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Abstract
We study a p-Laplacian elliptic equation with Hardy term and Hardy-Sobolev critical
exponent, where the nonlinearity is (p – 1)-sublinear near zero and (p∗(s) – 1)-sublinear
near infinity (p∗(s) = p(N–s)

N–p is the Hardy-Sobolev critical exponent). By using variational
methods and some analysis techniques, we obtain the existence and multiplicity of
positive solutions for the p-Laplacian elliptic equation. To the best of our knowledge,
no result has been published concerning the existence and multiplicity of positive
solutions for the p-Laplacian elliptic equation.
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1 Introduction and main results
In this paper, we will study the existence and multiplicity of positive solutions for the fol-
lowing p-Laplacian elliptic equation:

⎧
⎨

⎩

–�pu – μ
|u|p–u

|x|p = |u|p∗(s)–

|x|s u + λf (x, u), x ∈ � \ {},
u = , x ∈ ∂�.

(.)

Here, � ⊂R
N (N ≥ ) is an open bounded domain with smooth boundary ∂� and  ∈ �,

p ∈ (, N), s ∈ [, p), λ,μ ∈R
+, �pu := div(|∇u|p–∇u) is the p-Laplacian differential oper-

ator, p∗(s) = p(N–s)
N–p is the Hardy-Sobolev critical exponent, p∗ = p∗() = Np

N–p is the Sobolev
critical exponent, and we have the function f : � ×R →R.

Let

‖u‖ :=
(∫

�

(

|∇u|p – μ
|u|p
|x|p

)

dx
) 

p
, u ∈ W ,p

 (�),

which is well defined on the Sobolev space W ,p
 (�) by the Hardy inequality []. From [],

we know ‖u‖ is comparable with the standard Sobolev norm of W ,p
 (�), but it is not a

norm since the triangle inequality or subadditivity may fail. The following best Hardy-
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Sobolev constant will be useful in this paper:

Aμ,s(�) := inf
u∈W ,p

 (�)\{}

‖u‖p

(
∫

�

|u|p∗(s)

|x|s dx)
p

p∗(s)
. (.)

In recent decades, there were many authors [, –] who have studied the existence or
multiplicity of solutions for elliptic equations with the operator –�– μ

|x| ( ≤ μ < ( N–
 )).

But most of the authors only considered the case s = .
Next we only state some most related results of (.). Han [] obtained the existence of

multiplicity of positive solutions for the following equation:

⎧
⎨

⎩

–�pu – μ
|u|p–u

|x|p = Q(x)|u|p∗–u + λ|u|p–u, x ∈ �,

u = , x ∈ ∂�,
(.)

where Q(x) ≥  is a bounded function on �. The authors [] only studied (.) in the
special cases where Q(x) ≡  and μ = . The authors [] studied the following equation:

⎧
⎨

⎩

–�pu – μ up–

|x|p = |u|p∗(s)–

|x|s + |u|p∗–, x ∈R
N ,

u ∈ Dp
 (RN ),

(.)

where Dp
 (RN ) is defined as the completion of C∞

c (RN ), and they obtained a positive so-
lution u ∈ Dp

 (RN ) ∩ C(RN \ {}) for any  < s < p and μ ∈ (–∞,μ), where μ := ( N–p
p )p.

Later, the authors [] obtained a nontrivial solution of a more general case than (.) by
the ideas in []. Kang [] obtained one positive solution for the following equation:

⎧
⎨

⎩

–�pu – μ
|u|p–u

|x|p = |u|p∗(s)–

|x|s u + λ
|u|q–u

|x|t , x ∈ � \ {},
u = , x ∈ ∂�,

(.)

where  ≤ t < p, p ≤ q < p∗(t).
Inspired by the above results, we shall study the existence and multiplicity of positive

solutions for (.) with the nonlinearity f being (p – )-sublinear at zero and (p∗(s) – )-
sublinear at infinity (see the following (A)), which is different from the above results.
Due to the lack of compactness of the embeddings in W ,p

 (�) ↪→ Lp∗ (�), W ,p
 (�) ↪→

Lp(�, |x|–p dx), and W ,p
 (�) ↪→ Lp∗(s)(�, |x|–s dx), we cannot use the standard variational

argument directly. The corresponding energy functional fails to satisfy the classical Palais-
Smale ((PS)) condition in W ,p

 (�). But we can establish a local (PS) condition in a suitable
range, so the existence result can be obtained by constructing a minimax level within this
range and the mountain pass lemma in [, ].

Let ‖ · ‖p be the norm in Lp(�) and F(x, t) :=
∫ t

 f (x, s) ds, x ∈ �, t ∈R. Let a(μ) and b(μ)
be zeros of the function

f (t) = (p – )tp – (N – p)tp– + μ, t ≥ ,  ≤ μ < μ :=
(

N – p
p

)p

satisfying  ≤ a(μ) < N–p
p < b(μ); see []. To state our results, we make the following

assumptions:
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(A) f ∈ C(� ×R
+,R), f (x, ) ≡ , and

lim
t→+

f (x, t)
tp– = +∞, lim

t→∞
f (x, t)
tp∗(s)– =  uniformly for x ∈ �.

(A) f : � ×R
+ →R is nondecreasing with respect to the second variable.

(A)  ≤ p < N , N < min{pb(μ), p( + p)} and  ≤ s ≤ N – (N–p)(+p)
p .

(A′
)  ≤ p < N , pb(μ) ≤ N < p + pb(μ)

+p and N – pb(μ) < s ≤ N – (N–p)(+p)
p .

Remark . In (A) and (A′
), we can easily check that N < p( + p) implies N – (N–p)(+p)

p >
, N < p + pb(μ)

+p implies N – pb(μ) < N – (N–p)(+p)
p . Besides, N – (N–p)(+p)

p < p holds.

Now our results read as follows.

Theorem . If N ≥ ,  ≤ s < p,  ≤ μ < μ,  < p < N and (A) hold, then there exists
λ∗ >  such that (.) has at least one nontrivial positive solution uλ for any λ ∈ (,λ∗).

Theorem . If N ≥ ,  ≤ s < p,  ≤ μ < μ, (A), (A) and ((A) or (A′
)) hold, then there

exists λ∗ >  such that (.) has at least two nontrivial positive solutions for every λ ∈ (,λ∗).

Remark . We should mention that the above p-Laplacian problems studied in [, –
] are all not (p – )-sublinear at zero. Besides, our nonlinearity f is more general. To the
best of our knowledge, our Theorems . and . are new.

Let D,p(RN ) := {u ∈ Lp∗ (RN ); |∇u| ∈ Lp(RN )}. A typical model of (.) is the following
equation:

⎧
⎪⎪⎨

⎪⎪⎩

–�pu – μ up–

|x|p = up∗–, in R
N \ {},

u > , in R
N \ {},

u ∈ D,p(RN ), μ ∈ [,μ).

From [], we see that this problem has radially symmetric ground states,

Vε(x) = ε
– N–p

p Up,μ

(
x
ε

)

= ε
– N–p

p Up,μ

( |x|
ε

)

, ∀ε > ,

and they satisfy

∫

RN

(
∣
∣∇Vε(x)

∣
∣p – μ

|Vε(x)|p
|x|p

)

dx =
∫

RN

∣
∣Vε(x)

∣
∣p∗

dx = A
N
p
μ,,

where Up,μ(x) = Up,μ(|x|) is the unique radial solution of this problem, satisfying

Up,μ() =
(

N(μ – μ)
N – p

) 
p∗–p

.

Moreover,Up,μ has the following properties:

lim
r→

ra(μ)Up,μ(r) = c > , lim
r→+∞ rb(μ)Up,μ(r) = c > ,
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lim
r→

ra(μ)+U ′
p,μ(r) = ca(μ) ≥ , lim

r→+∞ rb(μ)+U ′
p,μ(r) = cb(μ) > ,

where c and c are positive constants depending on p and N ; a(μ) and b(μ) are zeros of
the function

f (t) = (p – )tp – (N – p)tp– + μ, t ≥ ,  ≤ μ < μ,

satisfying  ≤ a(μ) < N–p
p < b(μ); see []. The above results are useful in studying equa-

tion (.).

Remark . As μ =  and s = , then b(μ) = b() = N–p
p– . When p =  and  ≤ μ < μ :=

( N–
 ), it is well known that a(μ) = √

μ – √
μ – μ and b(μ) = √

μ + √
μ – μ.

In Section , we will give the proof of Theorem .. In Section , we first of all give some
preliminary lemmas, and then we will complete the proof of Theorem ..

2 Proof of Theorem 1.1
Let X := W ,p

 (�) and u± := max{±u, }. Note that the values of f (x, t) for t <  are irrele-
vant in Theorems .-., so we define

f (x, t) ≡ , x ∈ �, t ≤ .

The functional corresponding of (.) is

I(u) =

p

∫

�

(

|∇u|p – μ
|u|p
|x|p

)

dx –


p∗(s)

∫

�

(u+)p∗(s)

|x|s dx

– λ

∫

�

F
(
x, u+)

dx, u ∈ W ,p
 (�).

By (A) and the Hardy inequalities (see []), we have I ∈ C(W ,p
 (�),R). Now it is well

known that there is a one-to-one correspondence between the weak solutions of (.) and
the critical points of I on W ,p

 (�). More precisely, we say u ∈ W ,p
 (�) is a weak solution

of (.) if

〈
I ′(u), v

〉
=

∫

�

(

|∇u|p–∇u∇v – μ
|u|p–uv

|x|p
)

dx –
∫

�

(u+)p∗(s)–

|x|s v dx – λ

∫

�

f
(
x, u+)

v dx

= 

for any v ∈ W ,p
 (�).

Proof of Theorem . By the Sobolev and Hardy-Sobolev inequalities, we get

‖u‖p
p ≤ C‖u‖p,

∫

�

|u|p∗(s)

|x|s dx ≤ C‖u‖p∗(s) and

‖u‖p∗
p∗ ≤ C‖u‖p∗ , ∀u ∈ X,

(.)



Peng and Chen Boundary Value Problems  (2016) 2016:125 Page 5 of 15

and it follows from (A) that

∃δ >  such that
∣
∣F(x, t)

∣
∣ <

tp∗(s)

p∗(s)|xs| for t > δ,

∃M >  such that
∣
∣F(x, t)

∣
∣ ≤ M, ∀t ∈ (, δ],

uniformly for all x ∈ � \ {}. Thus, we get

∣
∣F(x, t)

∣
∣ ≤ M +

tp∗(s)

p∗(s)|x|s , ∀t ∈R, x ∈ � \ {}. (.)

By (.) and (.), we have

I(u) =

p
‖u‖p –


p∗(s)

∫

�

(u+)p∗(s)

|x|s dx – λ

∫

�

F
(
x, u+)

dx ≥ 
p
‖u‖p – C‖u‖p∗(s) – λM|�|

for all λ ∈ (, ] and some C = Cμ

p∗(s) , so there are ρ >  and λ∗ ∈ (, ] such that

I(u) >  if ‖u‖ = ρ and I(u) ≥ –C if ‖u‖ ≤ ρ

for any  < λ < λ∗, where C = Cρ
p∗(s) + λ∗M|�|. We choose u ∈ W ,p

 (�) ∩ L∞(�) such
that u+

 �= . Let M := ‖u‖p/(λ‖u+
‖p

p). By (A), there is δ such that

∣
∣F(x, t)

∣
∣ ≥ M

p
|t|p,  < t < δ.

Hence, we get

I(ru) =
rp

p
‖u‖p –

rp∗(s)

p∗(s)

∫

�

(u+
)p∗(s)

|x|s dx – λ

∫

�

F
(
x, ru+


)

dx

≤ rp

p
‖u‖p –

rp

p
λM

∥
∥u+


∥
∥p

p = –
rp

p
‖u‖p < 

for any  < λ < λ∗ and  < r < min{ρ, δ/‖u+
‖∞}. So there is u small enough such that

I(u) < . We deduce that

inf
u∈Bρ ()

I(u) <  < inf
u∈∂Bρ ()

I(u).

By Ekeland’s variational principle in [], there is a minimizing sequence {un} ⊂ Bρ()
such that

I(un) ≤ inf
u∈Bρ ()

I(u) +

n

, I(ω) ≥ I(un) –

n

‖ω – un‖, ω ∈ Bρ().

So, we have

∥
∥I ′(un)

∥
∥ →  and I(un) → cλ as n → ∞,
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where cλ stands for the infimum of I(u) on Bρ(). Note that {un} is bounded and Bρ() is
a closed convex set, so there is uλ ∈ Bρ() ⊂ W ,p

 (�). By [], we have

un ⇀ uλ weakly in W ,p
 (�),

un → uλ strongly in Lγ (�),  < γ < p∗,

un → uλ a.e. in �,

∇un → ∇uλ a.e. in �,
un

x
⇀

uλ

x
weakly in Lp(�),

∫

�

|un|p∗(s)–un

|x|s v dx →
∫

�

|uλ|p∗(s)–uλ

|x|s v dx, ∀v ∈ W ,p
 (�).

Thus, passing to the limit in 〈I ′(un), v〉, as n → ∞, we have

∫

�

(

|∇uλ|p–∇uλ∇v – μ
|uλ|p–uλv

|x|p
)

dx –
∫

�

(u+
λ)p∗(s)–v
|x|s dx – λ

∫

�

f
(
x, u+

λ

)
v dx = 

for all v ∈ W ,p
 (�). That is, 〈I ′(uλ), v〉 = . Therefore, uλ is a critical point of I . Since ‖u–

λ‖p =
–〈I ′(uλ), u–

λ〉 = , uλ = u+
λ ≥ . Moreover, by (A) and the boundedness of �, we have

∃M >  such that
∣
∣f (x, t)

∣
∣ <


λ

tp∗(s)–

|x|s for t > M,

∃δ ∈ (, M) such that
∣
∣f (x, t)

∣
∣ >  for  < t < δ,

∃M >  such that
∣
∣f (x, t)

∣
∣ ≤ M for all t ∈ [δ, M]

for all x ∈ � \ {}. Therefore, we deduce that

f (x, t) ≥ –

λ

tp∗(s)–

|x|s – Mtδ–
 , ∀t ∈R

+, x ∈ � \ {}. (.)

From (.) and (.), we have –�puλ + λMδ
–
 uλ ≥ . By the strong maximum principle,

we have uλ > . So the proof of Theorem . is finished. �

3 Proof of Theorem 1.2
In this section, we will look for the second positive solution by a translated functional as in
[]. For fixed λ ∈ (,λ∗), we will look for the second solution of (.) of the form u = uλ + v,
where uλ is the first positive solution obtained in the previous section. The corresponding
equation for v is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

– �p v – μ
|v|p–v

|x|p

= (uλ+v)p∗(s)–

|x|s – up∗(s)–
λ

|x|s + λf (x, uλ + v) – λf (x, uλ), x ∈ � \ {},
v = , x ∈ ∂�.

(.)
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Let us define

g(x, t) =

⎧
⎨

⎩

(uλ+t)p∗(s)–

|x|s – up∗(s)–
λ

|x|s + λf (x, uλ + t) – λf (x, uλ), t ≥ ,

, t < ,
(.)

G(x, t) =
∫ t


g(x, s) ds,

and

J(v) =

p

∫

�

(

|∇v|p – μ
|v|p
|x|p

)

dx –
∫

�

G
(
x, v+)

dx

=

p
‖v‖p –


p∗(s)

∫

�

(
(uλ + v+)p∗(s)

|x|s –
up∗(s)

λ

|x|s – p∗(s)
up∗(s)–

λ v+

|x|s
)

dx

– λ

∫

�

(
F
(
x, uλ + v+)

– F(x, uλ) – f (x, uλ)v+)
dx.

Now, we have one-to-one correspondence between critical points of J in W ,p
 (�) and

solutions of (.). That is, if v ∈ W ,p
 (�), v �≡  is a critical point of J , then v is a solution of

(.). Since ‖v–‖p = –〈J ′(v), v–〉 = , v = v+ ≥ . Besides, by the maximum principle, v > 
in �. Here, u = uλ + v is a positive solution of (.) and u �= uλ. If v =  is the only critical
point of J in W ,p

 (�), we will get a contradiction. Then the existence of the second positive
solution of (.) can be proved.

Lemma . v =  is a local minimum of J in W ,p
 (�).

Proof For any v ∈ W ,p
 (�), we write v = v+ – v–. By J and direct computation, we have

J(v) =

p
∥
∥v–∥

∥p + I
(
uλ + v+)

– I(uλ). (.)

Since uλ is a local minimizer of I in W ,p
 (�), we have J(v) ≥ 

p‖v–‖p for ‖v‖ ≤ ε with ε

being small enough. �

Lemma . Suppose that  < p < N , (A) and (A) hold, moreover, v =  is the only critical

point of J . Let {vn} be a (PS)c sequence with  < c < p–s
p(N–s) A

N–s
p–s
μ,s , then we have

vn →  in W ,p
 (�) as n → ∞.

Proof Let {vn} be a sequence in W ,p
 (�) such that

J(vn) → c <
p – s

p(N – s)
A

N–s
p–s
μ,s and J ′(vn) →  in

(
W ,p

 (�)
)∗. (.)

By (.) and (.), we have

J(vn) =

p
∥
∥v–

n
∥
∥p + I

(
uλ + v+

n
)

– I(uλ) = c + o(), (.)
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〈
J ′(vn), uλ + v+

n
〉

=
∫

�

∣
∣∇v–

n
∣
∣p–∇v–

n∇uλ dx +
〈
I ′(uλ + v+

n
)
, uλ + v+

n
〉

= o()
∥
∥uλ + v+

n
∥
∥,

which yields

J(vn) –

p
〈
J ′(vn), uλ + v+

n
〉

=

p

(
∥
∥v–

n
∥
∥p –

∫

�

∣
∣∇v–

n
∣
∣p–∇v–

n∇uλ dx –
〈
I ′(uλ + v+

n
)
, uλ + v+

n
〉
)

+ I
(
uλ + v+

n
)

– I(uλ)

≤ c +  + o()
∥
∥uλ + v+

n
∥
∥.

Therefore, we have


p

(
∥
∥v–

n
∥
∥p –

∫

�

∣
∣∇v–

n
∣
∣p–∇v–

n∇uλ dx
)

+
(


p

–


p∗(s)

)∫

�

(uλ + v+
n)p∗(s)

|x|s dx

+ λ

∫

�

[

p

f
(
x, uλ + v+

n
)(

uλ + v+
n
)

– F
(
x, uλ + v+

n
)
]

dx

≤ I(uλ) + c +  + o()
∥
∥uλ + v+

n
∥
∥. (.)

By (A) and the boundedness of �, for any ε > , there is M = M(ε) >  such that

∣
∣f (x, t)t

∣
∣ ≤ ε

|t|p∗(s)

|x|s for x ∈ � \ {} and |t| > M,

∣
∣f (x, t)t

∣
∣ ≤ C(ε) for x ∈ � and |t| ∈ [, M];

∣
∣F(x, t)

∣
∣ ≤ ε

p
|t|p∗(s)

|x|s for x ∈ � \ {} and |t| > M,

∣
∣F(x, t)

∣
∣ ≤ C(ε) for x ∈ � and |t| ∈ [, M],

where C(ε), C(ε) > . Thus, we have

∣
∣f (x, t)t

∣
∣ ≤ C(ε) + ε

|t|p∗(s)

|x|s , (x, t) ∈ (
� \ {}) ×R, (.)

∣
∣F(x, t)

∣
∣ ≤ C(ε) +

ε

p
|t|p∗(s)

|x|s , (x, t) ∈ (
� \ {}) ×R. (.)

Let C(ε) = 
p C(ε) + C(ε), by (.) and (.), we have

F(x, t) –

p

f (x, t)t ≤ C(ε) +
ε

p
|t|p∗(s)

|x|s , (x, t) ∈ (
� \ {}) ×R. (.)

By (.) and (.), we have

(
p – s

p(N – s)
–

λε

p

)∫

�

(uλ + v+
n)p∗(s)

|x|s dx

≤ λC(ε)|�| –

p
∥
∥v–

n
∥
∥p + C

∥
∥v–

n
∥
∥p– + C + o()

∥
∥uλ + v+

n
∥
∥,
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where C = 
p‖uλ‖ and C = I(uλ) + c + . Let ε = p–s

(N–s)λ , then we have

∫

�

(uλ + v+
n)p∗(s)

|x|s dx ≤ C
∥
∥v–

n
∥
∥p– + C + o()

∥
∥uλ + v+

n
∥
∥,

where C = p(N–s)
p–s C and C = p(N–s)

p–s (λC(ε)|�| + C). Together with (.), (.), and (.),
we have

 – ε

p
∥
∥v–

n
∥
∥p +


p
[
( – ε)

∥
∥v+

n
∥
∥p – Cε‖uλ‖p – ( – ε)

∥
∥v+

n
∥
∥p–]

≤ 
p
∥
∥v–

n
∥
∥p +


p
[
( – ε)

∥
∥v+

n
∥
∥p – Cε‖uλ‖p]

≤ 
p
∥
∥v–

n
∥
∥p +


p
∣
∣
(∥
∥v+

n
∥
∥ – ‖uλ‖

)∣
∣p

≤ 
p
∥
∥v–

n
∥
∥p +


p
∥
∥uλ + v+

n
∥
∥p

=


p∗(s)

∫

�

(uλ + v+
n)p∗(s)

|x|s dx + λ

∫

�

F
(
x, uλ + v+

n
)

dx + J(vn) + I(uλ) + o()

≤ C
∥
∥v–

n
∥
∥p– + C + o()

∥
∥uλ + v+

n
∥
∥,

where the second inequality is due to the elementary inequality

|a – b|t ≥ ( – ε)at – Cεbt , t ≥ , a, b > .

Here, C = ( 
p∗(s) + λε

p )C and C = λC(ε)|�|+ ( 
p∗(s) + λε

p )C + I(uλ) + c + o(). Since ‖v–
n‖p +

‖v+
n‖p = ‖vn‖p, we get

‖vn‖p – C
∥
∥v+

n
∥
∥p– – C′


∥
∥v–

n
∥
∥p– ≤ C + o()‖uλ‖,

where C =  + o(), C′
 = Cp

–ε
, C = Cε‖uλ‖p+pC

–ε
. So we get

‖vn‖p – C‖vn‖p– ≤ C + o()‖uλ‖,

where C = C + C′
. It shows that {vn} is bounded in W ,p

 (�), going if necessary to a
subsequence, we have

vn ⇀ v weakly in W ,p
 (�),

vn → v strongly in Lγ (�),  < γ < p∗,

vn → v a.e. in �,

(.)

as n → ∞.
Since vn is bounded in W ,p

 (�), it follows from the Sobolev embedding theorem that
there is M′ >  such that ‖uλ + v+

n‖p∗(s)
p∗(s) ≤ M′. Let meas E denote the measure of E. By (A),

for any ε > , there is C(ε) >  such that

∣
∣f (x, t)t

∣
∣ ≤ C(ε) +

ε

M′ |t|p
∗(s), (x, t) ∈ � ×R.
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Let δ = ε
C(ε) > , if E ⊂ �, meas E < δ, we have

∣
∣
∣
∣

∫

E
f
(
x, uλ + v+

n
)(

uλ + v+
n
)

dx
∣
∣
∣
∣ ≤

∫

E

∣
∣f

(
x, uλ + v+

n
)(

uλ + v+
n
)∣
∣dx

≤
∫

E
C(ε) dx +

ε

M′

∫

E

∣
∣uλ + v+

n
∣
∣p∗(s) dx

≤ C(ε) meas E +
ε


< ε.

By the Vitali theorem, we have

∫

�

f
(
x, uλ + v+

n
)(

uλ + v+
n
)

dx →
∫

�

f
(
x, uλ + v+


)(

uλ + v+

)

dx as n → ∞.

Hence,
∫

�

f
(
x, uλ + v+

n
)
(uλ + vn) dx =

∫

�

f
(
x, uλ + v+

n
)(

uλ + v+
n
)

dx –
∫

�

f (x, uλ)
(
v–

n
)

dx

→
∫

�

f
(
x, uλ + v+


)
(uλ + v) dx as n → ∞. (.)

By the same method, we get

∫

�

f
(
x, uλ + v+

n
)
ω dx →

∫

�

f
(
x, uλ + v+


)
ω dx,

∫

�

F
(
x, uλ + v+

n
)

dx →
∫

�

F
(
x, uλ + v+


)

dx
(.)

as n → ∞ for ω ∈ W ,p
 (�). Similar to the proof of Theorem ., we have

 = lim
n→∞

〈
J ′(vn),ω

〉
=

〈
J ′(v),ω

〉

for ω ∈ W ,p
 (�), which implies that J ′(v) = . Therefore, v is a critical point of J in

W ,p
 (�). By the assumption that v =  is the only critical point of J , we have v=. Now, we

want to prove v →  strongly in W ,p
 (�). By (.), (.), and the Brezis-Leib Lemma

(see []), we have

J(vn) =

p
∥
∥v–

n
∥
∥p + I

(
uλ + v+

n
)

– I(uλ) =

p
‖vn‖p –


p∗(s)

∫

�

(v+
n)p∗(s)

|x|s dx + o().

Therefore,

〈
J ′(vn), vn

〉
= ‖vn‖p –

∫

�

(v+
n)p∗(s)

|x|s dx + o() → .

In fact, ‖vn‖p →  as n → ∞. If not, then there is a subsequence (still denoted by vn) such
that

lim
n→∞‖vn‖p = k, lim

n→∞

∫

�

(v+
n)p∗(s)

|x|s dx = k, k > .
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By (.), we get

‖vn‖p ≥ Aμ,s

(∫

�

(v+
n)p∗(s)

|x|s dx
) p

p∗(s)
, for all n ∈N.

Then k ≥ Aμ,sk
p

p∗(s) , i.e., k ≥ A
N–s
p–s
μ,s . Thus, we have

c = o() + J(vn) =

p
‖vn‖p –


p∗(s)

∫

�

(v+
n)p∗(s)

|x|s dx + o()

=
p – s

p(N – s)
k + o()

≥ p – s
p(N – s)

A
N–s
p–s
μ,s .

It is a contradiction. So vn →  strongly in W ,p
 (�) as n → ∞. �

Lemma . [] If  < p < N ,  ≤ s < p and  ≤ μ < μ, then the limiting problem

⎧
⎪⎪⎨

⎪⎪⎩

–�pu – μ up–

|x|p = up∗(s)–

|x|s , in R
N \ {},

u > , in R
N \ {},

u ∈ D,p(RN ),

(P)

has radially symmetric ground states,

Ṽε(x) := ε
– N–p

p Ũp,μ

(
x
ε

)

= ε
– N–p

p Ũp,μ

( |x|
ε

)

, ∀ε > ,

and it satisfies

∫

RN

(
∣
∣∇Ṽε(x)

∣
∣p – μ

|Ṽε(x)|p
|x|p

)

dx =
∫

RN

|Ṽε(x)|p∗(s)

|x|s dx = A
N–s
p–s
μ,s ,

where Ũp,μ(x) = Ũp,μ(|x|) is the unique radial solution of (P), satisfying

Ũp,μ() =
(

(N – s)(μ – μ)
N – p

) 
p∗(s)–p

.

Moreover, Ũp,μ has the following properties:

lim
r→

ra(μ)Ũp,μ(r) = c > , lim
r→+∞ rb(μ)Ũp,μ(r) = c > ,

lim
r→

ra(μ)+Ũ ′
p,μ(r) = ca(μ) ≥ , lim

r→+∞ rb(μ)+Ũ ′
p,μ(r) = cb(μ) > ,

where c and c are positive constants depending on p and N ; a(μ) and b(μ) are zeros of
the function

f (t) = (p – )tp – (N – p)tp– + μ, t ≥ ,  ≤ μ < μ,

satisfying  ≤ a(μ) < N–p
p < b(μ) < N–p

p– .
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Since uλ >  is a solution of (.), similar to the proof of Theorem . in [], there are
constants R >  and r >  such that BR() ⊂ � and

 < r ≤ uλ(x), ∀x ∈ BR() \ {}. (.)

Let ϕ ∈ C∞
 (�) such that  ≤ ϕ(x) ≤  and

ϕ(x) :=

⎧
⎨

⎩

, |x| ≤ R,

, |x| ≥ R,

where BR() ⊂ �. Set vε(x) = ϕ(x)Ṽε(x), ε > , where Ṽε(x) is defined in Lemma .. Then
we can get the following results by the method used in []:

‖vε‖p = A
N–s
p–s
μ,s + O

(
εb(μ)p+p–N)

, (.)
∫

�

|vε|p∗(s)

|x|s dx = A
N–s
p–s
μ,s + O

(
εb(μ)p∗(s)+s–N)

, (.)
∫

�

|vε|r
|x|s dx = O

(
εp–s),

N – s
b(μ)

< r < p∗(s). (.)

Lemma . For γ ≥ ,  ≤ t ≤ γ – , ∀a, b > , there exists a positive constant C such that

(a + b)γ ≥ aγ + bγ + Caγ –tbt .

Proof To prove this lemma, we only need to prove

( + x)γ ≥  + xγ + Cxt ,  < x < ∞.

Let γ = k + θ , t = m + η, where k ≥ ,  ≤ m ≤ k –  are integral numbers and  ≤ η ≤ θ < 
are real numbers. Clearly,

( + x)γ = ( + x)k+θ = ( + x)k( + x)θ ≥ (
 + xk + Cxm)

( + x)θ

≥  + xk+θ + Cxm( + x)θ

≥  + xk+θ + Cxmxη =  + xγ + Cxt . �

Lemma . If N ≥ ,  ≤ s < p,  ≤ μ < μ,  < p < N , (A), (A), (A) (or (A′
)), and

f (x, ) ≡  hold, then there is v∗ ∈ W ,p
 (�), v∗ �≡ , such that

sup
t≥

J(tv∗) <
p – s

p(N – s)
A

N–s
p–s
μ,s .

Proof By (.), (A), and Lemma ., we have

g(x, l) ≥ lp∗(s)–

|x|s + C
lp–up∗(s)–p

λ

|x|s .
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By (A) or (A′
), we have p ≥  and s ≤ N – (N–p)(+p)

p , which imply p∗(s) –  ≥  and  ≤
p –  ≤ (p∗(s) – ) – . Therefore,

G(x, tvε) ≥ tp∗(s)

p∗(s)
vp∗(s)
ε

|x|s +
Ctp

p
vp
εup∗(s)–p

λ

|x|s .

From (A) (or (A′
)), we have s > N – Pb(μ), which implies p > N–s

b(μ) , so (.) holds. So by
(.)-(.), we have

J(tvε) =
tp

p
‖vε‖p –

∫

�

G(x, tvε) dx

≤ tp

p
‖vε‖p –

tp∗(s)

p∗(s)

∫

�

|vε|p∗(s)

|x|s dx – Ctp
∫

�

vp
ε

|x|s dx

=
tp

p
(
A

N–s
p–s
μ,s + O

(
εb(μ)p+p–N))

–
tp∗(s)

p∗(s)
(
A

N–s
p–s
μ,s + O

(
εb(μ)p∗(s)+s–N))

– CtpO
(
εp–s),

where C = Crp∗(s)–p


p . Let

Q(t) :=
tp

p
(
A

N–s
p–s
μ,s + O

(
εb(μ)p+p–N))

–
tp∗(s)

p∗(s)
(
A

N–s
p–s
μ,s + O

(
εb(μ)p∗(s)+s–N))

– CtpO
(
εp–s).

Clearly, the following equation:

 = Q′(t) = tp–[A
N–s
p–s
μ,s + O

(
εb(μ)p+p–N)

– O
(
εp–s)] – tp∗(s)–[A

N–s
p–s
μ,s + O

(
εb(μ)p∗(s)+s–N)]

has only a positive root

tε =
(

A
N–s
p–s
μ,s + O(εb(μ)p+p–N ) – O(εp–s)

A
N–s
p–s
μ,s + O(εb(μ)p∗(s)+s–N )

) 
p∗(s)–p

.

We have

Q(tε) =
tp
ε

p
(
A

N–s
p–s
μ,s + O

(
εb(μ)p+p–N)

– O
(
εp–s)) –

tp∗(s)
ε

p∗(s)
(
A

N–s
p–s
μ,s + O

(
εb(μ)p∗(s)+s–N))

=
(


p

–


p∗(s)

)
[
A

N–s
p–s
μ,s + O

(
εb(μ)p∗(s)+s–N)]

[
A

N–s
p–s
μ,s + O(εb(μ)p+p–N ) – O(εp–s)

A
N–s
p–s
μ,s + O(εb(μ)p∗(s)+s–N )

] p∗(s)
p∗(s)–p

=
p – s

p(N – s)
[
A

N–s
p–s
μ,s + O

(
εb(μ)p∗(s)+s–N)]– N–p

p–s
[
A

N–s
p–s
μ,s + O

(
εb(μ)p+p–N)

– O
(
εp–s)] N–s

p–s

=
p – s

p(N – s)
A

N–s
p–s
μ,s + O

(
εb(μ)p∗(s)+s–N)

+ O
(
εb(μ)p+p–N)

– O
(
εp–s).

By s > N – pb(μ) (see (A) or (A′
)), we have

b(μ)p + p – N > p – s.
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Since b(μ) > N–p
p implies b(μ)p∗(s) + s – N > b(μ)p + p – N , we have

b(μ)p∗(s) + s – N > p – s.

Since Q() =  and limt→+∞ Q(t) = –∞, we have

sup
t≥

Q(t) = Q(tε) <
p – s

p(N – s)
A

N–s
p–s
μ,s

for ε >  sufficiently small. So we get

sup
t≥

J(tvε) ≤ sup
t≥

Q(t) <
p – s

p(N – s)
A

N–s
p–s
μ,s ,

for ε >  sufficiently small. It completes the proof if we let v∗ = vε with ε >  being suffi-
ciently small. �

Proof of Theorem . If v =  is the only critical point of J in W ,p
 (�). By Lemma ., we

know there is α >  such that J(v) > α, ∀v ∈ ∂Bρ = {v ∈ W ,p
 (�),‖v‖ = ρ}, where ρ >  is

small enough. Lemma . implies that there is v∗ ∈ W ,p
 (�) and v∗ �≡  such that

sup
t≥

J(tv∗) <
p – s

p(N – s)
A

N–s
p–s
μ,s .

By (.), we get limt→∞ J(tv∗) → –∞. Hence, we can choose t >  such that ‖tv∗‖ > ρ

and J(tv∗) < . By the mountain pass lemma in [], there is a sequence {vn} ⊂ W ,p
 (�)

satisfying

J(vn) → c ≥ α and J ′(vn) → ,

where

c = inf
h∈�

max
t∈[,]

J
(
h(t)

)
,

� =
{

h ∈ C
(
[, ], X

) | h() = , h() = tv∗
}

.

We have

 < α ≤ c = inf
h∈�

max
t∈[,]

J
(
h(t)

) ≤ max
t∈[,]

J(ttv∗) ≤ sup
t≥

J(tv∗) <
p – s

p(N – s)
A

N–s
p–s
μ,s ,

and this together with Lemma . implies that vn →  strongly in W ,p
 (�) as n → ∞.

Hence, we have  = J() = limn→∞ J(vn) = c ≥ α > , a contradiction. So, Theorem .
holds. �
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