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1 Introduction

A generic, generally covariant model of local Lorentz violating gravity is Einstein-aether

theory [1, 2]. In this theory the symmetry is broken by the aether covector vA, which is a

dynamical field that is constrained to be unit timelike. As a consequence, the theory has

in general spin-2, spin-1, and spin-0 gravitational wave polarizations traveling at different

speeds. A particular choice for the aether field is to be hypersurface orthogonal, thus

determining a preferred time foliation of space-time. In this case the Einstein-aether theory

can be reduced [3, 4] to the Horava-Lifshitz theory [5].

Spherically symmetric asymptotically flat black hole solutions were first constructed

in [6, 7]. The absence of local Lorentz symmetry has profound effects on black hole thermo-

dynamics. Causality is no longer determined by the light cone, and the presence of multiple

horizons seems to conflict with both the Zeroth and Second Laws [8–10]. Still, one can

argue (see, e.g. [7, 11]) that there is a natural notion of causality defined by the preferred

time foliation itself. At spatial infinity the time translation Killing vector and the aether

are naturally aligned. However deep in the bulk, surfaces of constant preferred time bend

and these two vectors eventually become orthogonal on a spacelike hypersurface. This is

equivalent to the statement that the aether time τ → ∞ on this hypersurface, called “uni-

versal horizon”. Beyond the universal horizon even instantaneously propagating modes
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are causally disconnected from spatial infinity. Studies of the universal horizon suggest an

associated temperature, and a first law of thermodynamics [12–15].

In this paper we will be interested in studying the Einstein-aether/Horava-Lifshitz the-

ory with a negative cosmological constant, in the context of holography and the equivalence

to a non-gravitational field theory. Holography is expected to relate these gravitational sys-

tems to field theories with broken Lorentz invariance in one lower space dimension. When

the bulk aether field is hypersurface orthogonal, it induces a foliation at the boundary. The

corresponding boundary field theories are known as Lifshitz field theories. In such field

theories Lorentz invariance is broken.

Lifshitz field theories exhibit an anisotropic scaling of space and time (Lifshitz scaling)

xi → λxi, i = 1, . . . , d, t → λzt. z is called a dynamical exponent and is a measure of

the anisotropy. In relativistic conformal field theories (CFTs) z = 1. The dynamical

exponent differs from one in general Lifshitz theories. Examples of Lifshitz dual theories in

2 + 1 dimensional space-time are given by quantum critical points (QCPs). Such theories

describe phase transitions at zero temperature driven by quantum fluctuations [16].

At zero temperature the correlation length ξ at the QCP diverges. Raising the temper-

ature, one finds a quantum critical regime, where the system properties are constrained by

the anisotropic scaling at the QCP. Denote by L a characteristic length scale of the system

and by T the temperature. Hydrodynamics provides a good description in the quantum

critical regime at the range of scales ξ ≫ L ≫ lT ∼ 1

T
1
z

. The hydrodynamics expansion

parameter is the dimensionless ratio lT
L .

Since boost invariance is broken in Lifshitz field theories, the stress-energy tensor is

no longer symmetric. The asymmetric term is associated with the foliation 1-form. With

rotation invariance, the hydrodynamics of Lifshitz field theories exhibits one new dissipative

transport coefficient at the first dissipative order found in [17, 18].

The gauge/gravity duality relates field theories at finite temperature to black holes in

one higher space dimension. We will be interested in the out of equilibrium dynamics of

such black holes. We will work in the hydrodynamic regime, which is described by black

hole deformations, order by order in a derivative expansion. The field theory Navier-Stokes

equations are the gravity constraint equations [19], which are also the horizon evolution

equations [20].

Gravity is non-dissipative, however the horizon being a one way membrane introduces

an effective dissipation: what goes in cannot go out. We propose that this boundary

condition should be imposed at the universal horizon in these theories. Gravitational

backgrounds with preferred foliation allow the propagation of spin-2 and spin-0 helicity

gravitons. In thermal field theory language these two modes correspond to two possible

channels of dissipation. The dissipation associated with the spin-2 helicity mode is seen

in the standard relativistic hydrodynamics as the viscosity terms in the symmetric stress-

energy tensor. The dissipation associated with the spin-0 helicity should be related to a

new transport coefficient. We will argue that this is the new dissipation in Lifshitz field

theory hydrodynamics appearing in the asymmetric part of the stress-energy tensor, and

discovered in [17, 18].

In the special case where z = 1, an analytic asymptotically Lifshitz plane symmetric
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black hole solution to Horava-Lifshitz gravity is available [21, 22]. We will show that

this new transport coefficient is zero is this case, and we will calculate the shear viscosity

ratio η/s.

The paper is organized as follows. In section two we will discuss Einstein-aether and

Horava-Lifshitz theories, the action and the classical field equations, and asymptotically

Lifshitz solutions when a negative cosmological constant is added. In section three we will

discuss Holographic Lifshitz Hydrodynamics. We will briefly review Lifshitz field theory

hydrodynamics and construct the boundary stress-energy tensor. We will explain how its

asymmetric part arises and exhibit the new dissipative transport coefficient associated with

it. We will present the constraint equations and in particular the null focusing equation

that is the gravitational counterpart of the entropy current divergence in field theory hy-

drodynamics. We will show where the new channel for dissipation comes from and connect

it to the flux of the spin-0 helicity mode through the universal horizon. In section four we

will analyze in detail the hydrodynamics at the first derivative order of a particular z = 1

analytic solution of Horava-Lifshitz black brane hydrodynamics. We will show that the

new dissipative transport associated with the lack of Lorentz invariance vanishes in this

case. We will calculate the ratio of the shear viscosity to the entropy density and show

that it deviates from the general relativity result. Section five is devoted to a discussion of

open problems.

2 Einstein-aether and Horava-Lifshitz

2.1 Einstein-aether action and field equations

In the following we will work in four-dimensional space-time dimensions (the generalization

to other dimensions is straightforward). The action for Einstein-aether theory is given by

Sae =
1

16πGae

∫

d4x
√
−gLae , (2.1)

where Lae = R+ Lvec ,

−Lvec = KAB
CD∇Av

C∇Bv
D − λ(v2 + 1) , (2.2)

with “kinetic” tensor defined as

KAB
CD = c1g

ABgCD + c2δ
A
Cδ

B
D + c3δ

A
Dδ

B
C − c4v

AvBgCD . (2.3)

This is the most general effective action for a timelike unit vector field at 2nd order

in derivatives.

Varying this action with respect to the metric, vector field, and the Lagrange multiplier

λ, one finds the following field equations

GAB = T ae
AB, EA = 0, v2 = −1 . (2.4)
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The aether stress tensor is given by

T ae
AB = λvAvB + c4a

(v)
A a

(v)
B − 1

2
gABY

C
D∇Cv

D +∇CX
C
AB

+ c1[(∇AvC)(∇Bv
C)− (∇CvA)(∇CvB)] , (2.5)

where

Y A
B = KAC

BD∇Cv
D , (2.6)

XC
AB = Y C

(AvB) − v(AYB)
C + vCY(AB) , (2.7)

and a
(v)
A = vB∇BvA is the aether acceleration (which we distinguish from the fluid accel-

eration defined in the next section). The aether field equation is

EA = ∇BY
B
A + λvA + c4(∇Av

B)a
(v)
B . (2.8)

2.2 Hypersurface orthogonality and Horava-Lifshitz gravity

Consider now the case where the aether field is hypersurface orthogonal. This means that

the twist vanishes

v[A∇BvC] = 0 . (2.9)

Since the squared twist also vanishes

ω2 = (∇AvB)(∇AvB)− (∇AvB)(∇BvA) + a2 , (2.10)

adding a twist squared term to the action doesn’t affect the solutions. We can therefore

eliminate either c1, c3 or c4 in the action. Here we will choose to eliminate c1, i.e we take

c1 = 0 from now on.

Hypersurface orthogonality implies the co-vector is the gradient of a scalar

vA =
−∂Aφ

√

gCD∂Cφ∂Dφ
. (2.11)

One can show that hypersurface orthogonal solutions of Einstein-aether theory are also

solutions to Horava-Lifshitz gravity [3]. The connection can be made explicit by choosing

coordinates such that φ = τ , where τ is the preferred foliation of time. In this gauge

the Einstein-aether action reduces to the generic 3+1 form of the Horava-Lifshitz action

(e.g. [21])

SHL =
1

16πGH

∫

dτd3x
√
γ

(

KabK
ab − (1− λ)K2 + (1 + β)R(3) + α̃

∇aN∇aN

N2

)

.

(2.12)

Here Kab is the extrinsic curvature of the preferred time slices, γab the spatial metric on

the slices, R(3) the intrinsic Ricci scalar and N is the lapse function, i.e. vA = −NδτA. The

mapping between the constants is given by

1 + λ =
1 + c2
1− c3

, α̃ =
c4

1− c3
,

GH

Gae
= 1 + β =

1

1− c3
. (2.13)
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In generic Einstein-aether theory there are five propagating degrees of freedom with spin-2,

spin-1, and spin-0 helicities [23]. In Horava-Lifshitz the spin-1 mode is non-propagating.

The squared speeds of the remaining modes are given (in four dimensions) by [21]

s22 =
1

1− c3
, s20 =

(c2 + c3)(3− c4)

c4(1− c3)(3− 4c2 + c3)
. (2.14)

2.3 Asymptotically Lifshitz solutions

In [22] asymptotically Lifshitz and AdS solutions were studied in detail. For additional

studies of these solutions, see [24–27]. In this case one adds a negative cosmological constant

Λ to the action above

Ltotal =
1

16πGae
(Λ + Lae) . (2.15)

We consider a metric and aether ansatz of the form

ds2 = F (ρ)dt2 − 2G(ρ)dtdρ+ ρ2dxidx
i, (2.16)

vAdx
A =

G(ρ)2 − F (ρ)K(ρ)2

2K(ρ)G(ρ)
dt+K(ρ)dρ . (2.17)

Foreshadowing the holographic setup, we take xA = (xµ, ρ) with field theory coordinates

xµ = (t, xi). The Lifshitz scaling reads ρ → λ−1ρ, xi → λxi, t → λzt.

Near infinity, the solution is required to approach

ds2 ∼ −ρ2zdt2 + 2ρz−1dtdρ+ ρ2dxidx
i (2.18)

K(ρ) ∼ 1

ρ
, (2.19)

It turns out that consistency of the field equations with this ansatz requires

c4 =
z − 1

z
,Λ = −(1 + z)(2 + z)

2
. (2.20)

Generically, solutions with z 6= 1 can only be found numerically. In the case where z = 1

and c4 = 0 (asymptotically AdS) an analytic solution was found in [22]. We will consider

this case later in the paper. We expect that long wavelength, long time perturbations of

these Lifshitz black brane solutions to be described by the hydrodynamics of Lifshitz field

theories, which we describe in the following section.

3 Holographic Lifshitz hydrodynamics

3.1 Lifshitz field theory hydrodynamics

Since boost invariance is explicitly broken in Lifshitz field theories, the conserved stress-

energy tensor is not necessarily symmetric. In order to see its asymmetric part, we have to

construct it not as a response of the action S to a change in a background metric hµν , but

rather as a response to a change in the vielbein eµa (by a we denote tangent space indices)

T a
µ = −1

e

δS

δeµa
. (3.1)
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The vielbein encodes both the metric data hµν = eaµe
b
νηab, and the foliation data vµ = eaµva,

where va = (1, 0 . . . , 0).

Using (3.1) one has

Tµν = Θµν + Jµvν , (3.2)

where

Θµν =
2√
−h

δS

δhµν
, Jµ =

1√
−h

δS

δvµ
. (3.3)

We see from (3.2) that the asymmetric part of the stress-energy tensor arises from Jµvν
and is directly connected to the foliation data.

Consider next the hydrodynamics of Lifshitz field theories. The hydrodynamic stress-

energy tensor in the uncharged case is expressed in terms of the temperature T , the velocity

vector uµ normalized as uµu
µ = −1, and their derivatives via the constitutive relations. The

hydrodynamics equations are the conservation law of the stress-energy tensor ∂µT
µν = 0.

As above, since boost invariance is explicitly broken, the stress-energy tensor can have an

asymmetric part. Assuming rotation invariance, the asymmetric term shows up at the first

viscous order [17, 18].

The energy-momentum tensor in the Landau frame Tµνuν = −εuµ takes the form

Tµν = εuµuν + pPµν + π
(µν)
S + π

[µν]
A + (uµπ

[νσ]
A + uνπ

[µσ]
A )uσ, (3.4)

with π
(µν)
S uν = 0. At first order in derivatives π

(µν)
S includes the shear and bulk viscosities.

The antisymmetric part of the stress-energy tensor reads at first order

π
[µν]
A = −αu[µaν] , (3.5)

where aµ = uν∂νu
µ is the fluid acceleration, and α is a dissipative transport coefficient. It

contributes to the divergence of the entropy current sµ = suµ

∂µs
µ =

2η

T
σµνσ

µν +
ζ

T
(∂µu

µ)2 +
α

T
aµa

µ . (3.6)

Here σµν = P λ
µP

σ
ν ∂(λuσ) − 1

3Pµν∂λu
λ is the fluid shear tensor, with Pµν = hµν + uµuν the

projection tensor orthogonal to uµ. The local form of the second law of thermodynamics

∂µs
µ ≥ 0 requires that α ≥ 0, in addition to the usual positivity conditions on the shear

and bulk viscosities η and ζ, respectively. We will argue that the aµa
µ entropy production

term corresponds to the flux of spin-0 helicity graviton through the universal horizon.

3.2 The boundary stress-energy tensor

In the following we derive the boundary stress-energy tensor from the gravity side. Suppose

that we have the on-shell classical action Scl, which is a function of boundary data hµν and

vµ. This classical action is invariant under diffeomorphisms in the boundary generated by

ξµ. One finds

δξScl =

∫
(

δScl

δhµν
Lξhµν +

δScl

δvµ
Lξvµ

)

= 0 . (3.7)
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Next, one identifies the canonical momenta Θµν and Jµ as in (3.3). Expanding out the Lie

derivatives, one gets

Dµ(Θ
µν + Jµvν) = −JµDνvµ , (3.8)

where Dµ is the intrinsic covariant derivative on the slice. In general the momentum

constraints do not need to be the divergence of a symmetric tensor. We identify the object

in parentheses as the stress-energy tensor (3.2).

To compute the total stress-energy tensor using the gravitational variables, we focus

on the boundary terms obtained by varying the Einstein-aether action (2.1) with respect

to the metric and the aether fields. The variation of the usual Einstein-Hilbert action part

yields the GR Brown-York stress tensor

ΘBY
µν =

1

8πGae
(hµνK −Kµν) , (3.9)

where Kµν is the extrinsic curvature tensor. Now consider the variation of the vector part

of the action
∫

−√−gd4xKABCD∇AvC∇BvD. We find the boundary term

Svec
bdy =

1

16πGae

∫

d3x
√
h nC

(

2Y (CA)vB − Y ABvC
)

δgAB , (3.10)

where nA is the unit norm to the surface (here of constant bulk coordinate ρ = ρ0) and

hAB = gAB − nAnB. For the contribution to the boundary stress-energy tensor, we find in

our coordinates xA = (xµ, ρ)

Θvec
µν =

1

8πGae

(

−Y(µν)v
CnC + 2nCYC(µvν) + 2nCY(µ|C|vν)

)

. (3.11)

From the vector action we also find the boundary term associated with the variation

of the aether co-vector

Svec
bdy,vec = − 1

8πGae

∫

d3x
√
−h nCY

CDδvD . (3.12)

This yields the current

Jµ = − 1

8πGae
nAYAµ . (3.13)

Combining these results one gets the total boundary stress-energy tensor. Note, that

evaluation on the asymptotic boundary at infinity will require the addition of counterterms

in general to remove divergent terms.

3.3 Constraint equations

Consider the constraint equations projected on generic surfaces of constant ρ = ρ0. In GR

these take the form

Cµ = GµBn
B = 0 . (3.14)
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In the fluid/gravity correspondence framework, one considers solutions constructed order

by order in derivatives with respect to xµ. Assuming that all the field equations are imposed

at (n− 1) order, the nth order Bianchi identity

∇A
(0)G

(n)
Aµ = 0 , (3.15)

can be written as a partial differential equation for the constraints as a function of radial

direction C
(n)
µ (ρ, xµ). The solution of the differential equation is [28]

C(n)
µ (ρ, xµ) =

Fµ(x)

A(ρ)
, (3.16)

where Fµ(x) and A(ρ) are some functions. This off-shell analysis implies the constraint

equations Cµ = 0 have the same form on any constant ρ = ρ0 slice. At the AdS bound-

ary, the momentum constraints are equivalent to the fluid equations ∂µTµν = 0 [19], i.e.

Fν(x) ∼ ∂µTµν . Thus, the factorization of the field theory and radial dependence means

the constraint equations projected onto any radial surface yield the same hydrodynamics

equations, with identical transport coefficients.

In Einstein-aether theory the generalized Bianchi identity takes the form

∇A(GAB − T ae
AB + vAEB) + EA∇Bv

A = 0 , (3.17)

which implies the constraint equations are [29]

Cµ = (GAµ − T ae
Aµ + vAEµ)n

A = 0 . (3.18)

In this case the identity is no longer a simple conservation law, and the first term is a

divergence of a non-symmetric tensor due to the vAEB piece. Nevertheless, repeating the

same analysis as for GR outlined above, shows that the constraints factorize and one can

study hydrodynamics by working on any radial slice.

Instead of considering the Einstein-aether constraint equations on the universal hori-

zon, one can work at the Killing horizon. In this case the entropy balance law for the fluid

uµ∂νT
µν = 0, can be expressed in terms of horizon variables using the null Raychaudhuri

equation. The hydrodynamic entropy balance law is equivalent to

(GAB − T ae
AB + vAEB)ℓ

AℓB = 0 , (3.19)

where ℓA the null normal to the horizon. For the first term we use gABℓ
AℓB = 0 and

the identity

GABℓ
AℓB = RABℓ

AℓB = κθ − σABσ
AB − 1

2
θ2 , (3.20)

where κ the surface gravity at the Killing horizon, and θ and σAB are the horizon expansion

and shear tensor respectively.

Now it remains to evaluate the aether contributions using the field equations above.

We concentrate on the contraction (vAℓ
A)EBℓ

B. Using the aether field equation (2.8) and

the form of the stress tensor, we see that the (vAℓ
A)ℓC∇BY

B
C and λ(vAℓ

A)2 terms cancel

out. The remaining pieces are

(−T ae
AB + vAEB)ℓ

AℓB = c4(vAℓ
A)(ℓC∇Cv

B)aB − c4(aAℓ
A)2 (3.21)

−ℓAℓB(Y C
A∇CvB − (∇CvA)YB

C − vA∇CYB
C + (∇Cv

C)YAB + vC∇CYAB) .

– 8 –
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4 Black brane hydrodynamics with z = 1

In this section we will analyze the hydrodynamics of the black brane solution found in [22]

when z = 1, that is c4 = 0. The case z = 1 is special since the Lifshitz scaling symmetry of

the boundary field theory is the same as that of relativistic CFTs, and implies the tracefree

condition on the stress-energy tensor

Tµ
µ = 0 . (4.1)

Boost invariance, however, is still expected to be broken in the boundary field theory.

The gravitational solution is asymptotically AdS, but has a preferred time foliation and a

universal horizon in the bulk interior.

In [30], it has been shown that in Horava-Lifshitz gravity the linearized spin-0 scalar

perturbations around stationary background solutions generically do not propagate when

c4 = 0 (denoted by α̃ = 0 in (2.12)). Moreover, as we discussed in the previous section,

the divergence of the fluid entropy current is equivalent to (3.19), which measures the flux

of matter-energy across the horizon. The spin-0 flux is proportional to the energy density

in the spin-0 waves times their speed s0. The spin-0 energy density scales like c4 [31, 32],

while s0 (2.14) goes like c
−1/2
4 . Thus the spin-0 flux scales like

√
c4 and must vanish when

z = 1. In the field theory language we expect this to translate into the statement that

α = 0 in this case.

In the following we will study the first order hydrodynamics of this solution and show

that this is indeed the case. We will calculate the ratio of the shear viscosity to entropy

density and show that it deviates from that of Einstein gravity. Note, that while the

first order hydrodynamics of the z = 1 solution is a CFT hydrodynamics, this does not

necessarily imply that a non-relativistic behavior cannot be seen in the boundary field

theory beyond the hydrodynamic regime.

4.1 Equilibrium solution

We return to the metric and aether ansatz in (2.17). The c4 = 0 solution is

F (ρ) =− ρ2 +
2ρ3h
ρ

+
c3ρ

6
h

(1− c3)ρ4
(4.2)

G(ρ) =1 (4.3)

K(ρ) =
ρ2

( 1√
1−c3

− 1)ρ3h + ρ3
. (4.4)

The parameter ρh is the value of the universal horizon. This is defined as the value where

the dot product of the timelike Killing vector and the aether vanishes χAvA = 0. The

above solution was obtained by demanding regularity at this point- that both (χAvA)
2 and

its first derivative vanish there. The solution does not depend on c2 since the covariant

divergence of the aether ∇Av
A = 0. This condition means all terms proportional to c2 in

the field equations vanish.

– 9 –
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It has been argued [13, 22] that there is a Hawking temperature associated with

this surface

T =
3ρh

2π
√
1− c3

. (4.5)

To determine the other thermodynamical variables, one can evaluate the boundary stress

tensor found in section 3.2 on this solution in the limit as ρ → ∞. The metric at the

AdS boundary is conformal to the flat metric, i.e. hµν = ρ20ηµν , so one must normalize the

expression by the overall conformal weight factor (in four dimensions)

T bdy
µν = lim

ρ0→∞
ρ0T

tot
µν . (4.6)

T bdy
µν also contains divergent terms in the limit that must be subtracted off by the addi-

tion of appropriate counterterms to T tot
µν . Computing the stress tensor using (3.9), (3.11),

and (3.13) we find that the only counterterm needed to produce a finite answer is just the

GR one,

T counter
µν = − 1

4πGae
hµν , (4.7)

independent of c3 and proportional to the boundary metric.

The final result is a conformal perfect fluid stress tensor

T bdy
µν = p (ηµν + 3uµuν) (4.8)

with energy density

ǫ = 2p =
ρ3h

4πGae
. (4.9)

This agrees with the value found by the on-shell Hamiltonian analysis in [22]. The value

of thermal entropy density can be derived for example from the thermodynamic identity

ǫ+ p = sT , giving

s =
ρ2h

√
1− c3
4

. (4.10)

Note, that in the weak field regime the effective Newton constant Gae = GN when z = 1,

c4 = 0. We will set this constant to be unity.

To probe the nature of the dual system, one can study perturbations of this solution

in the fluid-gravity setting. One considers the equilibrium metric and aether in a generally

boosted frame

ds2 = F (ρ)uµuνdx
µdxν − 2uµdx

µdρ+ ρ2Pµνdx
µdxν (4.11)

vAdx
A = K(ρ)dρ+

1− F (ρ)K(ρ)2

2K(ρ)
uµdx

µ , (4.12)

where uµ is the usual boost (fluid) velocity. Note that in GR, the boost we have imple-

mented is a general coordinate transformation, which is a symmetry of the theory. However,
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in the Horava-Lifshitz case the symmetry group is reduced to that of coordinate transfor-

mations that preserve the preferred time foliation. Since a boost naturally changes the

notion of simultaneity, the solution in the boosted frame is not physically equivalent to the

one in the rest frame.

The procedure is to then allow the velocity and Hawking temperature to be functions of

the field theory coordinates: uµ(xµ) and ρh(x
µ). Since the metric and aether are no longer

solutions, one must solve the field equations order by order in derivatives of xµ = (t, xi)

subject to asymptotically AdS and regularity in the bulk interior.

4.2 The first order corrections

We make the ansatz that the solution to the metric and aether field at first order in

derivatives has the following form

gABdx
AdxB = F (ρ)uµuνdx

µdxν − 2uµdx
µdρ+ ρ2Pµνdx

µdxν

− 2J(ρ)uµaνdx
µdxν + L(ρ)uµuν(∂λu

λ)dxµdxν +H(ρ)σµνdx
µdxν , (4.13)

while the aether is

vAdx
A =K(ρ)dρ+

1− F (ρ)K(ρ)2

2K(ρ)
uµdx

µ +M(ρ)aµdx
µ − (1/2)K(ρ)L(ρ)uµ(∂λu

λ)dxµ .

(4.14)

This assumes the standard fluid-gravity gauge choice that at all orders gρρ = 0 and gρµ =

−uµ. Note that this form of the first order correction is consistent with the unit vector

condition on the aether field vAv
A = −1. This is the most general ansatz for the metric

and aether one can write down using first order hydrodynamical variables (derivatives of

temperature have been traded for derivatives of uµ using the zeroth order equations).

Using xAct [33] one can compute the full set of Einstein-aether field equations to first

order in derivatives in order to solve for the unknown functions J(ρ), L(ρ), M(ρ), andH(ρ).

We will first concentrate the solutions to J(ρ), L(ρ), and M(ρ). The solution for L(ρ) can

be found from the Fρρ = 0, Eρ = 0, uµFρµ = 0 where FAB = GAB − 3gAB + T ae
AB. These

are a complicated set of ordinary differential equations. Solving in for example Maple, one

finds the only solution is L(ρ) = ρ.

The field equations components P ν
µEν = 0 and P ν

µFρν = 0, are a very complicated

coupled system of differential equations for M and J . In this case finding a simple solution

is more difficult. If we impose boundary conditions for the problem, e.g. J(ρ) ∼ ρ+const.+

1/ρ + · · · the solution is just J(ρ) = ρ and M(ρ) = K(ρ)ρ. As a result, the metric and

aether turn out to be conformally covariant, following [34]. The combination

A(1)
µ = aµ − 1

2
uµ(∂λu

λ) (4.15)

transforms like a connection under conformal transformations of the boundary metric. Ex-

plicitly, gµν → e2φ(x)gµν implies Aµ → Aµ + ∂µφ. Under the corresponding transformation

of the radial coordinate ρ → e−φ(x)ρ, the combination

dρ+ ρAµdx
µ (4.16)

transforms covariantly.
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The presence of conformal symmetry in the solution is another hint that in this special

case the transport coefficient α = 0. Since α is tied to the antisymmetric part of the

hydrodynamic stress tensor, we consider the antisymmetric part of the boundary stress. In

general this has the form

T bdy
[µν] =

1

8πGae

(

c3nA∇[µv
Avν] − c4(nAv

A)a
(v)
[µ vν]

)

(4.17)

Notice, that the second term proportional to c4 is highly reminiscent of the a[µuν] term

in the fluid stress, but a clear matching would require a specific solution. In our case,

when c4 = 0, we found using the first order solution that the antisymmetric part makes

no contribution at the boundary. The first order corrections to the stress tensor will only

involve shear terms and depend on the function H(ρ).

The result for the shear viscosity depends on the solution for the function H(ρ). To

find H(ρ) we consider the following field equation P σ
µP

λ
ν Fσλ = 0. One again we have a

very complicated ordinary differential equation which we will not display here. In the limit

as c3 → 0, this equation reduces to

−1

2
ρ−3

(

−2ρ2ρ3hH
′′ − 8ρ3hH + 4ρ4 + 6H ′ρρ3h + ρ5H ′′ − 2Hρ3

)

= 0. (4.18)

The solution is

H(ρ) = − 1

6ρh

(

−18Aρh ln(ρ) + 6Aρh ln(−2ρ3h + ρ3)− 6Bρh + 25/3 ln(ρ− 21/3ρh)

−22/3 ln(ρ2 + 21/3ρhρ+ 22/3ρ2h) + 25/3
√
3 arctan((1/3)

√
3(22/3ρ+ ρh)/ρh)

)

(4.19)

Fixing AdS boundary conditions requires B =
√
3 · 22/3π/6ρh. The asymptotic solution

near the boundary at x = 1/ρ = 0 is then

H(x) = 2/x+ 2ρ3hAx+ ρ3hx
2 + 2ρ6hAx

4 + · · · (4.20)

Similarly, requiring that there is no divergence (curvature singularity) at the horizon fixes

A = −22/3/3ρh. This matches the solution found in the literature, e.g. [35].

For finite c3 our strategy is to make the ansatz

H(x) = H0/x+H1 +H2x+H3x
2 + · · · (4.21)

and solve for the coefficients Hi. The result is that

H(x) = 2/x+H2x+
1

2

ρ3h(2
√
1− c3 − c3)√
1− c3

x2 + ρ3hH2x
4 + · · · (4.22)

Up to order x7 the solution is characterized by one free parameter H2. As in the pure

GR case, we expect that one can tune the solution to a particular value of H2 to avoid a

curvature singularity at the (Killing) horizon.
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For small (positive) values of c3 one can work with the differential equation for H to

first (linear) order in c3 corrections. The resulting equation can be solved analytically

H(ρ) = HGR +
1

12ρh

(

2c32
2/3ρ ln(ρ− 21/3ρh)− c32

2/3 ln(ρ2 + 21/3ρρh + 22/3ρ2h)

+2c3
√
3 · 22/3 arctan((1/3)

√
3(22/3ρ+ ρh)/ρh) + 12c3ρh

)

,

(4.23)

where HGR is given by (4.19). As a result, the value of the coefficient H2 is

H2 =
25/3ρ2h

3
(c3/2− 1). (4.24)

4.3 Raychaudhuri equation and the entropy law

With a first order solution in hand, we now study the form of the Raychaudhuri equation

for the Killing horizon. Since c4 = 0,

YAB = c2gAB∇Cv
C + c3∇BvA. (4.25)

We find that

κθ − ℓA∇Aθ − σABσ
AB − 1

2
θ2

+ c2(ℓ
BvB)ℓ

A∇A(∇Cv
C)− c3(ℓ

A∇Av
C)(ℓB∇CvB) + c3(ℓ

A∇CvA)(ℓ
B∇CvB) (4.26)

− c3(∇Cv
C)ℓAℓB∇AvB + c3(ℓ

CvC)ℓ
B∇A∇AvB − c3ℓ

AℓBvC∇C∇BvA = 0 .

Note that the location of the Killing horizon is

ρKH =

(

1− c3 +
√
1− c3

1− c3

)1/3

ρh , (4.27)

and the surface gravity is

κKH =
3ρh(1 +

√
1− c3)(1− c3)

2/3

(1− c3 +
√
1− c3)5/3

. (4.28)

It is also useful to transform to a coordinate system where the horizon radius is fixed at

zero: ρ̄ = ρ− ρKH(x). Transforming to these coordinates, one finds

gABdx
AdxB = F (ρ̄)uµuνdx

µdxν + 2uµdx
µdρ̄+ (ρ̄+ ρKH)2Pµνdx

µdxν

− 2ρ̄uµAνdx
µdxν +H(ρ̄)σµνdx

µdxν , (4.29)

and

vAdx
A =K(ρ̄)dρ̄+

1− F (ρ̄)K(ρ̄)2

2K(ρ̄)
uµdx

µ + ρ̄K(ρ̄)Aµdx
µ . (4.30)

In this coordinates, the normal to the Killing horizon is uµ to all orders.
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Now we can use this ansatz to compute the Raychaudhuri equation to second order in

derivatives and then evaluate at the Killing horizon, ρ̄ = 0. The first step is consider the

equation at first order in derivatives of uµ and ρh. Combining terms from both the pure

gravity and aether parts of the equation, we arrive at the following result

3

ρh(1 +
1√
1−c3

)2/3
∂µ(ρ

2
hu

µ) = 0. (4.31)

Up to an overall factor, this equation matches that of the entropy conservation law

∂µ(su
µ) = 0. (4.32)

with s given by (4.10).

The next step is to evaluate the Raychaudhuri equation at second order in derivatives.

Here we must use the other projection of the constraint equations in the horizon limit

(GAµ − T ae
Aµ + vAEµ)ℓ

A = 0. (4.33)

This is equivalent to the fluid equation Pα
ν ∂µT

µν = 0,

P ν
µ∂ν ln ρh + aµ = 0 , (4.34)

and can be imposed in the second order expressions. The result can be put into the

following form

3

ρh(1 +
1√
1−c3

)2/3
∂µ(ρ

2
hu

µ)−
(

4 + 4
√
1− c3 − 4c3 − 2c3

√
1− c3 + c23

2(1 +
√
1− c3)2

+
c3

8ρ4K2
(ρ2H ′ − 2ρH)

)

σ2 = 0, (4.35)

where the functions appearing are to be evaluated at the Killing horizon. Consistent with

results at the boundary, all aµa
µ terms cancel out of the final expression and only shear

squared remains.

4.4 The ratio of shear viscosity to entropy density

We now can determine the shear viscosity by matching (4.35) to the general hydrodynamic

entropy balance law (3.6)

∂µ(su
µ) =

2η

T
σµνσ

µν . (4.36)

with s given in (4.10) and T in (4.5). We read off that

η =
ρ2h
16π

(

1 +
1√

1− c3

)2/3

×
(

4 + 4
√
1− c3 − 4c3 − 2c3

√
1− c3 + c23

2(1 +
√
1− c3)2

+
c3

8ρ4K2
(ρ2H ′ − 2ρH)

)

. (4.37)

– 14 –



J
H
E
P
1
1
(
2
0
1
4
)
0
6
7

For c3 > 1 the formula is ill-defined, but in this regime the theory is known to suffer from

negative energies, unstable linearized wave modes, etc. See the review in [1, 2]. Working

to linear order in c3 and using the results above for H, we find

η =
22/3

16π
ρ2h

(

1− c3/2 +O(c23)
)

. (4.38)

As a check, we also evaluated the shear viscosity from the boundary stress tensor. In this

case, one inserts the first order metric solution into (4.6) with counterterm (4.7) and reads

off the shear viscosity as the coefficient of the shear term in the hydrodynamic stress tensor.

The result depends on the value of H2 in the asymptotic expansion (4.24) for H(ρ)

η = − 3

32π
H2, (4.39)

matching with (4.38), as expected.

Dividing by the entropy density s (4.10), we find the shear viscosity to entropy den-

sity ratio

η

s
=

22/3

4π

(

1 +O(c23)
)

. (4.40)

Expanding out the solution for H(ρ) to higher orders in c3 and repeating the calculation

indicates that the ratio is independent of c3 up to fourth order. Therefore we conjecture

that in general

η =
22/3

√
1− c3

16π
ρ2h. (4.41)

Curiously, in the limit as c3 → 0 the shear viscosity to entropy density ratio differs from

the GR value of 1/4π by a factor of 22/3. The discrepancy arises because as c3 → 0 the

universal horizon entropy density s goes to ρ2h/4, while the Killing horizon entropy density

expected in pure GR gives sKH = AKH/4 = 22/3s. This suggests that simply taking

c3 → 0 limit in Horava-Lifshitz gravity does not reduce to GR. The causal boundary in

GR is associated with the Killing horizon, while that of Horava-Lifshitz gravity with the

universal horzion. Thus, one should in the limit also shift variables to sKH .

5 Discussion

In the following we outline several open questions and directions. The new hydrodynamic

transport associated with the breaking of boost invariance vanishes in the particular z = 1

solution that we studied. It would be valuable to construct gravitational solutions with

z 6= 1, where one expects it to be generically non-vanishing.

Superfluid Lifshitz hydrodynamics has been analyzed in [37]. It would be interesting

to construct dual gravitational solutions. These are black branes in Horava-Lifshitz gravity

with hair corresponding to the condensate that breaks a U(1) global symmetry.

A simple formula for the ratio of the bulk viscosity to shear viscosity in holographic

Lifshitz hydrodynamics has been derived in [38]. It is a generalization of [39] and is based
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on the horizon focusing equation. It is not clear that similar formula can be worked out

for the new transport coefficient associated with broken boost invariance, but it is worth

exploring this further.

If in addition to breaking boost invariance, one also allows a breakdown of rotational

symmetry then there are new expected transports in field theory hydrodynamics. These

should presumably correspond to the spin-1 helicity mode in the gravitational description.

It would be interesting to work out this relation.

Finally, while the z = 1 black brane hydrodynamics is conformal, it would be of

interest to know whether there are Lorentz violating aspects that it exhibits beyond the

hydrodynamic limit, both in the bulk and in the boundary field theory.
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