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Abstract
In this paper, we characterize some matrix classes (ω(p, s),Vλ

σ ), (ωp(s),Vλ
σ ) and

(ωp(s),Vλ
σ )reg under appropriate conditions.

1 Introduction
Let w denote the set of all real and complex sequences x = (xk). By l∞ and c, we denote the
Banach spaces of bounded and convergent sequences x = (xk) normed by ‖x‖ = supk|xk|,
respectively. A linear functional L on l∞ is said to be a Banach limit [] if it has the following
properties:

() L(x)≥  if n≥  (i.e., xn ≥  for all n),
() L(e) = , where e = (, , . . .),
() L(Dx) = L(x), where the shift operator D is defined by D(xn) = {xn+}.
Let B be the set of all Banach limits on l∞. A sequence x ∈ �∞ is said to be almost con-

vergent if all Banach limits of x coincide. Let ĉ denote the space of the almost convergent
sequences. Lorentz [] has shown that

ĉ =
{
x ∈ l∞ : lim

m
dm,n(x) exists, uniformly in n

}
,

where

dm,n(x) =
xn + xn+ + xn+ + · · · + xn+m

m + 
.

The study of regular, conservative, coercive and multiplicative matrices is important in
the theory of summability. In [], King used the concept of the almost convergence of a
sequence introduced by Lorentz to define more general classes of matrices than those of
regular and conservative ones.
In [], Schaefer defined the concepts of σ -conservative, σ -regular and σ -coercive ma-

trices and characterized the matrix classes (c,Vσ ), (c,Vσ )reg and (l∞,Vσ ), where Vσ de-
notes the set of all bound sequences, all of whose invariant means (or σ -means) are equal.
In [], Mursaleen characterized the classes (c(p),Vσ ), (c(p),Vσ )reg and (l∞(p),Vσ ) of ma-
trices, which generalized the results due to Schaefer []. In [], Mohiuddine and Aiyup
defined the space ω(p, s) and obtained necessary and sufficient conditions to characterize
the matrices of classes (ω(p, s),Vσ ), (ωp(s),Vσ ) and (ωp(s),Vσ )reg.
Matrix transformations between sequence spaces have also been discussed by Savaş and

Mursaleen [], Basarir and Savaş [], Mursaleen [, –], Vatan and Simsek [], Savaş
[–], Vatan [] and many others.
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In this paper we characterize the matrix classes from this space to the space V λ
σ , i.e.,

we obtain necessary and sufficient conditions to characterize the matrices of classes
(ω(p, s),V λ

σ ), (ωp(s),V λ
σ ) and (ωp(s),V λ

σ )reg.

2 Preliminaries
Let σ be a one-to-onemapping from the setN of natural numbers into itself. A continuous
linear functional ϕ on l∞ is said to be an invariant mean or σ -mean if and only if

(i) ϕ(x)≥  when the sequence x = (xk) has xk ≥  for all k;
(ii) ϕ(e) = ;
(iii) ϕ(x) = ϕ(xσ (k)) for all x ∈ l∞.
Let Vσ denote the set of bounded sequences all of whose σ -means are equal. We say

that a sequence x = (xk) is σ -convergent if and only if x ∈ Vσ . For σ (n) = n + , the set Vσ

is reduced to the set ĉ of almost convergent sequences [, ].
If x = (xn), write Tx = (xσ (n)). It is easy to show that

Vσ =
{
x ∈ l∞ : lim

m
tmn(x) = L, uniformly in n;L = σ -limx

}
,

where

tmn(x) =


m + 

m∑
j=

Tjxn

and σm(n) denotes themth iterate of σ at n.
If pk is real and positive, we define (see Maddox [])

c(p) =
{
x : lim

k→∞
|xk|pk = 

}

and

c(p) =
{
x : lim

k→∞
|xk – l|pk =  for some l

}
.

The classes (ω(p, s),Vσ ), (ωp(s),Vσ ) and (ωp(s),Vσ )reg have been defined by Mohiuddine
and Aiyup [] and, for p = (pk) with pk > , the space ω(p, s) is defined for s≥  by

ω(p, s) =

{
x :


n

n∑
k=

k–s|xk – l|pk → ,n→ ∞ for some l, s≥ 

}
,

where s = (sk) is an arbitrary sequence with sk �=  (k = , , . . .). If pk = p, for each k, we
have ω(p, s) = ωp(s).
The sequence space

ω(p) =

{
x :


n

n∑
k=

|xk – l|pk → ,n→ ∞
}

for some l, which has been investigated by Maddox is the special case of ω(p, s) which
corresponds to s = . Obviously ω(p) ⊂ ω(p, s).
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We further define the following.
Let λ = (λm) be a non-decreasing sequence of positive numbers tending to ∞ such that

λm+ ≤ λm + , λ = .

A sequence x = (xk) of real numbers is said to be (σ ,λ)-convergent to a number L if and
only if x ∈ V λ

σ , where

V λ
σ =

{
x ∈ l∞ : lim

m→∞ tmn(x) = L, uniformly in n;L = (σ ,λ)-limx
}
,

tmn(x) =


λm

∑
i∈Im

xσ i(n),

and Im = [m – λm + ,m]. Note that c⊂ V λ
σ ⊂ l∞. For σ (n) = n + ,V λ

σ reduces to the space
V̂λ of almost λ-convergent sequences []; and if we take σ (n) = n +  and λm =m, then
V λ

σ reduces to ĉ (see []). Further, if we take λm =m, then V λ
σ reduces to Vσ .

If E is a subset of ω, then we write E+ for a generalized Köthe-Toeplitz dual of E; i.e.,

E+ =
{
a :

∑
k

akxk converges for every x ∈ E
}
.

If  < pk ≤ , then ω+(p) =M, where

M =

{
a :

∞∑
r=

max
r

{(
r ·N–) 

pk |ak|
}
< ∞ for some integer N > 

}
,

and max is the maximum taken over r ≤ k < r+ (see Theorem , []).
If X is a topological linear space, we denote by X∗ the continuous dual of X; i.e., the set

of all continuous linear functionals on X. Obviously,

[
ω(p, s)

]∗ =

{
a :

∞∑
r=

max
r

{(
r ·N–) 

pk

∣∣∣∣aksk
∣∣∣∣
}
<∞ for some integer N > 

}
.

3 Main results
Let X and Y be two nonempty subsets of the space w of complex sequences. Let A = (ank)
(n,k = , , . . .) be an infinite matrix of complex numbers. We write Ax = (An(x)) if An(x) :=∑

k ankxk converges for each n. (Throughout,
∑

k will denote summation over k from k = 
to k = ∞.) If x = (xk) ∈ X implies that Ax = (An(x)) ∈ Y , we say that A defines a (matrix)
transformation from X to Y and we denote it by A : X → Y . By (X,Y ) we mean the class
of matrices A such that A : X → Y .
We now characterize the matrices in the class (c(p),V λ

σ (p)). We write

tm,n(Ax) =
∑
k

a(n,k,m)xk ,

where

a(n,k,m) =


λm

∑
i∈Im

aσ i(n),k .
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Theorem . Let  < pk ≤ , then A ∈ (ω(p, s),V λ
σ ) if and only if

(i) there exists an integer B >  such that for every n

Dn = sup
m

∞∑
r=

max
r

(
r · B–) 

pk

∣∣∣∣a(n,k,m)
sk

∣∣∣∣ <∞;

(ii) α(k) = {ank}∞n= ∈ V λ
σ for each k;

(iii) α = {∑k ank}∞n= ∈ V λ
σ .

In this case the σ -lim of Ax is (limx)[u –
∑

k uk] +
∑

k ukxk for every x ∈ w(p, s), where
u = σ -lima and uk = σ -lima(k), k = , , . . . .

Proof Suppose thatA ∈ (ω(p, s),V λ
σ ). Define ek = (, , . . . , , , . . .) having  in the kth coor-

dinate sequence. Since e and ek are inω(p, s), necessity of (ii) and (iii) is clear.We know that∑
k a(n,k,m)xk converges for each m, n and x ∈ ω(p, s). Therefore (a(n,k,m))k ∈ ω+(p, s)

and

∞∑
r=

max
r

(
r · B–) 

pk

∣∣∣∣a(n,k,m)
sk

∣∣∣∣ < ∞

for each m, n (see []). Furthermore, if fmn(x) = tmn(Ax), then {fmn}m is a sequence of
continuous linear functionals on ω(p, s) such that limm tmn(Ax) exists. Therefore, by using
the Banach-Steinhaus theorem, the necessity of (i) follows immediately.
Conversely, suppose that the conditions (i), (ii) and (iii) hold and x ∈ ω(p, s). We know

that (a(n,k,m))k and uk are in ω+(p, s) and that the series
∑

k a(n,k,m)xk and
∑

k ukxk
converge for eachm, n. Write

c(n,k,m) = a(n,k,m) – uk .

Then

∑
k

a(n,k,m)xk =
∑
k

ukxk + l
∑
k

c(n,k,m) +
∑
k

c(n,k,m)(xk – l)

by (ii) for some integer k > , we have

lim
m

∑
k≤k

c(n,k,m)(xk – l) = , uniformly in n,

where l is the limit of x for x ∈ ω(p, s). Since

sup
m,n

∑
r
max

r

(
r · B–) 

pk
∣∣c(n,k,m)

∣∣ ≤ Dn,

lim
m

∑
k≤k

∣∣∣∣a(n,k,m) – uk
sk

∣∣∣∣∣∣sk(xk – l)
∣∣ = ,

uniformly in n, whence

lim
n

∑
k

a(n,k,m)xk – l · u +
∑
k

uk(xk – l). �
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Theorem . Let  ≤ pk <∞, then A ∈ (ωp(s),V λ
σ ) if and only if

(i) for every n

M(A) = sup
m

∑
r


r
p

(∑
r

∣∣∣∣a(n,k,m)
sk

∣∣∣∣
q) 

q
<∞,

where p– + q– = ;
(ii) α(k) ∈ V λ

σ for each k;
(iii) α ∈ V λ

σ .

Proof Assume that the conditions are satisfied and let x ∈ ωp(s). Then

∣∣tmn(Ax)
∣∣ ≤

∞∑
r=

∑
r

∣∣∣∣a(n,k,m)skxk
sk

∣∣∣∣ ≤
∞∑
r=

(∑
r

∣∣∣∣a(n,k,m)
sk

∣∣∣∣
q) 

q
·
(∑

r
|xk|p

) 
p
,

and hence tmn(Ax) is absolutely and uniformly convergent for eachm, n. Note that (i) and
(ii) imply that

∞∑
r=


r
p

(∑
r

|skuk|
) 

q
≤ M(A) <∞,

so that by Hölder’s inequality,
∑

k ukxk <∞. Now as in the converse part of Theorem .,
it follows that A ∈ (ωp(s),V λ

σ ).
Conversely, suppose that A ∈ (ωp(s),V λ

σ ). Since ek and e are in ωp(s), the necessity of (ii)
and (iii) is clear. For the necessity of (i), suppose that

tmn(Ax) =
∑
k

a(n,k,m)xk

exits for each n whenever x ∈ ωp(s). Then, for each n and r ≥ , write

fnr(x) =
∑
r
a(n,k,m)xk .

Then {fnr}m is a sequence of continuous linear functionals on ωp(s). Since

∣∣fnr(x)∣∣ ≤
(∑

r

∣∣∣∣a(n,k,m)
sk

∣∣∣∣
q) 

q
·
(∑

r
|sk · xk|p

) 
p

≤ 
r
p

(∑
r

∣∣∣∣a(n,k,m)
sk

∣∣∣∣
q) 

q
· ‖x‖,

it follows that for each n,

lim
j

j∑
r=

fmr(x) = tmn(Ax)

is in the dual space ω∗
p . Hence there exists a Kmn such that

∣∣∣∣a(n,k,m)
sk

∣∣∣∣ ≤ Kmn‖x‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/254
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For each n and any integer j > , define x ∈ ωp(s) as in [] (Theorem , p.), we get

j∑
r=


r
p

(∑
r

∣∣∣∣a(n,k,m)
sk

∣∣∣∣
q) 

q
≤ Kmn.

Hence, for each n,

∞∑
r=


r
p

(∑
r

∣∣∣∣a(n,k,m)
sk

∣∣∣∣
q) 

q
≤ Kmn <∞. (.)

Since tmn(Ax) is absolutely convergent, we get

∣∣tmn(Ax)
∣∣ ≤

∞∑
r=


r
p

(∑
r

∣∣∣∣a(n,k,m)
sk

∣∣∣∣
q) 

q
‖x‖,

so that

Kmn ≤
∞∑
r=


r
p

(∑
r

∣∣∣∣a(n,k,m)
sk

∣∣∣∣
q) 

q
. (.)

By virtue of (.) and (.),

Kmn =
∞∑
r=


r
p

(∑
r

∣∣∣∣a(n,k,m)
sk

∣∣∣∣
q) 

q
.

Finally, by (Theorem , [], p.) for every n, the existence of limm tmn(Ax) on ωp(s)
implies that

sup
m

Kmn = sup
m

∞∑
r=


r
p

(∑
r

∣∣∣∣a(n,k,m)
sk

∣∣∣∣
q) 

q
< ∞,

which is (i). �

Theorem . Let  < pk < ∞, then A ∈ (ωp(s),Vσ )reg if and only if conditions (i), (ii) with
σ -lim =  and (iii) with σ -lim = + of Theorem . hold.
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Savaş and Savaş Journal of Inequalities and Applications 2013, 2013:254 Page 7 of 7
http://www.journalofinequalitiesandapplications.com/content/2013/1/254

References
1. Banach, S: Theorie des Operations lineaires. Instytut Matematyczny Polskiej Akademi Nauk, Warsaw (1932)
2. Lorentz, GG: A contribution to the theory of divergent sequences. Acta Math. 80, 167-190 (1948)
3. King, JP: Almost summable sequences. Proc. Am. Math. Soc. 17, 1219-1258 (1966)
4. Schaefer, P: Infinite matrices and invariant means. Proc. Am. Math. Soc. 36, 104-110 (1972)
5. Mursaleen, M: Invariant means and some matrix transformations. Tamkang J. Math. 10, 181-184 (1979)
6. Mohiuddine, SA, Aiyup, M: Matrix transformations of strongly convergent sequences into Vσ . Filomat 24(3), 103-109

(2010)
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