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Abstract

Background: MicroRNAs (miRNAs) are involved in many biological processes by regulating post-transcriptional gene
expression. The alterations of the regulatory pathways can cause different diseases including cancer. Although many
works have been done to study the gene-miRNA regulatory network, the intertwined relationship is far from being
fully understood. The objective of this study is to integrate both gene expression data and miRNA data so as to
explore the complex relationships among them.

Methods: By integrating the networks consisting of gene coexpression, miRNA coexpression, gene-miRNA
coexpression, and the known gene-miRNA interactions, we aim to find the most connected network modules so as to
study their functions and properties. In this paper, we proposed an optimization model for identification of the
modules in the integrated networks. This model tries to find both the modules in the gene-gene and miRNA-miRNA
coexpression networks and the densely connected gene-miRNA subneworks. An approximation computational
method was developed to solve the optimization problem.

Results: We applied the method to 556 human ovarian cancer samples with both gene expression data and miRNA
expression data. The identified modules are significantly enriched by miRNA clusters, GO-BPs, and KEGG pathways. We
compared our method with some existing methods and showed the better performance of our method. We also
showed that the miRNAs and genes in our identified modules are associated with cancers, especially ovarian cancer.

Conclusions: This study provides strong support that the subnetworks consisting of genes and miRNAs with close
interactions contribute the cancers. The proposed computational method can be applied to other studies that are
related to different types of networks.
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Background
MicroRNAs (miRNAs) are small (’22 nucleotides) non-
coding RNAs that have emerged as key gene regulators in
diverse plant and animal genomes. Typically, miRNAs reg-
ulate the genes by base pairing with the complementary
sequences of the corresponding mRNAs, either inhibit-
ing translation or degrading the mRNAs [1, 2]. MiRNAs
are involved in many biological processes, such as devel-
opment, differentiation, apoptosis and proliferation [3–6].
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Each miRNA is potentially able to regulate around 100
or more mRNA targets and over 30% of all human genes
are supposed to be regulated by miRNAs [3, 6, 7]. The
alterations in the regulatory pathways can cause different
diseases, including cancer, heart disease, cardiovascular
disease, and matabolc disorders [8–13]. The disruption
of the miRNA functions will contribute to these diseases.
Therefore, identification and validation of miRNA targets
is essential, which may lead to new therapeutic methods
[6, 14–16].
MiRNA targets prediction has attracted much atten-

tion in recent years. Although many experimental tools
for miRNA target validation are available [17–22], the
lack of high-throughput and low-cost methods makes the
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development of computational techniques necessary. The
computational methods are mainly based on expression
data of both miRNAs and mRNAs and the sequence-
based putative interactions between them. Roughly, these
methods can be divided into three groups. The first group
includes methods that compute the pairwise correlations
or mutual information between miRNAs and mRNAs
[23–30]. The second group is mainly related to the lin-
ear regression methods [31–35]. And the third group is
mainly based on Bayesian methods [36–39]. A review of
these methods can be found in [6].
Although huge advances have been made for miRNA

target prediction, a lot of works are still left to do. Most
of the current methods mainly considered the down-
regulatory effects from miRNAs. However, as shown in
[6], by considering the enhancement effects from miR-
NAs, more interactions are identified and biologically
sound. Also, as shown in [40], the base pairing between
an miRNA and its target not only results in repressed tar-
get expression, but also have an impact on the levels of the
miRNA. And as one miRNA may regulate many mRNAs,
and be regulated by several miRNAs, the intertwined
relationship between miRNAs and mRNAs becomes very
complex. Therefore, the systems tools such as networks
should be more appropriate for studying the relationships
between miRNAs and mRNAs.
Recently, a few papers have been published to study the

complex interactions between genes and miRNAs from
the system point of view by using networks [41–43]. One
essential property of many different types of networks is
the module structure, which describes the densely con-
nected subnetworks. The members in the same module
may function as a whole in the system. By identifying the
modules, we can do gene prediction, gene function anno-
tation and so on. In the networks composed of both genes
and miRNAs, a good module should include both genes
and miRNAs with connections. To better identify the
gene-miRNA modules, Zhang et al. developed a frame-
work of SNMNMF, which is based on non-negative matrix
factorization and utilized a variety of data, including gene-
gene interaction (GGI) and transcription factor binding
sites (TFBS) [41]. However, SNMNMF tends to pay more
attention to the gene modules while overlook the con-
nections between miRNAs. Also, its computational speed
may limit the practical use of the method. Then, using
similar datasets, Le et al. described a regression-based
method, PIMiM36 (Protein Interaction based MiRNA
Modules) [42], but using a non-convex algorithm. This
method may result in unstable outcomes because of its
random initialization. Then, Li et al. developed a two-
stage overlap clustering method, Mirsynergy [43]. This
method improves the efficiency substantially, and impor-
tantly, facilitates the setting of predefined parameters.
However, this method does not consider the relations

between miRNAs, and thus finds the modules with a
large number of genes/miRNAs, which are shown in their
enrichment analysis.
In this paper, we establish networks to explore gene-

miRNA relationships. We first integrate gene expression
and miRNA expression data by measuring the distance
between genes, miRNAs and gene-miRNAs with Pearson
correlation coefficient, thus transferring all the relations
into edges in networks. Based on these networks, we pro-
pose our module identification method, and study the
gene-miRNA interactions. We also include the known
gene-miRNA interactions in our study. In the second
section, we will present our method for identifying the
modules in the integrated networks. Then we apply the
method to the ovarian cancer data to show its perfor-
mance. We also compared our method with Mirsynergy.
Finally, we give our conclusion.

Methods
Assume we have gene expression data of Ng genes, and
miRNA expression data of Nm miRNAs for N samples.
The first step is to build the coexpression networks.
We use Pearson correlation coefficient to measure the
coexpressions. After computing the correlations of genes,
miRNAs, and gene-miRNAs, we construct the adjacency
matrix by hard thresholding. If the absolute value of the
Pearson correlation coefficient between genes(miRNAs,
gene-miRNAs) is greater than some given value, we assign
an edge between them; otherwise, there is no edge. For
gene coexpression network and miRNA coexpression net-
work, we try different thresholds and compute the lin-
ear regression coefficient between the log10 transformed
degree frequency of degree d (log10 f (d)) and d (log10 d)

to make the network has approximately scale free prop-
erty as described in [44]. The threshold for constructing
the gene-miRNA network depends on the AUCs for the
known gene-miRNAs interactions being clustered in the
same module. Given a fixed threshold, we use our method
proposed in the following to get the score of one gene
and one miRNA in the same module. We rearrange the
gene-miRNA interactions in the descending order accord-
ing to their scores and compute the AUC as AUC =
∑q

i=1 Ri−q(q+1)/2
pq , where {Ri} is the rank of the ith known

interacting gene-miRNA pair ranking from the smallest,
p is the number of known non-interacting gene-miRNA
pairs, and q is the number of known interacting gene-
miRNA pairs. We choose the threshold that achieves the
highest AUC.
We consider the constructed gene coexpression net-

work Gg and the miRNA coexpression network Gm. The
adjacency matrix for network Gg is Ag , where Ag(i, j) = 1
represents there is an edge between gene i and gene j. Sim-
ilarly, we define the adjacency matrix Am for the miRNA
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coexpression network. We use Dg , Dm to denote the diag-
onal matrix with the diagonal entries being the degree
of the corresponding gene/miRNA, where the degree of
gene i is defined as dg(i) = ∑Ng

j=1 Ag(i, j). The interac-
tion matrix between the genes and miRNAs is denoted
as CNg×Nm , where C(i, j) = 1 represents there is a con-
nection between the corresponding gene and miRNA. In
our study, C includes two parts: the gene-miRNA coex-
pression network, and the known gene-miRNA interac-
tion network. The integrated network is composed of the
above four networks. Here, we assume the integrated net-
work is connected. If the network is unconnected, we may
divide it into connected parts with some classical methods
like spectral clustering.We define the modules of the inte-
grated network to be the densely connected subnetworks
consisting of both genes and miRNAs. Assume there are
K modules in the network. We let Sg be the assignment of
the Ng genes into K modules for the network Gg ,

Sg(i, k) =
{
1, if vertex i ∈ Vk ,
0, otherwise,

where i = 1, 2, · · · ,Ng ; k = 1, 2, · · · ,K , Vk denotes the k-
th module. Similarly, we define the assignment of the Nm
miRNAs into K modules for the network Gm as Sm.
For each of the two coexpression networks, we may

use a module identification method [45] to cluster the
genes/miRNAs separately. This method has shown to out-
perform most updated methods including spectral clus-
tering in module identification. Taking our considered
network Gg as an example, we define

�g(Sg) =
K∑

k=1

Sg(., k)T (2Ag − Dg)Sg(., k)
Sg(., k)TSg(., k)

, (1)

where Sg(., k) denotes the k-th column of matrix Sg for the
network Gg . Then the optimization problem for identify-
ing the modules is formulated as:

max �g(Sg)
s.t. Sg(i, k) ∈ {0, 1}, i = 1, 2, · · · ,Ng , k = 1, 2, · · · ,K ,

K∑

k=1
Sg(., k) = 1, (2)

where 1 is a vector with all the entries being 1. By letting
S̃g(., k) = Sg (.,k)

‖Sg (.,k)‖2 , the problem is relaxed to:

max �̃g(S̃g) = Tr
(
S̃g

T
(2Ag − Dg)S̃g

)
s.t. S̃g

T S̃g = IK .

Let Lg = 2Ag−Dg , we can use the standard procedure of
spectral clustering to get themodule label for the network.
Similarly, we can define the optimization problem for

clustering the miRNAs in the miRNA coexpression net-
work. We use �m(Sm) to denote the objective function
when doingmodule identification for miRNAs, and define

S̃m(., k) = Sm(.,k)
‖Sm(.,k)‖2 . To find the modules in the inte-

grated network, besides considering the connections in
both gene coexpression and miRNA coexpression net-
works, we expect that the genes and miRNAs with dense
connections are clustered into one module. That is, we
want to maximize SgT (., k)CSm(., k). To balance the size
of genes and miRNAs in different modules , we divide the
term STg (., k)CSm(., k) by ‖Sg(., k)‖2‖Sm(., k)‖2. By putting
all these terms together, our objective becomes:

�(Sg , Sm) = �g(Sg) + �m(Sm)

+ λ

K∑

k=1

STg (., k)CSm(., k)
‖SgT (., k)‖2‖Sm(., k)‖2

,

where λ controls the contributions of the connections
within each coexpression network and those between the
two networks. The optimization problem is formulated as:

max �(Sg , Sm)

s.t. Sg(i, k) ∈ {0, 1}, i = 1, 2, · · · ,Ng , k = 1, 2, · · · ,K ,
Sm(j, k) ∈ {0, 1}, j = 1, 2, · · · ,Nm, k = 1, 2, · · · ,K ,
K∑

k=1
Sg(·, k) = 1,

K∑

k=1
Sm(·, k) = 1.

We define Lg = 2Ag − Dg , Lm = 2Am − Dm, Lw =
diag(Lg , Lm), Lb =

(
0 C
CT 0

)

, S̃ =
(

S̃g
S̃m

)

, and L =
Lw + λLb.
With the same technique as in (2), the above optimiza-

tion problem can be relaxed to:

max �̃(S̃) = Tr(S̃TLS̃), s.t. S̃T S̃ = 2IK .

In this formulation, the constant coefficient 2 can be put
into L, such that each column of S̃ has the norm 1.We take
S̃ as a data set composed ofNg+Nm nodes and do k-means
clustering to get the assignment label for each node.
The algorithm is summarized in the following.

Algorithm:
Input: Adjacency matrix Ag ,Am,C, and K, which is the
number of modules.

1 Compute the matrices Lg , Lm;
2 Construct the matrix L ;
3 Compute the K eigenvectors v1, v2, · · · , vK

corresponding to the K largest eigenvalues of matrix
L ;

4 Construct a new matrix T ∈ R(Ng+Nm)×K , with
columns v1, v2, · · · , vK ;

5 Cluster the points constructed from each row of
matrix T with k-means clustering into K clusters;

Output: Index of nodes in each module.
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With this algorithm, we can identify the modules in the
integrated network. Here, K is prespecified as the number
of modules in the integrated network. Since any node is
assigned to a module, in practice, the nodes in some mod-
ule may not connect densely. Additionally, some module
may consist of genes or miRNAs only. Therefore, after
implementing our algorithm, we need to check the struc-
ture of the clusters tomake sure the identifiedmodules are
all densely connected subnetworks with both genes and
miRNAs.

Results
Data sets
We downloaded the level 2 gene expression and miRNA
expression data for ovarian cancer from The Cancer
Genome Atlas (TCGA). The gene expression data is gen-
erated with UNC AgilentG4502A_07_03, and the miRNA
expresssion data is generated with UNCmiRNA_8x15kv2.
For the gene expression data, we averaged the expression
data for different probes corresponding to the same gene,
and used the average of different samples to represent the
missing data for a specific gene. After the preprocessing,
we have 22747 genes with annotations for the 562 sam-
ples. We did the same process for the miRNA expression
data, and finally we have 590 miRNAs for the 595 sam-
ples. We chose the data for the common 556 samples. We
downloaded the gene-miRNA interaction data from miR-
TarBase (http://mirtarbase.mbc.nctu.edu.tw). There are a
total of 39110 gene-miRNA interactions.

Network construction
We computed the variance of the expression values for all
genes across the considered samples, and selected those
genes with large variance. Here, we selected the first 3200
genes with the largest expression variance, which corre-
sponds to the variance greater than 1.We used themethod
described in the “Methods” section to build the gene coex-
pression and miRNA coexpression network. We chose a
threshold of 0.60 such that the degree of both coexpres-
sion networks follows power law distribution, and the
main correlations are kept. The average degree of the
gene coexpression network and miRNA coexpression net-
work is 13.25 and 8.80, repectively. Here, we set λ =
1. By choosing the threshold for building gene-miRNA
coexpression network, we aim to get a good clustering
of genes and miRNAs. We choose the threshold from
0.1 to 0.9 with a stepsize 0.1. For each value, we build
the gene-miRNA coexpression network. Then we run
our algorithm by setting C being this network adjacency
matrix. After we get the matrix T as shown in our algo-
rithm, we normalize each row of T denoted as T̃ and
compute T̃T̃T . It is easy to figure out that the ij-th score
in T̃T̃T describes the possibility of the i-th subject and
the j-th subject in the same module. We set the number

of modules K to be 100 to 200 with a stepsize 10, and
compute all the AUCs. Figure 1 shows the average AUCs
for different K. When the threshold is 0.3, we can clus-
ter the known gene-miRNAs in the same module with the
highest AUC of value 0.59. Thus we choose the threshold
to be 0.3. The mean of the absolute value of correlation
coefficients is 0.07(gene-miRNA), 0.10(gene-gene), and
0.12(miRNA-miRNA). We searched the corresponding
interactions between the 3200 genes and the 590 miRNAs
in our downloaded interaction data set, and totally there
are 2648 interations.
Then the matrix C is composed of two types of ele-

ments: the known gene-miRNA interactions and the gene-
miRNA coexpression network. We note that the best λ

and threshold can be chosen by changing the values of λ

and the threshold alternatively, and those achieving the
highest AUC are selected.

Experimental results
We applied our proposed method to the integrated net-
work. For the number of modules, we selected different
values starting from 100 to 200. These different values cor-
respond to themodules on different connection levels.We
choose those clusters which satisfy: (1) both genes and
miRNAs are in the cluster, (2) all of gene-gene, miRNA-
miRNA, and gene-miRNA connections appear in the clus-
ter, as our identified modules. With the different choices
of number of modules, one gene/miRNA may belong to
different modules. We combine those modules that have
an overlapping percentage larger than 90%. Finally, we
got 46 modules. The full list of identified modules is in
Additional file 1.

MiRNAmodule enrichment analysis
We downloaded miRNA cluster data from the miRBase
website (http://www.mirba se.org/), with the inter-miRNA
distance cutoff of 10 kb. This criterion resulted in 153
clusters containing from 2 to 46 miRNAs. In this section,
‘cluster’ means these clusters.
We compared our identified miRNA modules that are

included in the gene-miRNA modules with the down-
loaded clusters. We did enrichment for both clusters and
modules to see whether the modules are enriched by the
clusters, and whether the clusters are enriched by the
modules. We use hypergeometric distribution to do the
test, and then use Bonferroni correction to adjust the
p-values. There are a total of 14 modules enriched by clus-
ters, and 8 clusters enriched by modules with the overlap
size between clusters and modules being at least 3. Table 1
shows the information of the enriched modules by differ-
ent clusters. The “No.” of modules is the corresponding
column in Additional file 1. The column “MiRNAs” lists
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Fig. 1 AUCs for different cutoffs when building the gene-miRNA coexpression network

the overlapping miRNAs with the corresponding clusters.
The loci of the clusters are also given. One typical example
is our identifiedmodule 22. All the nodes in the same clus-
ter belong to this module. The total distance for all these
miRNAs is around 6000 bp. Taking as another example, 5
of 12 miRNAs in module 35 belong to a cluster with size 6
in Chr13. The total distance of this cluster is about 700 bp.

Genemodule enrichment analysis
To evaluate the performance of our proposed method for
gene module identification, we did enrichment analysis
for Gene Ontology biological process (GO-BP) terms and
KEGG pathways with DAVID [46, 47]. By taking the cutoff
of the Benjamini p-values as 0.05, 15modules are enriched
by GO-BP terms and 7 modules are enriched by KEGG
pathways significantly. Table 2 listed the enriched KEGG
pathways. All the p-values are Benjamin p-values from
DAVID. The KEGG pathway enrichment results of the
modules in Table 1 are also listed. Two typical modules are
module 41 and module 18, which have significant enrich-
ment of GO-BP, KEGG pathways and miRNAs clusters.
From the KEGG pathway enrichment results, it can be
seen that these two modules are quite related to cancers.
We put all these enrichment results in Additional file 3.

Gene-miRNAmodules are strongly associated with cancers
We checked the 14 modules that are enriched by miRNA
clusters, of which 7 modules have enrichment of cancer
related pathways. From the KEGG pathway enrichment

results, we can directly see that module 18, 41 are asso-
ciated with different cancers. For module 21, the ‘focal
adhesion’ pathway is known to be involved in tumour for-
mation and progression [48]. The pathway ‘ECM-receptor
interaction’ enriched by module 22 is also identified to
be linked to carcinogenesis in multiple cancers [49]. Since
the discovery of the MAPK signalling pathway, which is
enriched in module 37, the enormous role of perturbed
MAPK signaling in cancer biology has become evident.
Specifically, more than 30% of human cancers include
mutations in genes encoding proteins in this pathway [50].
Such evidence further shows that themodules enriched by
miRNA clusters are likely to be enriched by cancer related
pathways.
We checked the cancer related miRNAs from the web-

site: http://mircancer.ecu.edu. There are 295 different
miRNAs related to cancer, of which 122 are in our identi-
fied modules. 57 of the 295 miRNAs are related to ovarian
cancer, of which 29 are in our identified modules, which
achieves a p-value 0.0386. This suggests that the modules
we identified are related to ovarian cancer significantly.
For themodules listed in Table 1, all of them have cancer

related miRNAs. We listed the number of cancer associ-
atedmiRNAs in Table 3. 13 of the 14modules are enriched
by cancer associated miRNAs significantly. In module 1
and module 37, all the involved miRNAs are associated
with cancers. Figure 2 shows our constructed network for
module 37. 156 genes are regulated by the 12 miRNAs.
There are a total of 47 known regulations. Figure 3 shows
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Table 1 MiRNA module enrichment results

No. p-value MiRNAs Loci

38 2.01E-18 miR-411, miR-299, miR-758, miR-329-1, miR-543, miR-495, Chr14 101022066-

miR-654, miR-376b, miR-376a-1, miR-381, miR-487b, miR-539, 101066801

miR-487a, miR-382, miR-154, miR-377, miR-409, miR-369,

miR-376c,miR-889,miR-410

45 1.41E-14 miR-379, miR-411, miR-299, miR-758, miR-329-1, miR-543, Chr14 101022066-

miR-376c, miR-654, miR-376b, miR-376a-1, miR-381, -101066801

miR-487a, miR-382, miR-154, miR-377, miR-409, miR-369,

miR-495, miR-487b, miR-539, miR-410

5 1.29E-15 miR-411, miR-758, miR-329-1, miR-543, miR-495, Chr14 101022066-

miR-376b, miR-376a-1, miR-487b„ miR-539, miR-889, -101066801

miR-382 miR-154, miR-409, miR-369,

miR-654,miR-487a, miR-410

2 2.19E-02 miR-379, miR-299, miR-376c, miR-376a-1, miR-381, miR-377 Chr14 101022066-

-101062118

10 1.40E-03 miR-379, miR-299, miR-376c, miR-376a-1, miR-381, miR-377 Chr14 101022066-

-101062118

38 2.70E-05 miR-493, miR-337, miR-433, miR-127, miR-432, miR-136 Chr14 100869060-

-100884783

12 1.40E-03 miR-379, miR-299, miR-376c, miR-376a-1, miR-381, miR-377 Chr14 101022066-

-101062118

21 1.26E-02 miR-379, miR-299, miR-376c, miR-376a-1, miR-381, miR-377 Chr14 101022066-

-101062118

35 1.17E-06 miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 Chr13 91350605-

-91351391

45 5.66E-03 miR-493, miR-337, miR-433, miR-127, miR-136 Chr14 100869000-

-100885000

18 2.13E-04 miR-424, miR-503, miR-542, miR-450a-1 ChrX 134546614-

-134540262

1 4.45E-05 miR-200b, miR-200a, miR-429 Chr1 1167104-

-1169087

10 2.02E-02 miR-337, miR-127, miR-136 Chr14 100869060-

-100884783

11 1.78E-03 miR-18b, miR-20b, miR-363 ChrX 134170198-

-134169452

22 2.83E-03 miR-508, miR-507, miR-506 Chr X 147236913-

-147230843

35 9.44E-04 miR-106b, miR-93, miR-25 Chr 7 100093993-

-100093643

37 9.44E-04 miR-106b, miR-93, miR-25 Chr 7 100093993-

-100093643

41 1.40E-02 miR-17, miR-19a, miR-20a Chr 13 91350605-

-91351135
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Table 2 Enriched KEGG pathways for the gene modules

No. Enriched Pathways p-value

17 Cytokine-cytokine receptor interaction 7.40E-05

NOD-like receptor signaling pathway 1.20E-03

Chemokine signaling pathway 5.80E-03

Hematopoietic cell lineage 3.30E-02

Complement and coagulation cascades 1.80E-01

Systemic lupus erythematosus 2.70E-01

18 p53 signaling pathway 3.50E-03

Small cell lung cancer 2.70E-03

Cell cycle 4.00E-03

Pathways in cancer 2.10E-02

Non-small cell lung cancer 8.20E-02

Glioma 8.00E-02

Melanoma 7.70E-02

Pancreatic cancer 6.90E-02

Chronic myeloid leukemia 6.40E-02

Prostate cancer 6.80E-02

24 Cytokine-cytokine receptor interaction 4.40E-05

NOD-like receptor signaling pathway 9.40E-04

Chemokine signaling pathway 4.30E-03

Hematopoietic cell lineage 2.70E-02

Complement and coagulation cascades 1.60E-01

Systemic lupus erythematosus 2.40E-01

28 Antigen processing and presentation 4.00E-03

Cytokine-cytokine receptor interaction 1.20E-02

Natural killer cell mediated cytotoxicity 9.20E-02

Hematopoietic cell lineage 1.30E-01

Graft-versus-host disease 1.70E-01

Chemokine signaling pathway 1.40E-01

NOD-like receptor signaling pathway 2.70E-01

Viral myocarditis 3.00E-01

31 Systemic lupus erythematosus 1.30E-02

41 Small cell lung cancer 1.30E-03

Chronic myeloid leukemia 3.10E-02

Pathways in cancer 2.40E-02

Colorectal cancer 1.90E-02

Cell cycle 3.40E-02

Thyroid cancer 1.30E-01

Bladder cancer 1.60E-01

Endometrial cancer 1.80E-01

Non-small cell lung cancer 1.60E-01

Acute myeloid leukemia 1.60E-01

Glioma 1.60E-01

p53 signaling pathway 1.50E-01

Melanoma 1.50E-01

Table 2 Enriched KEGG pathways for the gene modules
(Continued)

Pancreatic cancer 1.40E-01

Prostate cancer 1.60E-01

43 ECM-receptor interaction 1.20E-09

Focal adhesion 6.70E-06

Vascular smooth muscle contraction 1.60E-01

21 Focal adhesion 8.80E-01

22 ECM-receptor interaction 8.30E-01

35 Acute myeloid leukemia 8.20E-01

p53 signaling pathway 6.40E-01

Chronic myeloid leukemia 5.20E-01

37 Hypertrophic cardiomyopathy (HCM) 7.00E-02

Gap junction 2.70E-01

Dilated cardiomyopathy 2.10E-01

Arrhythmogenic right ventricular cardiomyopathy (ARVC) 4.60E-01

MAPK signaling pathway 7.80E-01

45 Pathways in cancer 7.30E-01

Basal cell carcinoma 5.00E-01

Hedgehog signaling pathway 3.70E-01

the known regulatory interactions of genes and miRNAs
in module 37. From this known network and our mod-
ule information, we may predict other regulations in this
module. In module 1, all the miRNAs are associated with
ovarian cancer. The genes in this module take part in
the process of transcription, gene expression etc.. The
complex gene-miRNA regulatory relations may be related
to ovarian cancer. In module 41, 5 miRNAs are associ-
ated with ovarian cancer. By checking the GO-BP terms,
we found that the most enriched term is ‘sexual repro-
duction’, which has a p-value 7.50E-06, and Benjamini
p-value 5.40E-03. Thismodule also enriches the GO-term:
‘gamete generation’, ‘male gamete generation’, and ‘sper-
matogenesis’ significantly. All these show that this module
should be very important in ovarian cancer development.

ComparisonwithMirsynergy
There have been some other methods proposed for study-
ing gene-miRNA modules. SNMNMF is the first paper
to address this problem [41], and Mirsynergy works the
best till now, to the best of our knowledge. As shown
in [43], Mirsynergy works better than SNMNMF, and it
runs much faster. Thus here we only compare our method
with Mirsynergy. This method operates in two steps: it
first detects the miRNA modules based on gene-miRNA
relationship, then expands each miRNAmodule by greed-
ily including (excluding) mRNAs into (from) the miRNA
module tomaximize the synergy score, which is a function
of gene-miRNA and gene–gene interactions. Different
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Table 3 Cancer associated miRNAs in the modules shown in Table 1

Module No. 1 2 5 10 11 12 18

Total No. of miRNAs 5 13 21 9 6 9 12

No. of cancer miRNAs 5 9 8 6 5 6 10

p-value 0 1.80E-04 4.82E-02 3.40E-03 1.77E-03 3.40E-03 4.74E-06

Module No. 21 22 35 37 38 41 45

Total No. of miRNAs 11 11 12 12 29 11 39

No. of cancer miRNAs 7 2 10 12 13 10 15

p-value 2.17E-03 7.00E-01 4.74E-06 0 2.29E-03 9.58E-07 6.43E-03

from our method, it did not consider the coexpressions
of miRNAs. We use the same gene coexpression network,
and the same gene-miRNA interaction data including
both the known interactions and the gene-miRNA coex-
pressions. We directly applied the R package Mirsynergy
to test the data. Table 4 shows the results.
With our proposed method, we identified 46 modules,

while with Mirsynergy we identified 18 modules. We first
did miRNA enrichment analysis for both the modules
enriched by the miRNA clusters, and the miRNA clus-
ters enriched by the modules. 14 of 46 modules identified
with our method were enriched (Bonferroni corrected p-
value<0.05) and 8 clusters were enriched by the modules
by setting the overlap of the clusters and modules being
3 or larger. In contrast, there is one module enriched by
miRNA clusters, and one cluster enriched by modules for
the modules identified by Mirsynergy. We also did Gene

Ontology biological process (GO-BP) terms and KEGG
pathway enrichment analysis. 15 modules are enriched
by GO-BPs and 7 modules are enriched by KEGG path-
ways with our method, while 4 modules are enriched by
GO-BPs and one is enriched by KEGG pathway. This may
be because the interactions of genes and miRNAs are
very sparse in our data set, which results in similar syn-
ergy scores of many genes/miRNAs and thus one module
may consist of many genes/miRNAs, while other mod-
ules have very small size. As shown in Table 4, although
the average number of genes and the average number
of miRNAs of the modules identified by Mirsynergy are
larger than that of our method, there is one module hav-
ing 1152 genes. Such cases have been addressed in [43].
By taking into account the coexpressions of miRNAs, the
miRNAs that may compose modules are more densely
connected, which can be identified with our method with

Fig. 2 Network structure of module 37. Triangle represents the miRNAs and circle represents the genes
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Fig. 3 Known interaction network for module 37. Triangle represents the miRNAs and circle represents the genes

a high accuracy. The identified modules by Mirsynergy
are in Additional file 2, and the enrichment results are in
Additional file 4.

Discussion
MiRNAs are actively involved in many biological pro-
cesses by regulating the post-transcriptional gene expres-
sion. Increasing evidence shows that miRNAs play critical
roles in many diseases including cancer and have a poten-
tial clinical value in diagnosis, treatment and prognosis.
Although many works have been done to identify the tar-
gets of miRNAs and elucidate their complex regulatory
networks, the complex relationships between miRNAs
and genes are not fully understood. In this paper, we inte-
grated the gene expression and miRNA expression data to
study their complex interactions. By computing the pair-
wise Pearson correlation coefficients, we transformed the
two data sets into networks. Then we proposed an opti-
mization model to identify the modules in the integrated
networks. We define the modules as subnetworks com-
posed of genes, miRNAs, gene-gene interactions, miRNA-
miRNA interactions, and gene-miRNA interactions. With
such definitions, we found the interaction patterns of
genes and miRNAs in the complex network. An approxi-
mate numerical algorithm is developed to solve the opti-
mization problem. Compared to the existingmethods, our

method considers both the interactions within gene-gene,
miRNA-miRNA networks, and the interactions between
gene and miRNAs. By tuning the parameters for intra-
and inter- networks, our method can give a good bal-
ance of all the interactions. The proposed method can
be extended to study the modules in more networks with
inter-connections. One weakness of our method is that
the number of modules K should be given. To find the
consistent results, we should try different KŠs, which
may waste some computational time. Also, in other real
applications, the identification accuracy may be related
to the density of the intra-network connections. Thus
we may need to add more tuning parameters to balance
the intra-network connections. We applied our proposed
method to an ovarian cancer data set. 14 modules are
enriched by the miRNA clusters with overlap size being
at least 3, 15 modules are enriched by GO-BP terms,
and 7 modules are enriched by KEGG pathways signifi-
cantly. In the identified modules, 122 miRNAs are cancer
associated and 29 miRNAs are related to ovarian cancer,
which has a p-value 0.039. These results show that the
genes and miRNAs act together to contribute to the can-
cers. To find the omarkers of cancers, or develop therapy
methods for cancers, we should take into account their
interactions. From themodule structures, we can also pre-
dict the unknown gene-miRNA interactions based on the

Table 4 Module enrichment performance of Mirsynergy and our method

Method Nmodule N̄g N̄m Nen-module Nen-cluster NGO NKEGG

Mirsynergy 18 88.4 21.9 1 1 4 1

Our method 46 42.6 10.3 14 8 15 7

‘Nmodule’ denotes the total number of modules identified. ‘N̄g ’ and ‘N̄m ’ denote the mean number of genes and miRNAs in the modules. ‘Nen-module’ denotes the number of
enriched modules by clusters. ‘Nen-cluster ’ denotes the number of enriched clusters by modules. ‘NGO’, ‘NKEGG’ denote the number of modules enriched by GO-BP and KEGG
pathway
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known gene-miRNA interactions. These predicted results
may give some theoretical basis for further experimen-
tal validations. Although with our current method we can
get more information on gene-miRNA interactions, their
complex relationships are far from being fully known. To
understand the biological system better, we need to add
more elements into the model. Integrating with other data
sets, such as DNA methylation, histone modification, is
left as one of our research topics.

Conclusions
Our proposed method provides a way for studying the
module structures in the complex gene-miRNA interac-
tion network. The experimental results show that the
modules composed of both genes, miRNAs, and their
interactions are very likely to be related to cancers.
These identified modules provide important information
for further cancer studies, and are worth experimental
validations.

Additional files

Additional file 1: The identified modules. We listed all the 46 modules
identified with our proposed method. Each module includes both genes
and microRNAs. (CSV 51 kb)

Additional file 2: The identified modules with Mirsynergy. We listed all
the modules identified with Mirsynergy. Each module includes both genes
and microRNAs. (CSV 87 kb)

Additional file 3: Enrichment results of the modules in Additional file 1.
We presented the GO-BP enrichment results and KEGG pathway
enrichment results of modules in Additional file 1. (XLSX 120 kb)

Additional file 4: Enrichment results of the modules in Additional file 2.
We presented the GO-BP enrichment results and KEGG pathway
enrichment results of modules in Additional file 2. (XLSX 68 kb)

Acknowledgments
S. Zhang’s research is supported in part by NSFC grant No. 11471082, and
Shanghai Natural Science Foundation 13ZR1403600, and M. Ng’s research is
supported in part by Hong Kong Research Grant Council GRF Grant No.
12302715.

Declarations
This article has been published as part of BMC Systems Biology Volume 10
Supplement 4, 2016: Proceedings of the 27th International Conference on
Genome Informatics: systems biology. The full contents of the supplement are
available online at http://bmcsystbiol.biomedcentral.com/articles/
supplements/volume-10-supplement-4.

Funding
The publication of this work is supported by NSFC grant No. 11471082.

Availability of data andmaterials
The level 2 gene expression and miRNA expression data for ovarian cancer are
downloaded from The Cancer Genome Atlas (TCGA). The gene expression
data set is generated with UNC AgilentG4502A_07_03, and the miRNA
expresssion data set is generated with UNC miRNA_8x15kv2. The gene-miRNA
interaction data are downloaded from miRTarBase
(http://mirtarbase.mbc.nctu.edu.tw). The miRNA cluster data are downloaded
from the miRBase website (http://www.mirba se.org/ ).

Authors’ contributions
SZ and MN designed the study. SZ did the experiments and drafted the
manuscript. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Center for Computational Systems Biology, School of Mathematical Sciences,
Fudan University, No.220 Handan Road, 200433 Shanghai, China. 2Department
of Mathematics, Hongkong Baptist University, Kowloon Tong, Hongkong,
Hongkong.

Published: 23 December 2016

References
1. Lee RC, Feinbaum RL, Ambros V. The c. elegans heterochronic gene lin-4

encodes small rnas with antisense complementarity to lin-14. Cell.
1993;75:843–54.

2. Kozomara A, Griffiths-Jones S. mirbase: integrating microrna annotation
and deep-sequencing data. Nucleic Acids Res. 2011;39:152–7.

3. Nilsen TW. Mechanisms of microrna-mediated gene regulation in animal
cells. Trends Genet. 2007;23:243–9.

4. Lynam-Lennon N, Maher SG, Reynolds JV. The roles of microrna in
cancer and apoptosis. Biol Rev Camb Philos Soc. 2009;84:55–71.

5. Dai X, Zhuang Z, Zhao PX. Computational analysis of mirna targets in
plants: current status and challenges. Brief Bioinf. 2011;12:115–21.

6. Muniategui A, Pey J, Planes FJ, Rubio A. Joint analysis of mirna and mrna
expression data. Brief Bioinform. 2013;14(3):263–78.
doi:10.1093/bib/bbs028.

7. Flynt AS, Lai EC. Biological principles of microrna-mediated regulation:
shared themes amid diversity. Nat Rev Genet. 2008;9:831–42.

8. Sayed D, Abdellatif M. Micrornas in development and disease. Physiol
Rev. 2011;91:827–87.

9. Pencheva N, Tavazoie SF. Control of metastatic progression by microrna
regulatory networks. Nat Cell Biol. 2013;15:546–54.

10. Zhang W, Zang J, Jing X, Sun Z, Yan W, Yang D, Shen B1, Guo F.
Identification of candidate mirna biomarkers from mirna regulatory
network with application to prostate cancer. J Transl Med. 2014;12.
doi:10.1186/1479-5876-12-66.

11. Taft RJ, Pang KC, Mercer TR, Mattick JS. Non-coding rnas: regulators of
disease. J Pathol. 2010;220:126–39.

12. Calin GA, Croce CM. Microrna signatures in human cancers. Nat Rev
Cancer. 2006;6:857–66.

13. Huang Y, Shen XJ, Zou Q, et al. Biological functions of micrornas: a
review. J Physiol Biochem. 2011;67:129–39.

14. Pfeifer A, Lehmann H. Pharmacological potential of rnai-focus on mirna.
Pharmacol Therap. 2010;126:217–27.

15. Gentner B, Visigalli I, Hiramatsu H, et al. Identification of hematopoietic
stem cell-specific mirnas enables gene therapy of globoid cell
leukodystrophy. Sci Trans Med. 2010;2(58):58ra84.

16. Brown BD, Naldini L. Exploiting and antagonizing microrna regulation for
therapeutic and experimental applications. Nat Rev Genet. 2009;10:
578–85.

17. Thomas M, Lieberman J, Lal A. Desperately seeking microrna targets. Nat
Struct Mol Biol. 2010;17:1169–1174.

18. Saito T, Saetrom P. Micrornas-targeting and target prediction. New
Biotechnol. 2010;27:243–9.

19. Maziere P, Enright AJ. Prediction of microrna targets. Drug Discov Today.
2007;12:452–8.

20. Chi SW, Zang JB, Mele A, et al. Argonaute hits-clip decodes
microrna-mrna interaction maps. Nature. 2009;460:479–86.

21. Hafner M, Landthaler M, Burger L, et al. Transcriptome-wide
identification of rna-binding protein and microrna target sites by par-clip.
Cell. 2010;141:129–41.

http://dx.doi.org/10.1186/s12918-016-0357-1
http://dx.doi.org/10.1186/s12918-016-0357-1
http://dx.doi.org/10.1186/s12918-016-0357-1
http://dx.doi.org/10.1186/s12918-016-0357-1
http://bmcsystbiol.biomedcentral.com/articles/supplements/volume-10-supplement-4
http://bmcsystbiol.biomedcentral.com/articles/supplements/volume-10-supplement-4
http://dx.doi.org/10.1093/bib/bbs028
http://dx.doi.org/10.1186/1479-5876-12-66


The Author(s) BMC Systems Biology 2016, 10(Suppl 4):117 Page 455 of 548

22. Jin H, Tuo W, Lian H, et al. Strategies to identify microrna targets: new
advances. New Biotechnol. 2010;27:734–8.

23. Huang G, Athanassiou C, Benos P. Mirconnx: condition-specific
mrna-microrna network integrator. Nucleic Acids Res. 2011;39:416.

24. Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C.
Magia, a web-based tool for mirna and genes integrated analysis. Nucleic
Acids Res. 2010;38:352–9.

25. Bandyopadhyay S, Mitra R. Targetminer: microrna target predic- tion with
systematic identification of tissue-specific negative examples.
Bioinformatics. 2009;25:2625.

26. Gamazon ER, Im HK, Duan S, Lussier YA, Cox NJ, Dolan ME, Zhang W.
Exprtarget: an integrative approach to predicting human microrna
targets. PLoS ONE. 2010;5:13534.

27. Nam S, Kim B, Shin S, Lee S. Mirgator: an integrated system for functional
annotation of micrornas. Nucleic Acids Res. 2008;36:159–64.

28. Hausser J, Berninger P, Rodak C, Jantscher Y, Wirth S, Zavolan M. Mirz:
an integrated microrna expression atlas and target prediction resource.
Nucleic Acids Res. 2009;37:266–72.

29. Ritchie W, Flamant S, Rasko J. Mimirna: a microrna expression profiler
and classification resource designed to identify functional correlations
between micrornas and their targets. Bioinformatics. 2010;26:223–7.

30. Gennarino VA, Sardiello M, Avellino R, Meola N, Maselli V, Anand S,
Cutillo L, Ballabio A, Banfi S. Microrna target prediction by expression
analysis of host genes. Genome Res. 2009;19:481–90.

31. Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR,
Blencowe BJ, Frey BJ, Morris QD. Using expression profiling data to
identify human microrna targets. Nat Methods. 2007;4:1045–1049.

32. Lu Y, Zhou Y, Qu W, Deng M, Zhang C. A lasso regression model for the
construction of microrna-target regulatory networks. Bioinformatics.
2011;27:2406–413.

33. Ritchie W, Rajasekhar M, Flamant S, et al. Conserved expression patterns
predict microrna targets. PLoS Computat Biol. 2009;5(9):e1000513.

34. Jayaswal V, Lutherborrow M, Ma DDF, et al. Identification of micrornas
with regulatory potential using a matched microrna-mrna time-course
data. Nucleic Acids Res. 2009;37(8):e60.

35. Ragan C, Zuker M, Ragan MA. Quantitative prediction of mirna-mrna
interaction based on equilibrium concentrations. PLoS Computat Biol.
2011;7(2):e1001090.

36. Liu B, Li J, Tsykin A, Liu L, Gaur AB, Goodall GJ. Exploring complex
mirna-mrna interactions with bayesian networks by splitting averaging
strategy. BMC Bioinforma. 2009;10:408.

37. Nam A, Li M, Choi K, Balch C, Kim S, Nephew K. Microrna and mrna
integrated analysis (mmia): a web tool for examining biological functions
of microrna expression. Nucleic Acids Res. 2009;37:356–62.

38. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–15550.

39. Mootha VK, Lindgren CM, Eriksson KF, et al. Pgc-1alpha-responsive genes
involved in oxidative phos- phorylation are coordinately downregulated
in human diabetes. Nat Genet. 2003;34:267–73.

40. Pasquinelli AE. Micrornas and their targets: recognition, regulation and an
emerging reciprocal relationship. Nat Rev. 2012;13:271–82.

41. Zhang S, Li Q, Liu J, Zhou XJ. A novel computational framework for
simultaneous integration of multiple types of genomic data to identify
microrna-gene regulatory modules. Bioinformatics. 2011;27:401–9.

42. Le HS, Bar-Joseph Z. Integrating sequence, expression and interaction
data to determine condition-specific mirna regulation. Bioinformatics.
2013;29:89–97.

43. Li Y, Liang C, Wong KC, Luo J, Zhang C. Mirsynergy: detecting
synergistic mirna regulatory modules by overlapping neighbourhood
expansion. Bioinformatics. 2014;30:1–9.

44. Zhang B, Horvath S. A general framework for weighted gene
co-expression network analysis. Stat Appl Gen Mol Biol. 2005;4:17.

45. Zhang S, Zhao H. Community identification in networks with unbalanced
structure. Phys Rev E. 2012;85:066114.

46. Huang D, Sherman BT, Lempicki RA. Systematic and integrative analysis
of large gene lists using david bioinformatics resources. Nat Protoc.
2009;4:44–57.

47. Huang D, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists.
Nucleic Acids Res. 2009;37:1–13.

48. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame
MC. The role of focal-adhesion kinase in cancer-a new therapeutic
opportunity. Nat Rev Cancer. 2005;5(7):505–15.

49. Krupp M, Maass E, Marquardt JU, et al. The functional cancer map: A
systems-level synopsis of genetic deregulation in cancer. BMC Med
Genet. 2011;4(53):. doi:10.1186/1755-8794-4-53.

50. Gelb BD, Tartaglia M. Ras signaling pathway mutations and hypertrophic
cardiomyopathy: getting into and out of the thick of it. J Clin Invest.
2011;121:844–7.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1186/1755-8794-4-53

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Results
	Data sets
	Network construction
	Experimental results
	MiRNA module enrichment analysis
	Gene module enrichment analysis
	Gene-miRNA modules are strongly associated with cancers
	Comparison with Mirsynergy


	Discussion
	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	Acknowledgments
	Declarations
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

