change between the central pixel and neighbors in

every texton, and μC ¼ 1
P

XP−1
p¼0

Cp: . If the similar process-

ing method such as (5) is applied to C _ LBPP,R, the con-
trast rotation invariant CLBPriu2

P;R can be obtained. By
making statistics about the frequencies of the occurring
CLBPriu2

P;R at all allowable pixel positions in the image, the
texture spectrum histogram SC can be obtained.

3.1.2 Direction rotation invariant LBP
For the stochastic texture images as shown in Figure 5a,
the direction information is not apparent. But for the
periodic or partly periodic texture images as shown in
Figure 5b, the direction information is obvious. In the
real world, most of the texture images contain the direc-
tional cue, so supplementing direction information in
the discriminative features is worth trying.
The mean μOp and variance σOp of Cp in whole texture

image are used to describe the direction information
along the orientation 2πp/P. The specific equations are
shown below.



Figure 5 Some examples of (a) stochastic texture images and
(b) periodic or partly periodic texture images.
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μOp ¼
1

u� v

Xu
i¼1

Xv
j¼1

Cp; p ¼ 1;…; Pð Þ ð7Þ

σOp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

u� v

Xu
i¼1

Xv
j¼1

Cp − μOp

� �2vuut ; p ¼ 1;…;Pð Þ ð8Þ

Therefore, two vectors μO = [μO1, μO2,…, μOP] and σO =
[σO1, σO2,…, σOP] representing direction information can
be obtained. Figure 6 shows an example of directional in-
formation μO and σO about one texture image and corre-
sponding rotated image with a 90° angle, respectively. By
the observation, it can be found that μO and σO contain
strong directional information and can be used to revise
the histogram spectrum feature of the images so that more
similarities between the image and its rotated images are
mined. μO and σO can be respectively converted into rota-
tion invariant LBP using the means of μO and σO as the
thresholds. Direction rotation invariant information OμLB

PriP;R and OσLBP
ri
P;R of the holistic texture image can be ob-

tained using the following equations:

Oμ LBPri
P;R ¼ min ROR

XP−1
p¼0

s μOp − �μOp

� �
2P; p

 !( )

ð9Þ

Oσ LBPri
P;R ¼ min ROR

XP−1
p¼0

s σOp − �σOp
� �

2P; p

 !( )

ð10Þ
where �μOp ¼ 1

P

XP−1
p¼0

μOp; �σOp ¼ 1
P

XP−1
p¼0

σOp Oμ LBPri
P;R and

Oσ LBPriP;R are used to together represent direction rotation

invariant OLBPri
P;R of the whole texture image. As to how to

revise the histogram spectrum feature of the image using
direction rotation invariant OLBPri
P;R , the processing method

will be detailedly introduced in the following section.

3.2 Rotation invariant Zernike moments model
Although LBP is an excellent method in both perform-
ance and efficiency, it ignores the shape and space infor-
mation of the holistic texture image. For supplementing
the missed information, Zernike moment rotation invari-
ant features are used and fused. Because the basis set of
ordinary moments is not orthogonal, Zernike [30] intro-
duced a set of complex polynomials which makes a
complete orthogonal set denoted by {Vnm(x, y)} over the
interior of the unit circle, i.e., x2 + y2 = 1. The form of
these polynomials is described as:

Vnm x; yð Þ ¼ Vnm ρ; θð Þ ¼ Rnm ρð Þ exp jmθð Þ ð11Þ
where n is positive integer or zero, m is positive and

negative integers subject to constraints that n − |m| is
even, and |m| ≤ n. ρ is the length of vector from origin
to (x, y) pixel, and θ is the angle between vector ρ and x
axis in counterclockwise direction, and Rnm(ρ) is radial
polynomial shown as the following equation:

Rnm ρð Þ ¼
Xn− mj j=2

s¼0

−1ð Þs⋅ n−sð Þ!
s! nþ mj j

2 −s
� �

! n− mj j
2 −s

� �
!
ρn−2s ð12Þ

And Rn,− m(ρ) = Rnm(ρ). At the same time, these poly-
nomials are orthogonal and satisfy:

∬
x2þy2≤1

Vnm x; yð Þ½ �Vpq x; yð Þdxdy ¼ π

nþ 1
δnpδmq ð13Þ

where δab ¼ 1 a ¼ b
0 otherwise

�
Zernike moments are the

projection of the image function onto these orthogonal
basis functions. So Zernike moment of nth order with
the repetition m for a texture image f(x, y) is:

Anm ¼ nþ 1
π

∬
x2þy2≤1

Vnm ρ; θð Þf x; yð Þdxdy ð14Þ

For a digital image, the above equation can be changed
into the following form:

Anm ¼ nþ 1
π

X
x

X
y

V nm ρ; θð Þf x; yð Þ; x2

þ y2≤1 ð15Þ

When calculating the Zernike moments of a given
image, the center of the image is taken as the origin and
pixel coordinates are mapped into the unit circle. The
pixels falling outside the circle are not used, and Anm =
An,− m. By theoretical testifying, Zernike moments have
the rotation invariant property, that is to say, if the
Zernike moments of an image and its rotated image with



Figure 6 Texture image and directional information. An example of (a) 0° texture image, (b) 90° rotated image, and (c) corresponding mean
μOp and (d) variance σOp of Cp. (Solid line and dashed line respectively denote 0° and 90° image. Here, P = 8 and R = 1).
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an angle θ are respectively denoted using Anm and A′
nm ,

they have the following relation:

A′
nm ¼ Anm exp −jmθð Þ ð16Þ

If the image is preprocessed using some simple
methods [26], Zernike moments are also invariant to
translation and scale besides rotation. Using (15), the
Zernike moments of different orders can be obtained
such as A00, A11, A20, A22, and so on. The vector SZ
composed of Zernike moments of different orders is
used as the histogram spectrum feature to describe the
image information, and the specific form is:

SZ ¼ A00;A11;A20;A22; ::::;Anm½ � ð17Þ

3.3 Construction and revise of fusion feature
After the ILBP and Zernike moment features of the
image are respectively obtained through the above
description, the fusion feature is constructed and re-
vised, then a final classification decision is made.

3.3.1 Construction of fusion feature
Because the features of LBP and Zernike moments are
both histogram spectrum form, it is very convenient to
fuse them. In fact, a lot of experiments are made includ-
ing serial, parallel, and jointly methods. However, the
serial method can obtain more stable and excellent per-
formance. The serial method is very simple and can be
described as:

F ¼ Soriginal SC SZ
� � ð18Þ

where F denotes the fused histogram spectrum feature.
Actually, the histogram spectrum Soriginal of original ro-
tation invariant LBPriu2

P;R and the histogram spectrum SC
of contrast rotation invariant CLBPriu2

P;R can also be seri-
ally fused. The related experimental results will be given
in Section 4.
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3.3.2 Revise of fusion feature
In the preceding section, a method for acquiring direc-
tional information of the image is proposed. Here the re-
vise method of fused histogram spectrum feature using
the direction rotation invariant OLBPri

P;R including OμLB

PriP;R and OσLBP
ri
P;R will be elaborated. The equation is

described as:

F ′ ¼ F⋅ 1þ c1⋅ exp −c2⋅ Oμ LBPriP;R − μ Oμ

� �� �
=σ Oμ

� �� �� �
⋅ 1þ c1⋅ exp −c2⋅ Oσ LBPriP;R − μ Oσð Þ

� �
=σ Oσð Þ

��
ð19Þ

where F′ is the revised fusion histogram spectrum fea-
ture. μ(Oμ) and σ(Oμ) are respectively the mean and vari-
ance of the direction rotation invariant OμLBP

ri
P;R

training images; μ(Oσ) and σ(Oσ) are respectively the
mean and standard of the direction rotation invariant
OσLBP

ri
P;R of all training images. c1 and c2 are positive pa-

rameters. In fact, besides fusion histogram spectrum fea-
ture F, OLBPri

P;R can also revise other histogram spectrum
features such as Soriginal generated by original rotation in-
variant LBPriu2

P;R , SC generated by contrast rotation invariant

CLBPriu2
P;R , even SZ calculated by rotation invariant Zernike

moments.
3.4 Classifier and multiscale fusion idea
Nearest neighbor is a kind of effective and simple classi-
fication criterion. There are many good measures to esti-
mate the difference and similarity between two
histograms such as log-likelihood ratio and chi-square
statistic [1]. The chi-square distance function in the ex-
periments is chosen due to its excellent performance in
terms of both speed and good recognition rates which is
described as:

d F ′
train;F

′
test

� � ¼XN
i¼1

F ′
train;i − F ′

test;i

� �2
= F ′

train;i þ F ′
test;i

� �
ð20Þ

where d is the chi-square distance between the revised
fusion histogram F ′

train of the training image and the re-
vised fusion histogram F ′

test of the testing image. Subscript
i is the corresponding bin, and N is the number of bins.
In fact, multiscale fusion idea could be used to improve

the classification accuracy in the proposed method, i.e.,
multiple descriptors of various (P, R) are used simultan-
eously. Because different scale operators support different
structure space of the image, multiple scale descriptors
can capture richer and completer texture information.
4 Experimental results
Many experiments have been elaborately designed and
executed with the aim of demonstrating the effectiveness
of the proposed method.
4.1 The database
Two large and comprehensive texture databases in the study
are chosen which are respectively the CUReT database [27],
the Outex database [28], and the KTH-TIPS database [29].
The CUReT database includes 61 classes of real-world tex-
tures, and each corresponds to different combinations
of illumination and viewing angle. The same as the litera-
ture proposed by Guo [5], 92 sufficiently large images in
each class with a viewing angle less than 60° are selected
in the experiments. Among them, the first 23 images in
each class were used as training images. Therefore, there
are 1,403 (61 × 23 = 1,403) training models and 4,209
(61 × 69 = 4,209) testing samples. This design may be
regarded as an analog about the situation with a small
number of and less comprehensive training images.
In the Outex database, each texture is captured using

six spatial resolutions (100, 120, 300, 360, 500, and 600
dpi), nine rotation angles (0°, 5°, 10°, 15°, 30°, 45°, 60°,
75°, and 90°), and three different simulated illuminants
(‘horizon’, ‘inca’, and ‘TL84’). The experimental images in-
clude canvas (46 classes), cardboard (1 classes), carpet
(12 classes), chips (12 classes), and wallpaper (17 clas-
ses), i.e., 99 classes texture images all together in the
Outex database. Each class texture images contains 27
images (3 illuminants, 9 angles, and spatial resolution of
600 dpi). The first 9 images (‘horizon’ illuminant, 9 an-
gles, and spatial resolution of 600 dpi) in each class are
chosen as training images. Therefore, there are 891
(99 × 9 = 891) training models and 1,782 (99 × 18 =
1,782) testing samples.
The KTH-TIPS database contains 10 texture classes

such as crumpled aluminum foil, sponge, brown bread,
etc. Each texture is captured under 9 scales, 3 different
illumination directions, and 3 different poses. Therefore,
there are 81 images per material. The first 21 images in
each class are chosen as training images. Therefore,
there are 210 (10 × 21 = 210) training models and 600
(10 × 60 = 600) testing samples.
The proposed method are compared with the state of

the art LBP methods including LBPriu2
P;R [1], variance

method (VARP,R) [1], LBPriu2
P;R =VARP;R [1], adaptive LBP

method ALBPFriu2P;R

� �
[5] and LBP histogram Fourier

(LBPHF) method [21] (concatenating sign LBP histo-
gram Fourier and magnitude LBP histogram Fourier).
Because VARP,R and LBPriu2

P;R =VARP;R were set as 128 and
16 bins. All the images are converted to grey scale. For
removing the effect of global intensity and contrast, each
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texture image was normalized to have an average inten-
sity 128 and a standard deviation 20 [1].

4.2 The feasibility of uniform LBP
For showing the effectiveness on dimensionality reduction
using LBPu2

P;R , the proportions of frequencies of LBP
u2
P;R are

calculated. Some statistic results are shown in Table 1, and
the images are selected from the Outex database.
As can be seen from the Table 1, the uniform LBP occu-

pies the vast majority of a local binary pattern, sometimes
over 90%. Therefore, it is feasible to use the uniform LBP
to reduce the dimensionality of histogram spectrum.

4.3 Experimental results on CUReT database
In the experiments, different combination on three kinds
of rotation invariant LBP operators and rotation invari-
ant Zernike moments are compared. ‘/O’ denotes revis-
ing the histogram spectrum by direction rotation
invariant LBP. ‘C’ represents capturing the histogram
spectrum features by contrast rotation invariant LBP. ‘Z’
is Zernike moments method. And ‘_’ denotes connecting
two or three kinds of histogram spectrum features in
series. For example, LBPriu2P;R CZ represents serially con-

necting original rotation invariant LBPriu2P;R , contrast rota-

tion invariant CLBPriu2
P;R and Zernike moments rotation

invariant Anm. LBPriu2
P;R CZ=O represents revising the fu-

sion feature LBPriu2P;R CZ by direction rotation invariant OL

BPri
P;R . The number 5, 8, or 10 denotes the order of

Zernike moments. VZ_MR4 and VZ_MR8 respectively
denote MR4 and MR8 of MR filter banks method.
Table 2 lists experimental results on CUReT database
using different methods.
As can be seen from the Table 2, firstly, the recognition

rate of contrast rotation invariant CLBPriu2
P;R (represented

by ‘C’ in the Table 2) alone is worse than that of original
rotation invariant LBPriu2

P;R . For example, the recognition

rates of LBPriu2
P;R can respectively reach at 62.25%, 64.93%,

and 68.33% when P and R are respectively (8,1), (16,2),
and (24,3). Whereas the results of CLBPriu2

P;R are respect-
ively 52.58%, 51.41%, and 50.18% in the same case. It
shows that the information which is contained by LBPriu2

P;R

is richer than that contained by CLBPriu2
P;R .
Table 1 The proportions of frequencies of LBPu2P;R (P=8, R=1)

Images LBPu2P;R (%)

Canvas 006 87.06

Cardboard 001 81.32

Carpet 005 83.05

Chips 007 87.90

Wallpaper 008 90.52
Secondly, the role of contrast information, not only VARP,R
but also CLBPriu2

P;R decreases as the number of neighbors and
the size of texton increase. It states that the reliability of dif-
ference value between the central pixel and the neighbors re-
duces as the size of texton augments. But the recognition
rate of original rotation invariant LBPriu2P;R grows as the num-
ber of the neighbors and the size of texton increase.
Thirdly, among the compared methods with respect to

LBP, LBPHF and adaptive LBP method obtain better re-
sults. And for non-LBP method, the results of MR8
method are better than ones of MR4 because of the
richer feature representation.
Fourthly, for Zernike moment features, the recognition

rate grows as the order increases. The reason for this
phenomenon is that the higher the order is, the richer
the detailed information contained by the Zernike mo-
ment histogram spectrum is. Fourthly, directional infor-
mation can improve the recognition results of different
features including LBP, Zernike moments, and fusion
histogram spectrum.
Finally, fusion modes can effectively boost the recogni-

tion results. For example, when P = 8 and R = 1, the rec-
ognition rates are respectively 62.25%, 52.58%, and
36.07% obtained alone by LBPriu2

P;R , CLBPriu2
P;R and Zernike

moments (10 order). However, when fusion features LB

Priu2P;R C and LBPriu2
P;R CZ are used, the recognition rates can

reach at 67.31% and 76.36%, respectively.
By applying the multiscale idea mentioned above in

Section 3, better results can be obtained. For example,
recognition rates respectively reach at 77.33% and
81.94% when different radius and different neighbors fu-
sion features LBPriu2

P;R C8;1þ16;2þ24;3 and LBPriu2
P;R CZ8;1þ16;2þ24;3

are used. And recognition rates respectively reach at
81.84% and 78.33% when different radius and same
neighbors fusion features LBPriu2

P;R C16;1þ16;2þ16;3 and same

radius and different neighbors fusion features LBPriu2
P;R

CZ8;2þ16;2þ24;2 are used. Here, Zernike moment features are
gotten using 10 order moments, and different scale fu-
sion features are obtained by simply connecting the
histogram features of different scales. Better perform-
ance can be expected if more ingenious fusion strategies
are used [31]. Because the results on LBPHF method are
more stable among these compared methods, we also
calculated the recognition rate of different radius and
different neighbors fusion features LBPHF8,1 + 16,2 + 24,3

which reaches at 71.77%.
4.4 Experimental results on Outex database
In this section, all the experiments are done using the same
methods, and the results are listed in Table 3. Because the
images in the Outex database are larger than those in the



Table 2 Recognition rates of different methods

Methods P = 8, R = 1 P = 16, R = 2 P = 24, R = 3

Recognition rate (%) Bins c1/c2 Recognition rate (%) Bins c1/c2 Recognition rate (%) Bins c1/c2

VARP,R 45.17 128 - 41.15 128 - 38.92 128 -

LBPriu2P;R =VARP;R 66.48 10/16 - 70.56 10/16 - 71.04 10/16 -

ALBPFriu2P;R 69.73 10 - 73.49 18 - 73.63 26 -

LBPHF 68.40 76 - 73.34 276 - 73.91 604 -

VZ_MR4 67.55 1,220 - 67.55 1,220 - 67.55 1,220 -

VZ_MR8 71.25 1,220 - 71.25 1,220 - 71.25 1,220 -

LBPriu2P;R 62.25 10 - 64.93 18 - 68.33 26 -

LBPriu2P;R =O 62.77 10 0.1/0.15 65.17 18 0.1/0.15 68.64 26 0.1/0.15

C 52.58 10 - 51.41 18 - 50.18 26 -

C/O 53.27 10 0.1/0.15 53.15 18 0.1/0.15 52.27 26 0.1/0.15

LBPriu2P;R C 67.31 20 - 68.76 36 - 71.20 52 -

LBPriu2P;R C=O 67.36 20 0.01/0.015 68.76 36 0.01/0.15 71.35 52 0.1/0.15

Z 5 27.54 12 - 27.54 12 - 27.54 12 -

8 34.33 25 34.33 25 34.33 25

10 36.07 36 36.07 36 36.07 36

Z/O 5 30.39 12 0.1/0.15 32.62 12 0.1/1.5 33.43 12 0.1/1.5

8 37.06 25 37.80 25 37.99 25

10 38.54 36 39.96 36 39.23 36

LBPriu2P;R CZ 5 74.79 32 - 76.41 48 - 77.19 64 -

8 75.53 45 76.88 61 77.60 77

10 76.36 56 77.22 72 77.86 88

LBPriu2P;R CZ=O 5 73.27 32 0.01/0.015 76.41 48 0.01/0.015 77.19 64 0.01/0.015

8 74.48 45 76.93 61 77.62 77

10 76.38 56 77.22 72 77.86 88
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CURet database, the results of many methods show ‘out of
memory’ besides those of VARP,R and LBPriu2P;R =VARP;R ,
when the number of neighbors P is 24 and radius R is 3.
Therefore, the results on the scale of P = 24 and R = 3 are
not listed in Table 3.
As can be seen from the Table 3, firstly, the results of

original rotation invariant LBPriu2P;R are better than those
of contrast rotation invariant CLBPriu2

P;R . Secondly, the re-
sults of LBPriu2

P;R improve as the number of neighbors and
the size of texton increase; however, the results of CLB
Priu2P;R are the opposite.
Thirdly, for the Zernike moment method, the recognition

rate grows as the order increases. The change trend is the
same as that of the CUReT database. In addition, it can be
found that the results of Zernike moments are very excel-
lent mainly because of two factors. On the one hand, angle
changes are highly emphasized for the images in the Outex
database. On the other hand, Zernike moment features are
possessed of a rotation invariant property and can well de-
scribe shape and space information of the image, so they
are very suitable to be used to recognize the images with
different rotation angles. It is the direction information of
the image that has been fully mined by Zernike moments;
therefore, the proposed direction rotation invariant LBP
can hardly affect the original feature histogram.
Finally, the fusion method can remarkably improve the

results. For example, when P and R are respectively 16
and 2, LBPriu2P;R and CLBPriu2

P;R respectively obtain the rec-
ognition rate of 31.03% and 15.38%, but fusion features
LBPriu2

P;R C and LBPriu2
P;R CZ can respectively reach at 32.72%

and 71.16%. Here, Zernike moments are calculated using
a 10-order parameter. However, it can be found that the
fusion results are worse than the results of Zernike mo-
ments. It is not difficult to explain this phenomenon
from the signal processing point of view. When the
quality difference between two signal sources is too big,
then the fusion result would be bad because the rela-
tively worse signal may disturb the relatively better sig-
nal resembling the noise. Therefore, the recognition
rates of fusion feature LBPriu2

P;R CZ are worse than those of



Table 3 Recognition rates of different methods

Methods P = 8, R = 1 P = 16, R = 2

Recognition rate (%) Bins c1/c2 Recognition rate (%) Bins c1/c2

VARP,R 34.68 128 - 43.77 128 -

LBPriu2P;R =VARP;R 38.95 10/16 - 52.86 10/16 -

ALBPFriu2P;R 17.00 10 - 30.02 18 -

LBPHF 38.83 76 - 56.29 276 -

VZ_MR4 32.38 1,980 - 32.38 1,980 -

VZ_MR8 35.97 1,980 - 35.97 1,980 -

LBPriu2P;R 20.71 10 - 31.03 18 -

LBPriu2P;R =O 21.10 10 0.1/0.15 31.43 18 0.1/0.15

C 16.55 10 - 15.38 18 -

C/O 17.12 10 0.1/0.15 16.33 18 0.01/0.015

LBPriu2P;R C 23.34 20 - 32.72 36 -

LBPriu2P;R C=O 24.97 20 0.1/0.15 33.56 36 0.1/0.15

Z 5 86.20 12 - 86.20 12 -

8 92.93 25 92.93 25

10 94.33 36 94.33 36

Z/O 5 86.20 12 0.1/0.015 86.14 12 0.1/0.015

8 92.93 25 92.93 25

10 94.39 36 94.33 36

LBPriu2P;R CZ 5 58.02 32 - 61.73 48 -

8 66.95 45 67.79 61

10 69.58 56 71.16 72

LBPriu2P;R CZ=O 5 58.24 32 0.1/0.15 61.73 48 0.01/0.015

8 67.06 45 0.1/0.015 67.85 61

10 69.58 56 71.16 72
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alone Zernike moments but greatly better than those of
alone texture feature such as LBPriu2

P;R or contrast LBP
and even the fusion feature LBPriu2P;R C.
Multiscale method in the Outex database is also tried,

and an excellent performance is obtained. For example,
the recognition rates can respectively reach at 72.17%,
68.86%, and 74.41% when different radius and different
neighbors fusion feature LBPriu2

P;R CZ8;1 þ 16;2 , different radius

and same neighbors fusion features LBPriu2
P;R CZ16;1 þ 16;2 and

same radius and different neighbors fusion features LB

Priu2P;R CZ8;2 þ 16;2 are used. Here, Zernike moments are cal-
culated using a 10-order parameter. Furthermore, we also
calculated the recognition rate of the LBPHF method with
different radius and different neighbors fusion features
LBPHF8,1 + 16,2 which reaches at 56.73%.

4.5 Experimental results on KTH-TIPS database
In this section, all the experiments are done using the
same methods, and the results are listed in Table 4. Be-
cause the trends of most of the results are similar to
those of the CURet and Outex databases, here, only
some different phenomena are given. Firstly, the recog-
nition rates of ALBPFriu2P;R and LBPHF methods decrease
as the number of the neighbors and the size of texton
increase. Secondly, compared with the results on the
CURet and Outex databases, the role of contrast infor-
mation is very obvious, sometimes even better than the
ones of LBPriu2P;R . The reason may be that the images in
the KTH-TIPS database contain sharp scale changes.
In addition, the multiscale method can further im-

prove the results. For example, the recognition rates
can respectively reach at 64.50%, 62.33%, and 63.83%
when different radius and different neighbors fusion
features LBPriu2

P;R C8;1þ16;2þ24;3 ; different radius and same
neighbors fusion features LBPriu2P;R C16;1þ16;2þ16;3 ; and same
radius and different neighbors fusion features LBPriu2

P;R C
Z8;2þ16;2þ24;2 are used. Here, Zernike moments are calcu-
lated using a 10-order parameter. Furthermore, we also
calculated the recognition rate of the LBPHF method with
different radius and different neighbors fusion features
LBPHF8,1 + 16,2 + 24,3 which reaches at 55.83%.



Table 4 Recognition rates of different methods

Methods P = 8, R = 1 P = 16, R = 2 P = 24, R = 3

Recognition rate (%) Bins c1/c2 Recognition rate (%) Bins c1/c2 Recognition rate (%) Bins c1/c2

VARP,R 34.50 128 - 30.83 128 - 38.50 128 -

LBPriu2P;R =VARP;R 41.17 10/16 - 42.32 10/16 - 47.17 10/16 -

ALBPFriu2P;R 53.33 10 - 45.00 18 - 44.67 26 -

LBPHF 60.67 76 - 53.50 276 - 51.83 604 -

VZ_MR4 45.50 200 - 45.50 200 - 45.50 200 -

VZ_MR8 49.00 200 - 49.00 200 - 49.00 200 -

LBPriu2P;R 48.50 10 - 42.50 18 - 44.83 26 -

LBPriu2P;R =O 49.33 10 0.01/0.015 43.17 18 0.1/0.015 45.50 26 0.1/0.15

C 49.83 10 - 41.83 18 - 44.17 26 -

C/O 50.17 10 0.1/0.15 42.17 18 0.01/0.015 47.67 26 0.1/0.15

LBPriu2P;R C 57.67 20 - 51.5 36 - 50.27 52 -

LBPriu2P;R C=O 58.17 20 0.01/0.015 51.83 36 0.01/0.15 50.85 52 0.1/0.15

Z 5 19.00 12 - 19.00 12 - 19.00 12 -

8 17.33 25 17.33 25 17.33 25

10 19.50 36 19.50 36 19.50 36

Z/O 5 20.67 12 0.1/0.15 20.67 12 0.1/0.15 20.67 12 0.1/0.15

8 23.33 25 23.33 25 23.33 25

10 25.33 36 25.33 36 25.33 36

LBPriu2P;R CZ 5 62.00 32 - 55.33 48 - 52.83 64 -

8 62.17 45 55.17 61 53.17 77

10 62.50 56 55.50 72 53.17 88

LBPriu2P;R CZ=O 5 62.17 32 0.01/0.015 55.33 48 0.01/0.015 53.00 64 0.01/0.015

8 62.33 45 56.17 61 53.50 77

10 62.50 56 56.00 72 53.67 88
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In a word, the proposed method in this paper ob-
tained more exact, stable, and robust results compared
with other methods including LBPriu2

P;R ;VARP;R; LBPriu2
P;R =

VARP;R;ALBPFriu2P;R ; LBPHF and MR methods. Although
the results of alone Zernike moment features in the
Outex database are very outstanding, they are not stable
compared with the proposed method because the re-
sults in the CUReT and KTH-TIPS databases are very
bad. In addition, multiscale idea can further notably im-
prove the recognition results.
5 Conclusions
LBP is an excellent tool for texture classification because
of its simplicity, efficiency, and rotation invariant prop-
erty. However, two mainly adverse factors weaken its
performance, which are respectively ignoring contrast
and direction information and lacking the shape and
space expression of the holistic texture image. To effect-
ively make up for the missed information, the rotation
invariant contrast and direction information are added
to the original rotation invariant LBP texture feature,
which is called ILBP. In addition, Zernike moments are
fused into the improved LBP texture features when
representing images because they can effectively describe
shape and space information of the holistic image, are
possessed of orthogonal and rotation invariant proper-
ties, and can be easily and rapidly calculated to an arbi-
trary high order. Experimental results show that the
proposed method can obtain a superior performance in
terms of the large and comprehensive CUReT, Outex,
and KTH-TIPS texture databases compared with other
classic LBP and non-LBP methods, and multiscale idea
can further remarkably improve the recognition results.
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