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Abstract

Background: Xylan is the most abundant un-cellulosic polysaccharides of plant cell walls. Much progress in xylan
biosynthesis has been gained in the model plant species Arabidopsis. Two homologous pairs Irregular Xylem 9
(IRX9)/9L and IRX14/14L from glycosyltransferase (GT) family 43 have been proved to play crucial roles in xylan
backbone biosynthesis. However, xylan biosynthesis in grass such as Miscanthus remains poorly understood.

Results: We characterized seven GT43 members in M. lutarioriparius, a promising bioenergy crop. Quantitative
real-time RT-PCR (gRT-PCR) analysis revealed that the expression of MIGT43 genes was ubiquitously detected in the
tissues examined. In-situ hybridization demonstrated that MIGT43A-8 and MIGT43F-G were specifically expressed in
sclerenchyma, while MIGT43C-E were expressed in both sclerenchyma and parenchyma. All seven MIGT43 proteins
were localized to Golgi apparatus. Overexpression of MIGT43A-E but not MIGT43F and MIGT43G in Arabidopsis irx9 fully

or partially rescued the mutant defects, including morphological changes, collapsed xylem and increased xylan contents,
whereas overexpression of MIGT43F and MIGT43G but not MIGT43A-E complemented the defects of irx74, indicating that
MIGT43A-E are functional orthologues of IRX9, while MIGT43F and MIGT43G are functional orthologues of IRX74. However,
overexpression of all seven MIGT43 genes could not rescue the mucilage defects of irx714 seeds. Furthermore, transient

transactivation analyses of MIGT43A-E reporters demonstrated that MIGT43A and MIGT43B but not MIGT43C-£ were

differentially activated by MISND1, MIMYB46 or MIVND?.

Conclusion: The results demonstrated that all seven MIGT43s are functionally conserved in xylan biosynthesis during
secondary cell wall formation but diversify in seed coat mucilage xylan biosynthesis. The results obtained provide deeper
insight into xylan biosynthesis in grass, which lay the foundation for genetic modification of grass cell wall components
and structure to better suit for next-generation biofuel production.
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Highlight
The functional roles of M. lutarioriparius GT43 family
genes are conserved and diversified in xylan biosynthesis.

Background
Plant cell walls are complex and dynamic structures com-
posed mainly of polysaccharides (cellulose, hemicellulose
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and pectin), phenolic compounds (lignin) and glycopro-
teins [1]. Xylans are the major hemicellulosic saccharides
in the primary cell walls of grasses and the secondary cell
walls of grasses and dicots, ranking as the second most
abundant polysaccharides in nature [2]. Xylans are mainly
composed of a linear backbone of 3-(1,4)-linked D-xylosyl
residues with various sidechains that vary among different
plant species and tissue types [3]. Based on the sidechain
substitutions, xylans can generally be classified as
(methyl)glucuronoxylan (GX), arabinoxylan (AX), and glu-
curonoarabinoxylan (GAX) [3]. As the major xylan in
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dicot plants, GX is usually decorated with a-1,2-linked
glucuronic acid (GlcA) or 4-O-methylglucuronic acid
(MeGlIcA), and acetylated at C-2 or C-3 [3, 4]. AX has a-
1,3-linked arabinose (Ara) sidechains, and presents as
typical hemicellulose components in starchy endosperm
of cereal grains [3]. GAX is the predominant hemicellu-
lose in grass cell walls, and has sidechains of a-1,2 or a-
1,3-linked arabinose (Ara) and GlcA residues [3]. In
addition, GX in angiosperm and GAX in several gymno-
sperm species contain a tetrasaccharide sequence [3-D-Xyl-
(1,3)-a-L-Rha-(1,2) -a-D-GalA-(1,4)-D-Xyl] at the reducing
end [5-7]. However, no such oligosaccharide has yet been
identified for xylans in grasses [8, 9]. It is still in controversy
whether this oligosaccharide functions as a primer or as a
terminator in xylan backbone biosynthesis [10].

Several xylan-related mutants named as irregular
xylem (irx) due to secondary cell wall deficiencies have
been identified in Arabidopsis by reverse genetics ap-
proaches [11, 12]. Most of these identified genes encode
putative glycosyltransferases (GT) that are involved in
the biosynthesis of xylan. IRX9/IRX9L and IRX14/
IRX14L from GT43 family as well as IRX10/IRX10L
from GT47 family are responsible for the biosynthesis of
xylan backbone [13-19]. IRX9, IRX10 and IRXI14 play
dominant roles in xylan backbone biosynthesis, and mu-
tations in each gene lead to reduced xylan content and
growth defect. By contrast, IRX9L, IRX10L and IRXI14L
seem to perform partially redundant roles together with
their close homologues, as loss-function of these genes
have no observable phenotypes and they only partially
complement the phenotypes of irx9, irx10 and irx14 mu-
tants. In addition, double mutations in each gene pairs
dramatically enhance the phenotypes of the single mutant
[13, 14, 18, 19]. However, a recent study proposed that
these gene pairs play equivalent roles in xylan biosynthesis
[20]. Furthermore, two members of DUF579 domain-
containing proteins, IRX15 and IRX15L, are essential for
the normal elongation of xylan backbone [21, 22]. IRX7/
IRX7L from GT47 family, IRX8 and PARVUS from GT8
family are required for the biosynthesis of the reducing
end oligosaccharide [5, 23-26]. Mutations in these genes
lead to almost entirely loss of the tetrasaccharide accom-
panied with reduced xylan contents, while the xylan back-
bone elongation activity is not disturbed [5, 23-26].

Recently biochemical and genetic studies have also led to
the identification of several genes that are required for the
sidechain modifications of xylan. For instance, GLUCUR-
ONIC ACID SUBSTITUTION OF XYLAN (GUX) 1,
GUX2, GUX4 and GUX5 from GT8 family are proposed to
catalyze the addition of GlcA and MeGIcA sidechains to
GX backbone [20, 27-29]. GLUCURONOXYLAN METH-
YLTRANSFERASE (GXMT) 1, a DUF579 domain protein,
has been revealed to be responsible for the 4-O-
methylation of GIcA residues in GX [30]. In addition,
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ESKIMO1/TRICHOME BIREFRINGENCE-LIKE (TBL)
29, a DUF231 domain protein, is required for the O-
acetylation of xylan backbone [31, 32]. Moreover, several
XYLAN ARABINOSYLTRANSFERASE (XAT), members
of GT61 family proteins from rice and wheat, are respon-
sible for transferring the Ara residues onto xylan backbone
[33, 34]. XYLOSYL ARABINOSYL SUBSTITUTION OF
XYLAN (XAX) 1, another member from GT61 family in
rice, is involved in transferring the Xyl residues in f-Xylp-(1
— 2)-a-Araf -(1 — 3) sidechain [34].

Grass xylans have several unique features compared to
those from dicots. GX is the most abundant hemicellu-
lose in dicots, while grass xylans usually contain many
Ara residue substitutions and thus are termed as GAX
or AX [3]. Even though there are clear differences in xy-
lan structure between grasses and dicots, accumulating
evidence implicates that GT43 members are functionally
conserved in xylan biosynthesis between dicots and
monocots. For example, four rice IRX9 orthologues
OsGT43A, OsGT43C, OsGT43E and OsGT43F can fully
or partially rescue the xylan defect phenotype of irx9,
while OsGT43] is able to complement the xylan defect
phenotype of irx14 in Arabidopsis [35, 36]. Three poplar
IRX9 orthologues PtrGT43A, PtrGT43B and PtrGT43E
are capable of rescuing the defects of irx9, whereas the
other two IRX14 orthologues PtrGT43C and PtrGT43D
are able to complement the phenotypes of irx14 [37].
Furthermore, it has been demonstrated that rice and
poplar GT43 family proteins are evolved to retain two
functionally non-redundant groups involved in xylan
backbone biosynthesis [36—38]. Additionally, two GT43
members GhGT43A1 and GhGT43CI from cotton have
been revealed to be functional orthologues of Arabidop-
sis IRX9 and IRX14, respectively, and have been shown
to participate in xylan backbone biosynthesis during
fiber development [39].

Miscanthus is a perennial rhizomatous grass with su-
perior characteristics as a bioenergy plant such as high
photosynthetic efficiency, low fertilizer and water de-
mand, wide adaptability and high biomass yield. It has
attracted increasing attention and concern worldwide as
an ideal lignocellulosic feedstock for next-generation
bioenergy production [40—42]. Hemicelluloses account for
29-42 % of the Miscanthus cell walls [43], and the most
abundant hemicellulosic polysaccharide is AX [43, 44],
which is also the typical xylan in grass cell walls [45]. It
has been shown that hemicellulose exerts dominant and
positive effects on biomass digestibility by affecting
cellulose crystallinity after pre-treatment with alkali or
acid [46]. Although much progress has been gained in
the understanding of xylan biosynthesis in the model
plant Arabidopsis thaliana, relatively less is known
about xylan biosynthesis in grasses. To the best of
our knowledge, none of GTs responsible for the
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biosynthesis of xylan has been isolated and character-
ized in Miscanthus as yet.

To provide insight into xylan biosynthesis in AMis-
canthus, we identified seven GT43 genes in M. lutariori-
parius and characterized their functional roles in xylan
biosynthesis. Complementation assay including plant
height, irregular xylem cells in stem cross sections and
xylose content measurements revealed that MIGT43
genes have evolved into two distinct functional groups,
in which MIGT43A-E are orthologous to IRX9, while
MIGT43F and MIGT43G are orthologous to IRX14.
Furthermore, our results indicated that substantial diver-
gence has occurred in the functional roles of MIGT43s
during xylan biosynthesis especially in seed coat muci-
lage. The results presented deepened our understanding
of xylan biosynthesis in grasses and may lay the founda-
tion for future genetic manipulation of Miscanthus cell
wall structure and components.

Results

Isolation of GT43 genes in M. lutarioriparius

To identify the GT43 family in M. lutarioriparius, the
amino acid sequences of four Arabidopsis GT43 members
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were used as query baits to BLAST against the draft gen-
ome sequences of M. l[utarioriparius, and seven GT43
orthologous genes were identified. Specific primers were
designed and seven candidate genes encoding putative
GT43 proteins designated as MIGT43A to MIGT43G were
obtained by PCR in M. lutarioriparius. As indicated in
Fig. 1a, all seven proteins had a conserved structure and
ranged in size from 358 to 451 amino acids. Pairwise com-
parison of the amino acid sequences showed that
MIGT43C and MIGT43D shared the highest sequence
similarity (75.3 %), while MIGT43D and MIGT43G shared
the lowest sequence similarity (43.3 %) (Fig. 1b).

Deduced MIGT43A and MIGT43B amino acid se-
quences shared the highest sequence identities with Ara-
bidopsis IRX9 (37 and 41 %), and MIGT43C-E shared
relatively higher sequence identities with IRX9L (42, 48
and 53 %) than with IRX14 or IRX14L. By contrast,
MIGT43F and MIGT43G proteins had the highest se-
quence identities with IRX14 and IRX14L (59 and 37 %)
than with IRX9 (Additional file 1: Table S1).

Furthermore, the gene structure of each MIGT43 was
obtained through the alignment of their coding sequences
and genomic sequences (Fig. 1c). All MIGT43 genes
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shared very similar gene structure in terms of intron
number and exon length. They all contained three
exons and two introns. In addition, the intron phases
with respect to codons were well conserved among
different MIGT43 genes.

Phylogenetic analysis of GT43 members from

M. lutarioriparius and other plant species

To gain insight into the origin and evolutionary history of
the GT43 family, we further identified GT43 proteins from
nine other currently sequenced genomes that cover a wide
spectrum of plant taxonomic groups including moss (Phys-
comitrella patens), spikemoss (Selaginella moellendoriffii),
the monocot angiosperms (Oryza sativa, Brachypodium
distachyon and Sorghum bicolor), and the dicot angio-
sperms (Arabidopsis thaliana, Populus trichocarpa, Medi-
cago truncatula and Vitis vinifera). Totally 57 GT43
proteins were identified from these nine plant species
(Additional file 2) and a phylogenetic tree was constructed
with these GT43 proteins (Fig. 2a). The phylogenetic tree
separated all GT43 proteins into three distinct subfamilies
designated as IRX9, IRX9L and IRX14/IRX14L, which was
similar to the previous studies [13, 38]. The seven GT43
proteins from Miscanthus were classified into the three
subfamilies. MIGT43A and MIGT43B were clustered into
the IRX9 subfamily, MIGT43C-E were classified into the
IRX9L subfamily, while MIGT43F and MIGT43G were dis-
tributed into the IRX14/IRX14L subfamily.

The distribution of the three subgroups among the ten
plant species varied within each subfamily (Fig. 2b). It is
noteworthy that the number of GT43 proteins in the
monocot species seems to be higher than that of the
dicot species, at least it is the case for the selected plant
species. For example, there were 10, 10, 10 and 7 mem-
bers in the monocot species O. sativa, B. distachyon,
S. bicolor and M. lutarioriparius, whereas the number
of GT43 in the dicot species A. thaliana, P. tricho-
carpa, M. truncatula and V. vinifera were 4, 7, 4 and
4, respectively. In addition, the members of IRX9 and
IRX9L subfamilies in the monocot angiosperms were
generally higher than those of the dicot species. For
instance, the IRX9 subfamily accounted for 40, 40, 40 and
28 % in the monocot species O. sativa, B. distachyon,
S. bicolor and M. lutarioriparius, respectively, whereas
the percentages of the IRX9 subfamily in the dicot
species A. thaliana, P. trichocarpa, M. truncatula and
V. vinifera were 25, 25, 28 and 25 %, respectively.
Noticeably, no IRX9 subfamily members were present
in P. patens and S. moellendorffii.

MIGT43 genes are ubiquitously expressed and have
specific expressions in stem cells

To investigate the expression patterns of MIGT43
genes, we first used the quantitative real-time RT-PCR
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(qRT-PCR) to examine their expressions across seven dif-
ferent tissues. As shown in Fig. 3a, all seven MIGT43
genes were ubiquitously expressed in seven different
tissues examined, but their relative expression levels dif-
fered significantly. For example, MIGT43A, MIGT43D and
MIGT43E genes shared similar expression patterns with
predominant expressions in leaf, whereas the expressions
of MIGT43B and MIGT43G genes were relatively lower.
MIGT43C and MIGT43F genes were broadly expressed in
the majority of the tissues, while especially higher expres-
sions were detected in the basal stem. Furthermore, all
MIGT43 genes except MIGT43B exhibited higher expres-
sions in the basal stem than in the upper stem.

To obtain more detailed expression patterns of
MIGT43 genes in specific cell types, we further per-
formed the in situ hybridization analysis to examine
their expressions in the 11" internode of the stem. For
all seven genes, intense hybridization signals were ob-
served in sclerenchyma cells and vascular bundle fiber
cells, the cell types undergoing secondary wall thicken-
ing (Fig. 3b-h). Moreover, relatively weak hybridization
signals were also observed for MIGT43C-E in paren-
chyma cells. By contrast, the control hybridized with
sense probes did not show any signals in vascular bundle
or sclerenchyma cells (Fig. 3g). These results suggest
that MIGT43 genes may participate in diverse plant de-
velopment processes especially in the secondary cell wall
formation.

MIGT43 members are targeted to Golgi apparatus

To investigate the subcellular localization of MIGT43
proteins, we constructed fluorescently tagged fusion pro-
teins by fusing Yellow Fluorescent Protein (YFP) to the
C terminus of each MIGT43 protein. The recombinant
constructs were transiently co-expressed in Nicotiana
benthamiana leaf epidermal cells with the Golgi marker
Man49-mCherry [47]. Examination of the fluorescent
signals revealed that seven YFP-tagged MIGT43s all ex-
hibited a punctate distribution, and the pattern perfectly
matched with that of Man49-mCherry (Fig. 4), whereas
the YFP control protein had signals throughout the cyto-
plasm and the nucleus (data not shown). The co-
localization of MIGT43 proteins with the Golgi marker
indicate that MIGT43s are Golgi-localized proteins.

MIGT43 genes rescue the morphological defects of irx9 or
irx14

To reveal whether MIGT43 genes perform the same
functions as IRX9 and IRX14 orthologues in Arabidopsis,
we examined their abilities to rescue the morphological
defects of irx9 and irx14. Due to the severely dwarfed
plant stature and poor fertility of homozygous irx9
plants [5], we used the heterozygous line for the trans-
formation with the 35S:MIGT43s constructs. Positive
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transgenic lines for each construct were tested for the
presence of MIGT43 genes in homozygous irx9 and
irx14 background by semi-quantitative RT-PCR (Fig. 5a).
Homozygous T2 plants from at least two independent
transformants with higher expressions were used for the
phenotypic analyses.

The growth of the irx9 plants was characterized by the
dwarf stature, smaller rosette size and dark-green leaves
under our growth conditions, which is similar to the
previous reports [5, 12]. Overexpression of MIGT43A-E
genes in irx9 displayed an intermediate growth pheno-
type between the mutant and the wild type (WT) in
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Fig. 3 Expression patterns of MIGT43 genes. a Expression analysis of MIGT43 genes by gRT-PCR. Relative expression levels in seven tissues were
normalized using MIACT11 as the reference gene. For each gene, the tissues with the lowest expression level are set to 1. Data are the means + SE of
three biological replicates. b In situ localization of MIGT43 genes in Miscanthus stem. Cross-sections of stems were hybridized with digoxigenin-labeled
antisense MIGT43A (b), MIGT43B (c), MIGT43C (d), MIGT43D (e), MIGT43E (f), MIGT43F (g), MIGT43G (h), or sense (i) RNA probes, and the hybridization
signals were detected with alkaline phosphatase-conjugated antibody and were shown as purple color. pv, pitted vessel; x, xylem; ph, phloem;
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terms of rosette size and inflorescence height. The ros-
ette diameters of the complemented plants increased by
two- to three-fold, and the inflorescence stems were
two- to four-fold taller compared to the irx9 plants after
four weeks of growth (Fig. 4b, d), suggesting that the irx
phenotype may be partially complemented in these
transformants. By contrast, transformants of MIGT43F
or MIGT43G overexpression in irx9 mutant exhibited a

morphology resembled of the irx9 mutant, indicating
that MIGT43F and MIGT43G were unable to comple-
ment the irx9 phenotypes (Fig. 4b, d, f).

The growth of irx14 mutant did not show any other
obvious phenotypes except for a slight reduction in
plant height compared to WT (Fig. 4c, e) as described
previously [14]. The height of all M/GT43 complemen-
ted irx14 plants was indistinguishable from that of
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Fig. 4 Subcellular localization of YFP-tagged MIGT43 proteins. YFP-tagged MIGT43 proteins were transiently expressed in leaf epidermal cells of
Nicotiana benthamiana, and their subcellular locations were examined with a laser scanning confocal microscope. The single-plane confocal
micrographs of MIGT43 proteins fused with C-terminal YFP, the Golgi marker Man49-mCherry, differential interference contrast (DIC) image, and
merged YFP and mCherry channels are shown. Note the superimposition of YFP-MIGT43s and Man49-mCherry signals. Bar = 20 um

irx14 or WT plants, thus it is hard to evaluate the abil-
ity of seven MIGT43 genes to complement the irx14
mutant merely judged from their growth phenotypes.
Subsequently, xylem morphology, xylan immunolocal-
ization and cell wall monosaccharide compositions will
be further examined in the transgenic plants to deter-
mine the abilities of MIGT43s to complement the irx14
phenotypes.

Microscopic analysis of the secondary cell wall

To demonstrate whether the morphological complemen-
tation by MIGT43 genes could be accompanied with the
rescue of xylem morphology, the basal inflorescence
stems of each complemented line were sectioned and
observed by light and transmission electron microscopy.
Toluidine blue O (TBO) staining was performed on
stem sections of WT, irx9, irx14 and complemented
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Fig. 5 Expression of seven MIGT43 genes in Arabidopsis irx9 or irx14 mutants. a RT-PCR detection of the MIGT43 transcripts in the complemented
irx9 or irx14 plants. The Arabidopsis UBQ10 gene was used as a reference. b, d, f Phenotype of four-, six- and eight-week-old soil-grown WT, irx9
and MIGT43s complemented irx9 plants. ¢, e, g Phenotype of four-, six- and eight-week-old soil-grown WT, irx14 and MIGT43s complemented irx14
plants. h Stem height of the WT, irx9 and MIGT43s complemented irx9 plants through 40, 47, 57 days of growth. i Stem height of the WT, irx74
and MIGT43s complemented irx14 plants through 40, 47, 57 days of growth. Data are means + SD from at least twelve plants for each background.
Two homozygous T3 lines of MIGT43s complemented irx9 or irx14 were used in the analysis
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plants to examine the morphology of secondary cell
walls. As shown in Fig. 6, all MIGT43A-E complemented
irx9 plants exhibited dramatically thickened cell walls in
interfascicular fibers compared to irx9. The majority of
xylem vessels in MIGT43A and MIGT43B complemen-
ted irx9 plants were characterized by large open round
cells comparable to those in WT plants (Fig. 6C1, D1, L1,
M1). In addition, the xylem vessels of MIGT43C,
MIGT43D or MIGT43E complemented irx9 plants were
usually smaller in size with occasionally irregular shapes,
probably due to the not fully thickened cell walls
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compared to WT (Fig. 6 E1-G1, N1-P1). By contrast, over-
expression of MIGT43F or MIGT43G in irx9 could not re-
store the collapsed vessels and the weakly thickened
interfascicular fibers in irx9 (Fig. 6 H1, I1, Q1, R1), which
is in consistency with their growth phenotypes (Fig. 5b, d).

The homozygous irx14 plants also showed collapsed
xylem vessels and thinner secondary cell walls, which is
consistent with the previous study [15]. Overexpression of
either MIGT43F or MIGT43G could almost fully rescue
the irx phenotype of irx14 as witnessed by a relatively less
irregular vessel cells compared to irvi4. However, the

B2 iC2

inc14+MIGT43A

irx14+MIGT43B irx14+MIGT43D

H2 12

irx14+MIGT43E irx14+MIGT43F irx14+MIGT43Gy

Fig. 6 Morphology of xylem and interfascicular fibers of WT, irx9, irx14 and MIGT43 complemented plants. Stems of eight-week-old plants were
sectioned (8 pm-thick) and stained with TBO for examination of the morphology of vessels, xylary fibers and interfascicular fibers. A1-11, interfasicular
fibers for WT, irx9 and MIGT43 complemented irx9 plants. A2-12, interfasicular fibers for WT, irx14 and MIGT43 complemented irx14 plants. J1-R1, xylary
fibers and vessels for WT, irx9 and MIGT43 complemented irx9 plants. J2-R2, xylary fibers and vessels for WT, irx14 and MIGT43 complemented irx14
plants. At least two homozygous T3 lines of MIGT43s complemented irx9 or irx14 were used in the analysis. Images for each tissue are set as the same
magnification. Bar = 50 um
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complemented lines still retained relatively thinner cell
walls in both interfascicular fibers and xylem vessels com-
pared to WT (Fig. 6 H2, 12, Q2, R2). By contrast, overex-
pression of MIGT43A-E in irx14 displayed a collapsed
xylem vessel and thinner fiber cell wall phenotype that
was indistinguishable from the irx14 mutant (Fig. 6 C2-
G2, L2-P2), indicating that MIGT43A-E genes could not
rescue the defects of irx14.

Transmission electron microscopy confirmed that the
thickness of interfascicular fiber cell walls of the
MIGT43A-E complemented irx9 plants was intermediate
between irx9 and WT (Fig. 7a and Table 1). Meanwhile,
the wall thickness of xylary fibers and vessels in
MIGT43A-E complemented irx9 lines was also signifi-
cantly increased but not restored to the WT level. By
contrast, the wall thickness of interfascicular fibers,
xylary fibers and vessels of MIGT43F or MIGT43G com-
plemented irx9 plants was similar to that of the irx9
mutant (Fig. 7a and Table 1). The wall thickness of inter-
fascicular fibers, xylary fibers and vessels for MIGT43F
or MIGT43G complemented irx14 plants was intermedi-
ate between irx14 and WT, while the wall thickness for
MIGT43A-E complemented irx14 lines was similar to
that of irx14 (Fig. 7b and Table 1). Together, these
results indicate that MIGT43A-E can fully or partially
rescue the irx9 but not the irx14 phenotypes, while
MIGT43F and MIGT43G can complement the irx14 but
not the irx9 defects.

Immunolocalization of xylan in MIGT43s complemented
lines

To investigate whether the phenotypes of the complemen-
ted plants are correlated with xylan deposition in second-
ary cell walls, we performed immunolocalization of xylan
using the xylan-directed monoclonal antibody LMI10,
which recognizes unsubstituted or low-substituted xylan
[48], to examine the distribution of xylan in the cell walls.
As indicated in Fig. 8, strong fluorescence signals were
present in the cell walls of interfascicular fibers and xylem
cells in the WT stem, however, relatively weaker signals
were detected in the corresponding tissues of the irx9
plants, although the overall pattern of labeling was un-
changed compared with the WT plants (Fig. 8 Al, B1). In
MIGT43A and MIGT43B complemented irx9 lines, the in-
tensity of fluorescence signals was almost restored to the
WT level, and the overall pattern of labeling was almost
identical to that of WT, indicating that the GX content in
interfascicular fibers and xylem cells was nearly restored
to the WT level (Fig. 8 C1, D1). The LM10 signals in the
MIGT43C-E complemented irx9 plants were intermediate
between irx9 and WT plants (Fig. 8 E1-G1). By contrast,
the LM10 signals for MIGT43F and MIGT43G comple-
mented irx9 lines were relatively weaker compared with
the others, and the intensity was comparable to that of the
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irx9 mutant (Fig. 8 H1, I1). As for the irx14 background,
the intensity of fluorescence signals of MIGT43F and
MIGT43G complemented lines was comparable to that of
WT in xylem cells and interfascicular fibers (Fig. 8 H2,
12). By contrast, MIGT43A-E complemented irx14 lines
exhibited nearly equal signal intensity to the irxI4 mutant
(Fig. 8 C2-G2). These results indicate that MIGT43A-E
perform a similar biochemical function as IRX9, whereas
MIGT43F and MIGT43G share a conserved biochemical
function with IRX14, thus leading to a restoration of nor-
mal xylan synthesis in their complemented plants.

Analysis of cell wall composition

To determine whether the complementation of xylem
morphology and xylan deposition is correlated with the
restoration of chemical composition, we measured the
monosaccharide composition, cellulose and lignin con-
tents of the transgenic lines. Monosaccharide composition
analysis was performed on cell wall preparations from
eight-week-old inflorescence stems of WT, irx9, irx14 and
MIGT43 complemented lines (Fig. 9). The xyl content in
irx14 was decreased by 40 % compared to W'T, whereas it
was decreased more dramatically in irx9, with only 21 %
of the WT. The transgenic plants overexpressing
MIGT43A and MIGT43B in irx9 significantly increased
the content of xyl to 73 and 82 % of the WT level, respect-
ively. A modest increase was also observed in the
MIGT43C-E complemented irx9 lines. However, no sig-
nificant increases in xyl content were observed in
MIGT43F or MIGT43G complemented irx9 lines com-
pared to irx9. Overexpression of MIGT43F and MIGT43G
in irx14 restored the xyl content to 92 and 83 % of the
WT, respectively. The xyl content of MIGT43A-E comple-
mented irx14 plants was individually increased by ap-
proximately 5 to 10 % compared to irx14.

In addition, mutations of irx9 and irx14 caused signifi-
cant reductions in cellulose and lignin contents
compared to WT. Not unexpectedly, overexpression of
MIGT43A-E but not MIGT43F and MIGT43G in irx9 re-
stored the contents of cellulose and lignin almost to the
WT level. Similarly, overexpression of MIGT43F and
MIGT43G but not MIGT43A-E in irx14 recovered the
levels of cellulose and lignin nearly to the WT level
(Additional file 3: Figure S1). These results further indi-
cate that MIGT43A-E but not MIGT43F-G can partially
restore the xylan biosynthesis in irx9, while MIGT43F-G
but not MIGT43A-E are able to rescue the xylan biosyn-
thesis defect in irx14, suggesting that MIGT43A-E are
orthologous to IRX9, while MIGT43F and MIGT43G are
orthologous to IRX14.

Transactivation assay for MIGT43 genes
SND1 (SECONDARY WALL-ASSOCIATED NAC DO-
MAIN PROTEIN 1), VND7 (VASCULAR-RELATED
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Fig. 7 Transmission electron micrographs of stem sections of WT, irx9, irx14 and MIGT43 complemented plants. Stems of eight-week-old plants

were cut into 70 nm-thick sections and observed with transmission electron microscope, indicating increased fiber and vessel wall thickness by
expression of MIGT43 genes. a, Transmission electron micrographs of stem sections of MIGT43 complemented irx9 lines. b, Transmission electron
micrographs of stem sections of MIGT43 complemented irx74 lines. At least two homozygous lines of MIGT43 complemented irx9 or irx14 were

used in the analysis. ve, vessels, xf, xylary fibers. Bar = 5 um
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Table 1 Cell wall thickness of fiber and vessel cells in the stems
of WT, irx9, irx14, and MIGT43s complemented plants

Interfascicular fiber Vessel Xylary fiber

(um) (um) (um)
WT 1.98 + 0.11 135+ 026 146 + 0.28
irx9 1.15£0.23 047 £0.10 059+0.18
ix9 + MIGT43A 1.66 £ 0.19 121 £0.10 123 £0.10
ix9 + MIGT43B 1.68 + 033 119 £ 0.14 1.23 £ 020
irx9 + MIGT43C 162 £0.25 097 £ 0.05 1.07 £ 0.15
ix9 + MIGT43D 136 £ 0.29 0.90 = 0.08 097 £ 0.20
ix9 + MIGT43E 140 +0.18 095 £ 0.19 093 +£0.14
irx9 + MIGT43F 126 +£0.18 062 + 0.14 063 +0.17
ix9 + MIGT43G 123 £026 059 +0.12 065 £ 0.11
irx14 149 + 0.25 0.98 + 0.08 1.01 £ 022
irx14 + MIGT43A 146 + 030 0.97 + 0.07 1.00 £ 0.19
irx14 + MIGT43B 147 £0.19 0.93 £ 030 095 £ 0.10
irx14 + MIGT43C 150+ 0.13 0.96 + 0.1 0.96 £ 0.15
irx14 + MIGT43D 146 + 024 095+ 0.13 097 £ 0.17
irx14 + MIGT43E 148 £ 0.21 097 £0.14 0.99 £ 0.13
irx14 + MIGT43F 153+ 013 1.04 £ 0.16 112+ 012
irx14 + MIGT43G 158 £ 0.11 110+ 017 120 £ 0.1

At least two independent transgenic lines for each construct were used for
measurement. WT, irx9, and irx14 were included for comparison. Eight-week-
old plants for each background were used for analysis. Wall thickness was
measured from transmission electron micrographs of fibers and vessels. Data
are means (um) + SE from 20 cells

NAC-DOMAIN 7) and MYB46 have been shown to act
as the master switches in the regulatory network of sec-
ondary cell wall biosynthesis [49]. To better understand
the underlying regulatory mechanism of MIGT43 genes,
we isolated the orthologues of SNDI, VND7 and MYB46

Page 12 of 19

in M. lutarioriparius and analyzed their transactivation
abilities on proMIGT43A-E:GUS reporters using a transi-
ent transactivation assay (Fig. 10). The results showed that
MIGT43A was transactivated by MISND1, MIMYB46a,
MIMYB46b and MIVND7. MIGT43B was also transacti-
vated by MISND1, MIMYB46a, but not by MIMYB46b
and MIVND?. By contrast, MIGT43C-E were not transac-
tivated by any effectors examined. These results indicate
that MIGT43A and MIGT43B genes are differentially reg-
ulated by SND1, MYB46 and VND? orthologues and there
probably exist other transcriptional factors regulating the
expression of MIGT43C-E genes besides the above effec-
tors examined.

None of MIGT43 genes could rescue the mucilage defects
of irx14 seeds
Since IRX14 has been shown to be responsible for the
synthesis of xylan in seed coat mucilage and mutations
in IRX14 lead to a defect in mucilage cohesiveness prop-
erty [50, 51], we sought to examine whether MIGT43
genes could rescue the mucilage defect of irxi4. The
seeds of MIGT43 complemented lines in irxI4 back-
ground were examined by ruthenium red staining
(Additional file 4: Figure S2). When seeds were imbibed
in water and subjected to gentle shaking, the seeds of
seven MIGT43 complemented irx14 lines all exhibited a
thin layer of mucilage phenotype similar to that of the
irx14 seeds. By contrast, the WT seeds have a much
thicker mucilage layer tightly attached to the seed. This
result indicated that none of MIGT43 genes could rescue
the mucilage defect of irx14.

We further determined the monosaccharide compos-
ition of seed mucilage for each complemented line. The
xyl content was dramatically reduced in irx14 mucilage as
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iXG+MIGT43E  ——

ixHMIGT43C ——

i GHMIGTA3F  —

ixS+MIGT43D  ——

irx14+MIGT438 —— i 14+MIGT43D ——

i 14+MIGT43C ——

ix14+MIGT43E —— i 14+MKSTA43F ——

Fig. 8 Immunolocalization of xylan using the monoclonal antibody LM10. Labelling was carried out on 8 um-thick transverse sections from stem
tissues of eight-week-old plants. A1-I1: xylan immumolocalization in WT, irx9 and MIGT43 complemented irx9 lines. A2-T2: xylan immunolocalization in
WT, irx14 and MIGT43 complemented irx14 lines. Signals were detected with Alexa Fluor488-conjugated secondary antibody and observed with a BX51
fluorescence microscope (OLYMPUS). Bar = 50 um
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previously reported [50, 51]. Not surprisingly, the xyl
content in seven complemented lines was comparable to
that of ire14 and not restored to the WT level (Additional
file 5: Figure S3), suggesting that none of MIGT43s could
synthesize the xylan in the seed coat mucilage.

Discussion

Much progress has been gained in xylan biosynthesis
mainly in the model species Arabidopsis. Several
GT43 family proteins have been revealed to partici-
pate in xylan backbone biosynthesis in secondary cell
walls [13, 19, 35-38]. By contrast, less knowledge re-
garding the biosynthesis of xylan is known in grass,
despite that xylan especially arabinoxylan is the major
hemicellulosic components in grass cell walls. In this
study, we identified seven G743 genes from M. lutar-
ioriparius and revealed that they are functional ortho-
logues of Arabidopsis IRX9 and IRXI14. Phylogenetic

analysis of GT43 proteins from nine representative
plant species and Miscanthus revealed that these pro-
teins were classified into three major clades, namely
IRX9, IRX9L and IRX14/IRX14L (Fig. 2). Noteworthy,
our results indicated that no IRX9 orthologues were
present in the lower plant species moss (P. patens)
and spikemoss (S. mellysellia). Moss has been demon-
strated to be capable of synthesizing glucuronoxylans
that are structurally similar to those present in the
secondary cell walls of higher plants [52]. The glucur-
onoxylans are mainly located in primary cell walls in
moss as no mechanical supporting tissues composed
mainly of secondary cell walls have been evolved. As
a basal vascular plant, spikemoss has evolved tissues
containing secondary cell walls. Xylans have been shown
to be one of the most abundant cell wall components in
spikemoss [53]. Since IRX9 has been shown to be mainly
responsible for the biosynthesis of xylans in secondary cell
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Fig. 10 Transactivation assay of the MIGT43A-E promoters by MISND1, MIMYB46a/b or MIVND?7. Diagrams indicate the effector and reporter
constructs used for transactivation analysis. The effector constructs contain the MISND1, MIMYB46a, MIMYB46b or MIVND7 cDNA driven by the 35S
promoter. The reporter constructs consist of the GUS reporter gene driven by the MIGT43A-E promoters. Transactivation ability was represented
by the relative GUS activities. The expression level of the GUS reporter gene in Arabidopsis leaf protoplasts transfected with no effector was used
as a control and was set to 1

walls [13, 19, 20, 35, 38, 54], the absence of xylans in sec-
ondary cell walls in moss may partially explain why no
IRX9 orthologues are present in moss genome. Thus, it
seems likely that vascular plants have evolved a specialized
isoform of IRX9, which is responsible for xylan biosyn-
thesis in secondary cell walls. However, this hypothesis
seems somewhat implausible because IRX9 orthologues
are also lacking in spikemoss. Together, these results indi-
cate that the specialization of IRX9 for xylan biosynthesis
in primary and secondary cell walls is not necessary for
the evolution of vascular tissue.

Although the qRT-PCR analysis revealed that MIGT43A
to MIGT43E in M. lutarioriparius exhibited broad expres-
sion patterns across the tissues examined, the in situ
hybridization analysis unambiguously indicated that Mis-
canthus IRX9 orthologues MIGT43A and MIGT43B were
preferentially expressed in cells undergoing secondary wall
thickening, while the IRX9L orthologues MIGT43C-E
were expressed in both parenchymal cells and scleren-
chyma cells (Fig. 3). In addition, IRX9 orthologues
MIGT43A and MIGT43B were both transcriptionally

regulated by MISNDI, MIMYB46a or MIVND?7, three
candidate transcriptional switches governing secondary
cell wall biosynthesis. By contrast, the Miscanthus IRX9L
orthologues (MIGT43C-E) were not significantly transacti-
vated by these transcription factors (Fig. 10). Similar re-
sults were reported for IRX9 orthologues in
Arabidopsis, rice (OsGT43A and OsGT43E) and poplar
(PtrGT43A and PtrGT43B), which were shown to be
highly expressed in tissues with abundant secondary
cell walls [13, 35, 38]. In addition, poplar IRX9 ortho-
logues (PtrGT43A and PtrGT43B) were transcription-
ally regulated by PtxtMYB021 (MYB46 orthologue)
and PNACO085 (SND1 orthologue), master transcrip-
tional switches involved in secondary cell wall forma-
tion [38]. Together, these results indicated that IRX9
orthologues are mainly involved in secondary cell wall
biosynthesis, and its roles are highly conserved in
angiosperm species.

In addition, the number of GT43 proteins in monocot
species seems to be higher than that of dicot species,
which was mainly due to a significantly expansion of IRX9
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and IRX9L members in monocot species (Fig. 2b). In di-
cots, such as Arabidopsis and poplar, xylan is predomin-
antly deposited in the secondary cell walls, whereas there
is very limited amounts of xylan in the primary cell walls.
By contrast, the monocot species including rice and Mis-
canthus have abundant amounts of xylan in both primary
and secondary cell walls. This could partially explain why
the number of IRX9 and IRX9L orthologues are over-
presented in monocots compared with dicots.

Phylogenetic analysis also indicated that ancestral
IRX9 orthologues emerged after the specification of the
higher plants (Fig. 2a). In addition, IRX9 may possibly
evolve from its IRX9L homologue through the duplica-
tion events during the evolutionary process as they share
very high sequence identities [13, 38]. The functional di-
versification of IRX9 orthologues may be due to their ex-
pression specificities and their abilities to respond to the
key transcriptional factors involved in secondary wall
formation (Fig. 10). The different cis-regulatory elements
present in the promoter of Miscanthus IRX9 and IRX9L
orthologues may explain their functional divergences to
some extent (Additional file 6: Table S2). In other words,
Miscanthus IRX9 orthologues may have evolved to gain
some key cis-regulatory elements, which confers their
specific functions in xylan biosynthesis during secondary
cell wall formation.

In Arabidopsis, IRX9 and IRX14 play independent
roles in xylan biosynthesis, since the phenotypes of irx9
mutant cannot be rescued by the overexpression of
IRX14 or IRX14L and vice versa [13, 19]. In addition,
IRX9 and IRX14 are proposed to play dominant roles,
whereas their homologues IRX9L and IRX14L are indi-
cated to play partially redundant or minor roles in xylan
backbone biosynthesis [13, 14, 19]. Contrary to this as-
sumption, a recent study proposed that IRX9L and
IRX14L play equally important roles with IRX9 and
IRX14 in xylan biosynthesis [20]. The seven GT43
orthologues in Miscanthus were classified into three
major subclades namely IRX9, IRX9L and IRX14/IRX14L.
All five Miscanthus IRX9 and IRX9L orthologues
(MIGT43A-E) could nearly fully or partially complement
the phenotypes of irx9, while none of these genes could res-
cue the phenotypes of irx14. Similarly, two Miscanthus
IRX14 and IRX14L orthologues (MIGT43F and MIGT43G)
were able to rescue the phenotypes of irxI4 but not irx9.
These results indicated that GT43 genes have been evolved
into two functional groups in Miscanthus, and the func-
tions between the members in IRX9/IRX9L and IRX14/
IRX14L groups have been diversified substantially. Likewise,
the involvement of two distinctly functional groups of
GT43 genes in xylan biosynthesis seems to be highly con-
served in different plant species. For example, the rice
orthologues of IRX9 (OsGT43A and OsGT43E) were able
to rescue the phenotypes of irx9 but were not able to
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complement those of irx14. By contrast, the IRX14 ortholo-
gue OsGT43] was able to complement the irxI4 pheno-
types but unable to rescue those of irx9. Similarly, the
poplar IRX9 orthologues (PtrGT43A, PtrGT43B and
PtrGT43E) were able to rescue the xylan defects of irx9 but
could not complement those of irx14, whereas the IRX14
orthologues (PtrGT43C and PtrGT43D) were capable of
rescuing the defects of irx14 but not those of irx9.

Xylans are typically substituted with a-1-Araf residues
at C2- and/or C3-position in arabinoxylans (AX) and
less frequently with GlcpA and/or 4-O-Me-GlcpA side-
chains at C2- position in glucuronoarabinoxylans (GAX)
in grasses [3, 4]. AX is the major xylan in Miscanthus
and the degree of Araf substitution positively affects the
lignocellulose saccharification under various pretreat-
ments [44, 45]. AX is also the major xylan of the seed
mucilage in psyllium (Plantago ovata) [55]. During Ara-
bidopsis seed differentiation, the seed coat epidermal
cells synthesize and secrete large amounts of mucilage,
which encapsulated the seed upon imbibition. Although
the Arabidopsis seed coat mucilage are primarily com-
posed of pectic RG I, minor amounts of xylan are also
present in the mucilage and play an important role in
maintaining the structure of seed coat mucilage [50, 51].
Unlike the typical xylan in dicot secondary cell walls,
mucilage xylan has a unique structure with frequent
substitutions with Xyl rather than with GIcA or Ara resi-
dues [50, 51]. IRX14 has been revealed to be responsible
for the biosynthesis of xylan in Arabidopsis mucilage
and loss function lead to a mucilage cohesiveness defect
[50, 51]. It is noteworthy that none of the MIGT43 genes
could be able to complement the irx14 mucilage defect
(Additional file 4: Figure S2), suggesting that MIGT43s
could not synthesize the mucilage xylan, which is in-
volved in maintaining the structure of seed coat muci-
lage (Additional file 5: Figure S3). The reason might due
to the fact that mucilage xylan is structurally different
from that of the stem secondary walls, and the func-
tions of Miscanthus GT43 proteins have diversified
from those of Arabidopsis orthologues during the
evolutionary process. Similarly, there is also lines of
evidence highlighting that mucilage xylan biosynthesis
is diversified in different plant species. For example,
IRX10 but not IRX9 or IRX14 might be responsible
for the synthesis of the xylan backbone in psyllium
mucilage because IRX10 orthologues were highly pre-
sented in psyllium mucilage, while relatively very
lower transcripts of IRX9 and IRX14 were detected in
a transcriptome analysis [55].

Conclusion

In this study, we functionally identified seven GT43
genes from M. lutarioriparius. Our results provided the
first line of genetic evidence demonstrating that
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Miscanthus has evolved to retain two functionally non-
redundant groups of GT43 genes involved in xylan bio-
synthesis. MIGT43A-E are functional orthologues of
IRX9, while MIGT43F and MIGT43G are functional
orthologues of IRX14. Nevertheless, functional diver-
gence of IRX14 orthologues in M. [utarioriparius has
occurred as none of MIGT43 genes could rescue the
mucilage defects of irx14 seeds. Furthermore, MIGT43A-E
were differentially regulated by SNDI, MYB46 or VND7
orthologues, the putative key regulators in secondary cell
wall formation. The results obtained deepen our under-
standing of xylan biosynthesis in Miscanthus. Understand-
ing how xylan polymers are synthesized may lay a
foundation for the genetic modification of Miscanthus to
be better suited for various economically important appli-
cations, including the more efficient utilization of xylan
for biofuel production.

Methods

Plant materials and growth conditions

The M. lutarioriparius used in this study was provided
by Shanghai Institute for Biological Sciences of the
Chinese Academy of Sciences. The plants were clonally
propagated by young rhizomes in greenhouse under 16
h light/8 h dark photoperiod at 25-28 °C.

T-DNA insertion mutants irx9 (SALK_058238) and
irx14 (SALK_038212) were obtained from the Arabidop-
sis Biological Resource Center (ABRC). Seeds were sur-
face sterilized and sowed on 1/2 MS plate. After
stratified at 4 °C for 3 d, the plates were transferred to
the growth chamber and germinated at 21 °C under 16 h
light/8h dark photoperiod. Homozygous T-DNA inser-
tions were identified by PCR of genomic DNA. The
primers are listed in Additional file 7: Table S3.

RNA isolation and Quantitative real-time RT-PCR
(gRT-PCR) analysis

The total RNA was isolated from root, rhizome, stem,
leaf and sheath of M. lutarioriparius using Trizol re-
agent (Invitrogen), then treated with RNase-free DNasel
(Promega) to remove genomic DNA contamination.
First-strand ¢cDNA was synthesized using M-MLV re-
verse transcriptase (TaKaRa, Japan) according to the
manufacturer’s instructions. The cDNAs were used as
templates for qRT-PCR with gene-specific primers
(Additional file 7: Table S3). The qRT-PCR was carried
out using LightCycler® 480 detection system (Roche)
with SYBR® Premix Ex Taq II (TaKaRa). MIACTI11 was
used as an internal control.

Identification of MIGT43 genes

The Arabidopsis GT43 proteins (IRX9, IRX9L, IRX14
and IRX14L) were used as baits to search against the
draft genome sequence of M. lutarioriparius (Lu et al,
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unpublished data). Specific primers were designed to
isolate the full length MIGT43 ¢cDNAs (Additional file 7:
Table S3). The PCR products were purified, cloned
into pMD19-T vector (TIANGEN) and sequenced.
The exon/intron organization was illustrated with Gene
Structure Display Server (GSDS) program (http://
gsds.cbi.pku.edu.cn/) by alignment of the cDNAs with
their corresponding genomic DNA sequences [56].

Phylogenetic analysis of GT43 family from other plant
species

GT43 family protein sequences from nine other species
including moss (P. patens), spikemoss (S. moellendorffii),
monocot angiosperms (O. sativa, B. distachyon and
S. bicolor), and dicot angiosperms (A. thaliana, P. tricho-
carpa, M. truncatula and V. vinifera) were obtained using
BLASTP search against PhytozomelO database (https://
phytozome.jgi.doe.gov/). Phylogenetic analysis was per-
formed with MEGA6.0 by the Neighbor-Joining (NJ)
method with 1000 bootstrap replicates with default
parameters [57].

In situ mRNA hybridization
For the synthesis of antisense and sense probes, ~200 bp
fragments of MIGT43A-G were amplified by PCR with
their corresponding primers (Additional file 7: Table S3)
and cloned into the pGM-T vector (TIANGEN). The
RNA probes were synthesized with the DIG RNA labelling
kit (Roche) according to the manufacturer’s instructions.
Miscanthus stem segments from the 11" internode were
fixed in FAA solution (70 % ethanol, 5 % formaldehyde
and 5 % acetic acid) at 4 °C overnight, followed by dehy-
dration in gradient ethanol series (10 % increments). The
samples were embedded in paraplast and cut into 8 pum-
thick sections. The sections were mounted onto slides,
and hybridized with DIG-labeled antisense or sense RNA
probes. Images were captured with the OLYMPUS BX51
microscope.

Subcellular localization

The co-localization of fluorescent protein-tagged
MIGT43A-G with the Golgi marker was examined
using the tobacco leaf transient expression system [58].
The full-length MIGT43 genes without a terminator
codon were amplified and fused with yellow fluorescent
protein (YFP) in pEarleyGatelO1 vector [59] via LR re-
combination reactions (Invitrogen). The proteins gener-
ated thus encode fusion proteins of MIGT43s with YFP
tagged at the C terminus. After 3 days post co-
infiltration of YFP fusion proteins and the Golgi marker
into tobacco leaves, leaf epidermal cells were examined
for yellow fluorescence signal using a FluoView FV1000
Laser Scanning confocal microscope (OLYMPUS)
equipped with 488 nm argon laser.
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Overexpression vector construction and complementation
The full-length ¢cDNA sequence of MIGT43s were ampli-
fied by PCR and ligated to the pGWC-T as described pre-
viously [60]. The products were sequenced and then
transferred into the pEarleyGate 100 vector [59] via LR re-
combination reaction (Invitrogen) to produce the 35S
CaMV overexpression constructs. The constructs were in-
troduced into Agrobacterium tumefaciens strain EHA105
by electroporation.

For complementation analysis, the overexpression
constructs were transformed into the Arabidopsis irx9
heterozygous or irx14 homozygous mutant via the floral
dip method [61]. Positive TO and T1 generation plants
were screened by spraying BASTA solution (50 mg/L)
onto one-week-old seedlings in soil. For irx9 comple-
mented lines, transformed seedlings were further geno-
typed with PCR to verify the homozygous T-DNA
insertions. Homozygous T3 transgenic lines were used
for further analysis.

Microscopy and immunolocalization analysis

Arabidopsis inflorescence stems were taken 0.5 cm
above the rosette of eight-week-old plants. Samples were
fixed in FAA solution, dehydrated via a series of ethanol
gradients, and embedded in paraplast. For light micros-
copy, 8 pum-thick sections were stained with 0.5 % (w/v)
toluidine blue O (Sigma-Aldrich) for 2 min and rinsed
with water. The sections were photographed with a
BX51 light microscope (OLYMPUS).

For the immunolabelling, sections were incubated with
the LM10 antibody (1/20 dilution) for 2 h, then washed
three times with phosphate-buffered saline, followed
by incubation with rabbit anti-rat Alexa Fluor488-
conjugated secondary antibody (1/100 dilution) in the
dark for 1 h. Images were captured using a BX51
light microscope (OLYMPUS) equipped with fluores-
cent light.

For transmission electron microscopy, samples were
embedded in Spurr’s resin. Ultra-thin sections (70 nm)
were viewed by a H-7650 electron microscope (HITA-
CHI). Cell wall thickness was measured in metaxylem
vessels and interfascicular fibres using the software
SmileView (JEOL). For each construct, at least three
transgenic lines with the most severe phenotypes were
examined.

Cell wall monosaccharide composition analysis

To prepare cell-wall alcohol-insoluble residues (AIR),
eight-week-old inflorescence stems from at least 20
independent plants were collected, frozen in liquid
nitrogen, and freeze-dried overnight using a lyophi-
lizer. For monosaccharide composition analysis, AIR
was hydrolyzed in 2 M trifluoroacetic acid for 2 h at
120 °C. The released monosaccharides were derived
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by 1-phenyl-3-methyl-5-pyrazolone (PMP) and the deriva-
tives were separated on a Thermo ODS-2 C18 column
(4.6 x 250 mm) connected to a Waters HPLC system.
The absorbance was monitored at 245 nm. Cellulose
content was assayed with the anthrone reagent ac-
cording to Updegraff [62]. Lignin composition was
determined using the acetyl bromide spectrophoto-
metric method as described [63].

Transcriptional activation analysis

The pBI221 vector was used to produce both effector and
reporter constructs. The MISNDI1, MIMYB46a/b and
MIVND? effector constructs were obtained by PCR using
Miscanthus stem cDNA as the template (Additional file 7:
Table S3). All effector constructs were individually ligated
between the CaMV 35S promoter and the NOS termin-
ator after removing GUS from the pBI221 vector. The
MIGT43A-E promoters were cloned by hiTAIL-PCR [64]
and ligated upstream of the GUS reporter gene after re-
moving the 35S promoter region of pBI221 to create the
reporter constructs.
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