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Abstract

The integration of genome annotations is critical to the identification of genetic variants that are relevant to studies
of disease or other traits. However, comprehensive variant annotation with diverse file formats is difficult with
existing methods. Here we describe vcfanno, which flexibly extracts and summarizes attributes from multiple
annotation files and integrates the annotations within the INFO column of the original VCF file. By leveraging a
parallel “chromosome sweeping” algorithm, we demonstrate substantial performance gains by annotating ~85,000
variants per second with 50 attributes from 17 commonly used genome annotation resources. Vcfanno is available
at https://github.com/brentp/vcfanno under the MIT license.
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Background
The VCF files [1] produced by software such as GATK
[2] and FreeBayes [3] report the polymorphic loci ob-
served among a cohort of individuals. Aside from the
chromosomal location and observed alleles, these loci
are essentially anonymous. Until they are embellished
with genome annotations, it is nearly impossible to an-
swer basic questions such as “was this variant seen in
ClinVar,” or “what is the alternative allele frequency ob-
served in the 1000 Genomes Project?” An extensive and
growing number of publicly available annotation re-
sources (Ensembl, UCSC) and reference databases of
genetic variation (e.g., ClinVar, Exome Aggregation
Consortium (ExAC), 1000 Genomes) provide context
that is crucial to variant interpretation. It is also com-
mon for individual labs and research consortia to curate
custom databases that are used, for example, to exclude
variants arising in genes or exons that are systematic
sources of false positives in exome or genome resequen-
cing studies. Other annotations, such as low-complexity
regions [4], transcription factor binding sites, regulatory
regions, or replication timing [5], can further inform the
prioritization of genetic variants related to a phenotype.
The integration of such annotations is complementary

to the gene-based approaches provided by snpEff [6],
Annovar [7], and VEP [8]. Each of these tools can pro-
vide additional, region-based annotation, yet they are
limited to the genome annotation sets provided by the
software. While extensive variant annotation is funda-
mental to nearly every modern study of genetic vari-
ation, no existing software can flexibly and simply
annotate VCF files with so many diverse data sets.
We have therefore developed vcfanno as a fast and

general solution for variant annotation that allows vari-
ants to be “decorated” with any annotation dataset in
common formats. In addition to providing the first
method that is capable of annotating with multiple an-
notation sets at a time, vcfanno also avoids common
issues such as inconsistent chromosome labeling (“chr1”
versus “1”) and ordering (1,2,…10…, or 1,10,11…) among
the VCF and annotation files. To maximize performance
with dozens of annotation files comprised of millions of
genome intervals, we introduce a parallel sweeping algo-
rithm with high scalability. In an effort to make vcfanno’s
annotation functionality as flexible as possible, we have
also embedded a lua (http://www.lua.org/) scripting en-
gine that allows users to write custom operations.

Implementation
Overview of the vcfanno functionality
Vcfanno annotates variants in a VCF file (the “query”
intervals) with information aggregated from the set of
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intersecting intervals among many different annotation
files (the “database” intervals) stored in common gen-
omic formats such as BED, GFF, GTF, VCF, and BAM. It
utilizes a “streaming” intersection algorithm that lever-
ages sorted input files to greatly reduce memory
consumption and improve speed. As the streaming
intersection is performed (details below), database inter-
vals are associated with a query interval if there is an
interval intersection. Once all intersections for a particu-
lar query interval are known, the annotation proceeds
according to user-defined operations that are applied to
the attributes (e.g., the “score” column in a BED annota-
tion file or an attribute in the INFO field of a VCF anno-
tation file) data within the database intervals. As a
simple example, consider a query VCF of single nucleo-
tide variants (SNVs) that was annotated by SNVs from
an annotation database such as a VCF file of the dbSNP
resource. In this case, the query and database variants
are matched on position, REF, and ALT fields when
available and a value from the overlapping database
interval (e.g., minor allele frequency) is carried forward
to become the annotation stored in the INFO field of
the query VCF. In a more complex scenario where a
query structural variant intersects multiple annotation
intervals from each database, the information from those
intervals must be aggregated. One may wish to report
each of the attributes as a comma-separated list via the
“concat” operation. Alternatively, one could select the

maximum allele frequency via the “max” operation. For
cases where only a single database interval is associated
with the query, the choice of operation will not affect
the summarized value.
An example VCF INFO field from a single variant be-

fore and after annotation with vcfanno is shown in Fig. 1.
A simple configuration file is used to specify both the
source files and the set of attributes (in the case of VCF)
or columns (in the case of BED or other tab-delimited
formats) that should be added to the query file. In
addition, the configuration file allows annotations to be
renamed in the resulting VCF INFO field. For example,
we can extract the allele frequency (AF) attribute from
the ExAC VCF file [9] and rename it as “exac_aaf” in the
INFO field of the VCF query records. The configuration
file allows one to extract as many attributes as needed
from any number of annotation datasets.

Overview of the chrom-sweep algorithm
The chromosome sweeping algorithm (“chrom-sweep”)
is an adaptation of the streaming, sort-merge join algo-
rithm, and is capable of efficiently detecting interval in-
tersections among multiple interval files, as long as they
are sorted by both chromosome and interval start pos-
ition. Utilized by both BEDTOOLS [10, 11] and BED-
OPS [12], chrom-sweep finds intersections in a single
pass by advancing pointers in each file that are synchro-
nized by genomic position. At each step in the sweep,

Fig. 1 Overview of the vcfanno workflow. An unannotated VCF (a) is sent to vcfanno (b) along with a configuration file that indicates the paths
to the annotation files, the attributes to extract from each file, and the methods that should be used to describe or summarize the values
extracted from those files. The new annotations in the resulting VCF (c) are shown in blue text with additional fields added to the INFO column
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these pointers maintain the set of intervals that intersect
a particular position and, in turn, intersect each other.
This strategy is advantageous for large datasets because
it avoids the use of data structures such as interval trees
or hierarchical bins (e.g., the UCSC binning algorithm
[13]). While these tree and binning techniques do not
require sorted input, the memory footprint of these
methods scales poorly, especially when compared with
streaming algorithms, which typically exhibit low,
average-case memory demands.
The chrom-sweep algorithm implemented in vcfanno

proceeds as follows. First, we create an iterator of inter-
val records for the query VCF and for each database an-
notation file. We then merge intervals from the query
VCF and each annotation into a single priority queue,
which orders the intervals from all files by chromosome
and start coordinate, while also tracking the file from
which each interval came. Vcfanno progresses by
requesting an interval from the priority queue and in-
serts it into a cache. If the most recently observed inter-
val is from the query VCF, we check for intersections
with all database intervals that are currently in the
cache. Since vcfanno requires that all files be sorted, we
know that intervals are entering the cache ordered by
start coordinate. Therefore, in order to check for over-
lap, we only need to check that the start of the new
interval is less than the end of any of the intervals in the
cache (assuming half-open intervals). An example of the
sweeping algorithm is shown in Fig. 2 for a case involv-
ing two annotation files and three records from a single
query VCF. The contents of the cache are shown as the
sweep reaches the start of each new interval. When a
new query interval enters the cache, any interval that
does not intersect it is ejected from the cache. If the
removed interval originated from the query VCF, it is
sent, together with each of the intersecting annotation

intervals, to be processed according to the operations
specified in the configuration file. The resulting annota-
tions are stored in the INFO field of the VCF file and
the updated VCF record is reported as output.

Limitations of the chrom-sweep algorithm
Owing to the fact that annotation sets are not loaded
into memory-intensive data structures, the chrom-sweep
algorithm easily scales to large datasets. However, it does
have some important limitations. First, it requires that
all intervals from all annotation files adhere to the same
chromosome order. While conceptually simple, this is
especially onerous since VCFs produced by variant cal-
lers such as GATK impose a different chromosome
order (1, 2, …21, X, Y, MT) than most other numerically
sorted annotation files, which would put MT before X
and Y. Of course, sorting the numeric chromosomes as
characters or integers also results in different sort or-
ders. Discrepancies in chromosome ordering among files
are often not detected until substantial computation has
already been performed. A related problem is when one
file contains intervals from a given chromosome that the
other does not, it’s not possible to distinguish whether
the chromosome order is different or if that chromo-
some is simply not present in one of the files until all
intervals are parsed.
Second, the standard chrom-sweep implementation is

suboptimal because it is often forced to consider (and
parse) many annotation intervals that will never inter-
sect the query intervals, resulting in unnecessary work
[14]. For example, given a VCF file of variants that are
sparsely distributed throughout the genome (e.g., a VCF
from a single exome study) and dense data sets of
whole-genome annotations, chrom-sweep must parse
and test each interval of the whole-genome annotations
for intersection with a query interval, even though the

Fig. 2 Overview of the chrom-sweep interval intersection algorithm. The chrom-sweep algorithm sweeps from left to right as it progresses along
each chromosome. Green intervals from the query VCF in the first row are annotated by annotation files A (blue) and B (orange) in the second and
third rows, respectively. The cache row indicates which intervals are currently in the cache at each point in the progression of the sweeping
algorithm. Intervals enter the cache in order of their chromosomal start position. First A1 enters the cache followed by Q1. Since Q1 intersects A1,
they are associated, as are Q1 and B1 when B1 enters the cache. Each time a new query interval enters the cache, any interval it does not
intersect is ejected. Therefore, when Q2 enters the cache, Q1 and A1 are ejected. Since Q1 is a query interval, it is sent to be reported as
output. Proceeding to the right, A2 and then Q3 enter the cache; the latter is a query interval and so the intervals that do not overlap it—B1, Q2, and
A2—are ejected from the cache with the query interval, Q2, which is sent to the caller. Finally, as we reach the end of the incoming intervals, we clear
out the final Q3 interval and finalize the output for this chromosome. EOF: End of File
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areas of interest comprise less than 1 % of the regions in
the file. In other words, sparse queries with dense anno-
tation files represent a worst-case scenario for the per-
formance of chrom-sweep because a high proportion of
the intervals in the data sets will never intersect.
A third limitation of the chrom-sweep algorithm is

that, due to the inherently serial nature of the algorithm,
it is difficult to parallelize the detection of interval inter-
sections and the single CPU performance is limited by
the speed at which intervals can be parsed. Since the in-
tervals arrive in sorted order, skipping ahead to process
a new region from each file in a different processing
thread is difficult without a pre-computed spatial index
of the intervals and reporting the intervals in sorted
order after intersection requires additional bookkeeping.

A parallel chrom-sweep algorithm
To address these shortcomings, we developed a parallel
algorithm that concurrently chrom-sweeps “chunks” of
query and database intervals. Unlike previous in-
memory parallel sweeping methods that uniformly parti-
tion the input [15], we define (without the need for pre-
processing [16]) chunks by consecutive query intervals
that meet one of two criteria: either the set reaches the
“chunk size” threshold or the genomic distance to the
next interval exceeds the “gap size” threshold. Restrict-
ing the chunk size creates reasonably even work among
the threads to support efficient load balancing (i.e., to
avoid task divergence). The gap size cutoff is designed
to avoid processing an excessive number of unrelated
database intervals that reside between distant query
intervals.
As soon as a chunk is defined, it is scheduled to be

swept in parallel along with the other previously defined

chunks. The bounds of the query intervals in the chunk
determine the range of the intervals requested from each
annotation file (Fig. 3). Currently these requests are to
either a Tabix [17] indexed file or a BAM file via the
bíogo package [18] but any spatial query can be easily
supported. An important side effect of gathering data-
base intervals using these requests is that, while the an-
notation files must be sorted, there is no need for the
chromosome orders of the annotations to match. This,
along with internally removing any “chr” prefix, allevi-
ates the associated chromosome order and representa-
tion complexities detailed above. The set of intervals
from these requests are integrated with the query inter-
vals to complete the chunk, which is then processed by
the standard chrom-sweep algorithm. However, in prac-
tice this is accomplished by streams so that only the
query intervals are held in memory while the annotation
intervals are retrieved from their iterators during the
chrom-sweep. One performance bottleneck in this strat-
egy is that the output should be sorted and, since
chunks may finish in any order, we must buffer com-
pleted chunks to restore sorted order. This, along with
disk speed limitations, is the primary source of overhead
preventing optimal parallelization efficiency.

Vcfanno implementation
Vcfanno is written in Go (https://golang.org), which pro-
vides a number of advantages. First, Go supports cross-
compilation for 32- and 64-bit systems for Mac, Linux,
and Windows. Go’s performance means that vcfanno can
process large data sets relatively quickly. Go also offers a
simple concurrency model, allowing vcfanno to perform
intersections in parallel while minimizing the possibility
of race conditions and load balancing problems that

Fig. 3 Parallel sweeping algorithm. As in Fig. 2, we sweep across the chromosome from lower to higher positions (and left to right in the figure).
The green query intervals are to be annotated with the two annotation files depicted with blue and orange intervals. The parallelization occurs in
chunks of query intervals delineated by the black vertical lines. One process reads query intervals into memory until a maximum gap size to the
next interval is reached (e.g., chunks 2, 4) or the number of intervals exceeds the chunk size threshold (e.g., chunks 1, 3). While a new set of query
intervals accumulates, the first chunk, bounded to the right by the first vertical black line above, is sent for sweeping and a placeholder is put into
a FIFO (first-in, first-out) queue, so that the output remains sorted even though other chunks may finish first. The annotation files are queried with
regions based on the bounds of intervals in the query chunk. The queries then return streams of intervals and, finally, those streams are sent to
the chrom-sweep algorithm in a new process. When it finishes, its placeholder can be pulled from the FIFO queue and the results are yielded
for output
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often plague parallel implementations. Moreover, as we
demonstrate in the Results section, vcfanno’s parallel im-
plementation of the chrom-sweep algorithm affords
speed and scalability. Lastly, it is a very flexible tool be-
cause of its support for annotations provided in many
common formats such as BED, VCF, GFF, BAM, and GTF.

Results
Scalability of VCF annotation
We annotated the publicly available VCF files from both
ExAC (v3; 10,195,872 decomposed VCF records) and the
1000 Genomes Project (phase 3; 85,273,413 decomposed
VCF records) to demonstrate vcfanno’s performance and
scalability on both a whole-exome and a whole-genome
dataset, respectively. We used an extensive set of anno-
tations and extracted a total of 50 different attributes
from 17 distinct data sets representative of common an-
notations (Additional file 1). We observed a near linear
increase in annotation speed relative to a single core
(3302 and 7457 seconds for ExAC and 1000 Genomes,
respectively) when using two to four cores, but while
performance continued to improve for additional cores, the
improvement is sublinear (Fig. 4, Additional file 3: Table
S1). This is expected because we inevitably reach the limits
of disk speed by concurrently accessing 17 files. Moreover,
the degree of parallelism is limited by how fast the main
process is able to read chunks of query VCF records that
are kept in memory. Nonetheless, using 16 cores, vcfanno
was able to annotate the variants from ExAC in less than

8 minutes and the 1000 Genomes variants in less than
17 minutes, performing at a rate of 21,902 and 85,452 vari-
ants per second, respectively.

The impact of interval distribution on performance
As described above, chunks of intervals constitute the
individual units of work in the parallel “chrom-sweep”
algorithm. A chunk is “full” when either the number of
intervals in the array reaches the chunk size or the gen-
omic distance between two adjacent intervals is larger
than the gap size. To understand the effect these param-
eters had on runtime, we varied both chunk size and gap
size for the annotation of a whole-genome data set
(variants from chromosome 20 of 1000 Genomes) and a
whole-exome data set (variants from chromosome 20 of
ExAC) given the same set of 17 annotation tracks from
both whole-genome and whole-exome data sets that
were used to create Fig. 4. The choice of whole-genome
and whole-exome query sets not only represents two
common annotation use cases but also serves to illumin-
ate the effect these parameters have on different data
distributions. Not surprisingly, the run times for 1000
Genomes were completely dependent on chunk size and
effectively independent of gap size, while ExAC runtimes
exhibited the opposite behavior (Fig. 5a). When intervals
were more uniformly distributed throughout the gen-
ome, as with the 1000 Genomes data (Fig. 5b), the dis-
tance between intervals tended to be small and therefore
the maximum chunk size (not gap size) determined the

Fig. 4 Parallelization efficiency. We show the efficiency of the parallelization strategy relative to one process on a whole-genome (1000 Genomes
(1000G) in blue) and whole-exome (ExAC in green) dataset. In both cases, we are short of the ideal speedup (gray line) but we observe an
approximately sevenfold speedup using 16 processors. Absolute times are provided in Additional file 3: Table S1
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number of intervals contained in the typical processing
chunk. In contrast, since the intervals from ExAC tend
to reside in smaller and more discrete clusters, max-
imum chunk size had almost no effect on the size of the
typical processing chunk. As a result of this exploration,
we have set the default chunk and gap sizes to work well
on both whole-genome and whole-exome datasets but
we also allow them to be set by the user to maximize
performance based on their knowledge of the datasets in
question.

Comparison to other methods
While no existing tools have the same functionality as
vcfanno, BCFTools [19] includes an annotate command
that allows one to extract fields from a single annotation
file. Similarly, our own BEDTools [10, 11] uses the
chrom-sweep algorithm to facilitate single-threaded
intersection across multiple annotation files, yet it does
not allow one to store annotations in the INFO field of
the query VCF. Nonetheless, these tools provide an in-
formative means to assess the performance of vcfanno.
Using nine different annotation sources ranging from
whole-genome VCF to sparse BED files (see the vcfanno
repository for replication code), we compared the run-
time of vcfanno with 1, 4, 8, and 12 processes to that of
BCFTools and BEDTools, both of which are single-
threaded. We annotated the ExAC VCF with each tool.
BEDTools can only intersect, not annotate, so we report
the time to complete the intersections. BCFTools can
only annotate one file at a time, so each of the nine an-
notations were conducted serially and we report the
total time required. BEDTools is an extremely efficient
method for detecting interval intersections among mul-
tiple annotation files but it is limited to a single core.
BCFTools, on the other hand, can update the INFO field

of the query with corresponding records from a single
annotation file, but it takes longer than vcfanno, even
with a single process. Using four processors, vcfanno is
3.0 times as fast as BEDTools and 6.8 times as fast as
BCFTools. The performance increase resulting from
using eight processors is substantial, reducing the run-
time from 703 seconds down to 591, but increasing to
12 processors yields little additional benefit (Table 1).

Additional features
Vcfanno includes additional features that provide unique
functionality with respect to existing tools. Annotating
structural variants (SV) is complicated by the fact that,
owing to the alignment signals used for SV discovery,
there is often uncertainty regarding the precise location
of SV breakpoints [20]. Vcfanno accounts for this uncer-
tainty by taking into account the confidence intervals
(defined by the CIPOS and CIEND attributes in the VCF

Fig. 5 Effect of gap and chunk size on runtime for different data distributions. a Runtimes for annotating small variants on chromosome 20 for
1000 Genomes (1KG; 1,822,268 variants) and ExAC (256,057 variants) against 17 annotation files using four cores and different combinations of
gap size and chunk size. b Data density for chromosome 20 of 1000 Genomes, ExAC, and the summation of the 17 annotation files

Table 1 Speed comparison with other methods

Method Time (seconds) Number of processors

BEDTools 2135.67 1

BCFTools 4776.55 1

vcfanno 2621.80 1

vcfanno 702.72 4

vcfanno 590.71 8

vcfanno 571.65 12

We compare vcfanno’s performance with BEDTools and BCFTools using 1, 4, 8,
and 12 processors when annotating the ExAC dataset using nine annotation
files. For all tools, we stream the output to bgzip in an effort to make the
comparison as fair as possible. BCFTools can annotate only a single file at a
time, so the time reported is the sum of annotating each file and sending the
result to the next annotation. This cannot be piped because the input to the
BCFTools “annotate” tool must first be compressed by bgzip and subsequently
indexed by Tabix
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specification) associated with SV breakpoints when con-
sidering annotation intersections. The confidence intervals
define a genomic range in which the breakpoints are most
likely to exist; therefore, it is crucial for vcfanno to take
these intervals into consideration when it considers anno-
tations associated with SV breakpoints. Moreover, since
SVs frequently affect hundreds to thousands of nucleo-
tides, they will often intersect multiple intervals per
annotation file. In such cases, the summary operations de-
scribed above can be used to distill the multiple annota-
tion intersections into a single descriptive measure.
Users will frequently need to further customize the an-

notations in the resulting VCF file. In order to facilitate
this, vcfanno supports a concept of “post annotation”:
that is, summary operations that are subsequently ap-
plied to the attributes that are extracted from annotation
files for a given query VCF record. As an example, con-
sider a situation where one would like to annotate each
variant in one’s VCF file with the alternative allele fre-
quency observed in the Exome Aggregation Consortium
VCF. However, the ExAC VCF file solely provides the
total count of chromosomes observed and the count of
chromosomes exhibiting the alternative allele. Therefore,
one cannot simply extract an alternative allele frequency
directly from the ExAC VCF file. However, as illustrated

in Fig. 6, if the total and alternative allele counts are ex-
tracted with vcfanno (as “exac_total” and “exac_alts”),
one can define an additional “post-annotation” section
that uses lua to compute the alternative allele frequency
(“exac_aaf”) from the total and alternative allele counts
extracted from the ExAC VCF file. Users can write ex-
tensive lua functions in an external script and subse-
quently call these in the annotation and post-annotation
sections of the configuration file. For example, in Fig. 6c,
we use an external lua script (provided to vcfanno on
the command line) to implement a function (Additional
file 2) that calculates the lower bound of the allele fre-
quency confidence interval. This is useful for determin-
ing whether an allele frequency is different from 0 based
on the 95 % confidence bounds. This type of specialized
logic is simple to implement given lua’s scripting capabil-
ities and allows vcfanno to be customized to a re-
searcher’s specific needs. In fact, this “post-annotation”
concept can be applied “in place” to a VCF without any
annotation files, thereby allowing the user to perform
modifications to a VCF file’s INFO field.

Use case demonstration
Genetic studies of rare familial disease typically annotate
the resulting VCF file with predictions of the consequence

Fig. 6 Using a “post-annotation” block to compute new annotations derived from existing annotations. a As described in the text, computing
this post-annotation assumes that the “exac_total” and “exac_alts” fields have been extracted (via the AN and AC fields in the ExAC VCF) from the
annotation file using standard annotation blocks. The AC field returns an array of alternative alleles for the variants in the annotation file that
match a given variant in the query VCF. b In this post-annotation block, we calculate the alternative allele frequency in ExAC (“exac_aaf”) using
“exac_alts [1]” as the numerator because in this example we calculate the alternative allele frequency based on the first alternative allele. c An
example of a post-annotation block that calls a function (af_conf_int) in an external lua script (Additional file 2) to compute the lower bound of
the allele frequency confidence interval based upon counts of the alternative allele and total observed alleles. d An example invocation of
vcfanno that annotates a BGZIP-compressed VCF file (example.vcf.gz) using the configuration file described in panels (a–c) (red), together with the
lua script file (blue) containing the code underlying the af_conf_int function
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of each identified genetic variant on transcript function
using VEP, snpEff, or VEP. However, further annotation
with other reference databases is required to isolate the
handful of variants that could plausibly underlie the
phenotype. As an example, vcfanno could be used to fur-
ther annotate the clinical significance of each variant, as
well as any diseases known to be associated with the vari-
ant using the VCF files provided by ClinVar. In addition,
the allele frequency and number of heterozygous and
homozygous alternative genotypes observed in ExAC
could be added to prevent consideration of alleles that are
either too common or have too many homozygous alter-
native genotypes to be plausible for a rare, recessive dis-
order. We have provided a vcfanno configuration file that
demonstrates this variant prioritization scenario at Github
(https://github.com/brentp/vcfanno/blob/master/scripts/
paper/example.conf ).

Discussion
We have introduced vcfanno as a fast and flexible new
software resource that facilitates the annotation of gen-
etic variation in any species. We anticipate that vcfanno
will be useful both as a standalone annotation tool and
also in conjunction with downstream VCF filtering and
manipulation software such as snpEff [6], BCFTools
[19], BGT [21], and GQT [22]. There are, however, ca-
veats to the proper use of vcfanno and it exhibits poorer
performance in certain scenarios. Performance will vary
depending upon the number of sample genotypes that
are present in the input VCF file, as more samples yield
a larger VCF file that requires more processing time. For
example, the performance described in Figs. 4 and 5 re-
flect VCF files that lack sample genotypes (i.e., solely
sites of genetic variation). When annotating the 1000
Genomes VCF that includes 2504 sample genotypes,
vcfanno requires 42 minutes using 16 cores, versus
17 minutes without genotypes. Secondly, vcfanno’s rela-
tive performance is, not surprisingly, less impressive on
very sparse datasets (e.g., one or two variants every
20 kb), such as a VCF resulting from the exome sequen-
cing of one individual. While annotating these files is
still quite fast (typically between 3 and 5 minutes), the
sparsity of data exposes the overhead associated with
using Tabix to create streams of database intervals that
are germane to the current chunk. Tabix must decom-
press an entire BGZF block from each annotation file
even if the query chunk merely includes a single variant
because Tabix’s smallest block represents a genomic
range of 16 kb. Therefore, when the query VCF is very
sparse, an entire block from each annotation is fre-
quently (and wastefully) decompressed for each query
variant. In future versions of vcfanno, we will explore al-
ternative approaches in order to avoid this limitation,
thereby maximizing performance in all usage scenarios.

Lastly, when annotating with other VCF files, it is rec-
ommended that both the variants in the query VCF and
each database VCF are normalized and decomposed in
order to ensure that both variant sites and alleles are
properly matched when extracting attributes from the
database VCF files [23].

Conclusions
Vcfanno is an extremely efficient and flexible software
package for annotating genetic variants in VCF format
in any species. It represents a substantial improvement
over existing methods, enabling rapid annotation of
whole-genome and whole-exome datasets and provides
substantial analytical power to studies of disease, popula-
tion genetics, and evolution.
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