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Abstract A stream validation system called SVALI is developed in order to continuously
validate correct behavior of industrial equipment. A functional data model allows the user
to define meta-data, analyses, and queries about the monitored equipment in terms of types
and functions. Two different approaches to validate that sensor readings in a data stream
indicate correct equipment behavior are supported: with the model-and-validate approach
anomalies are detected based on a physical model, while with learn-and-validate anomalies
are detected by comparing streaming data with a model of normal behavior learnt dur-
ing a training period. Both models are expressed on a high level using the functional data
model and query language. The experiments show that parallel stream processing enables
SVALI to scale very well with respect to system throughput and response time. The paper is
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based on a real world application for wheel loader slippage detection at Volvo Construction
Equipment implemented in SVALIL.

Keywords Data stream management - Distributed stream systems - Data stream
validation - Parallelization - Anomaly detection

1 Introduction

Traditional database management systems (DBMSs) store data records persistently and
enables execution of queries over the current state of the database on demand. This fits
well for business applications such as bank and accounting systems. However, in the last
decades, more and more data is generated in real-time, e.g. data from stock markets, real-
time traffic control, human internet interactions, sensors installed on machines, etc. Such
data continuously generated in real-time is called data streams. The rate at which data
streams are produced is often very high e.g. megabytes per second, which makes it infeasi-
ble to first store streaming data on disk and then query it. Furthermore, business decisions
and production systems rely on short response times so the delay caused by first storing the
data in a database before querying and analyzing it may be infeasible. For example, mon-
itoring the healthiness of different components in industrial equipment requires the system
to return the result within seconds. Data stream management systems (DSMSs), such as
AURORA (Abadi et al. 2003), STREAM (Motwani et al. 2002), and SCSQ (Zeitler and
Risch 2011), are designed to deal with this kind of applications. Instead of ad-hoc queries
over static tables, queries over streams are continuous queries (CQs) since they are running
until they are explicitly terminated and will produce a result stream as long as they are
active.

In order to deliver quality services for industrial equipment it should be continuously
monitored to detect and predict failures. As the complexity of the equipment increases, more
and more research is conducted to automatically and remotely detect the abnormal behavior
of machines (Namburu et al. 2006). Volvo Construction Equipment (Volvo CE) has installed
a component called automatic transmission clutches to monitor the health of the clutch
material of their LOOF wheel loaders. Various sensors measuring different signal variables
are installed on the L9OF machines and data from the sensors are delivered following the
CANBUS protocol (Canbus, http://en.wikipedia.org/wiki/CAN_bus), which is an industry
standard protocol to communicate with the data buses in engines and other machines. Sta-
tistical computations over the data are required in real-time to detect and predict anomalies
so that corresponding actions can be taken to reduce the cost of maintenance. Furthermore,
when the number of wheel loaders increases it is also important that the processing scales.

The Stream VALIdator (SVALI) system is a DSMS to efficiently validate anomalies of
measurements in data streams using CQs, e.g. to monitor correct behavior of equipment
such as Volvo CE wheel loaders. Such validation will involve defining as CQs more or
less complex mathematical models that identify and predict non-expected behaviors based
on streams of measurements from sensors installed in the equipment. The CQs are natu-
ral to express as formulas involving functions and variables over numerical entities such as
numbers and vectors, i.e. domain calculus, rather than the traditional tuple calculus based
relational database model where variables range over rows in tables. To facilitate complex
mathematical models over sensored numerical measurements, SVALI provides a functional
data model where CQs can be expressed as functions over sets, numbers, vectors, and
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streams. Variables in SVALI queries can be bound to objects from any domain, i.e. SVALI
queries are based on an object-oriented and functional domain calculus. SVALI provides
a library of built-in numerical vector and aggregate functions to build the models. To uti-
lize existing numerical libraries, SVALI is extensible by calling in queries foreign functions
written in regular programming languages such as C, Java, or Python.

Analyzing data streaming from sensors on industrial equipment requires low level inter-
faces capturing streaming measurements. In SVALI such interfaces can be defined as
foreign functions called data stream wrappers, which iteratively emit data stream elements
into the system. For example, the data stream wrapper for the sensors installed in the
Volvo CE wheel loaders is implemented as a C function that iteratively emits tuples of
measurements received from the equipment based on the CANBUS protocol.

The contributions of the paper are:

1. It is shown how a functional data model can be used for defining meta-data about
industrial equipment of different kinds. Numerical models are defined as functions that
determine expected measured values computed from streaming data, based on statistics
about the behavior of the monitored equipment. Validation models defined in terms of
functional meta-data identify deviations from expected behavior.

2. The monitored equipment is often geographically distributed. For example, Volvo CE’s
wheel loaders are operating at remote excavations sites in different parts of the world.
Therefore SVALI is a distributed DSMS where many SVALI peers communicating
over TCP/IP can be started up at different sites. Each peer produces reduced streams of
non-expected measurements, which are continuously emitted to a central SVALI server
where anomalies from many sites are collected, combined, and analyzed.

3. To provide security it is required that the SVALI server at the monitoring center is pro-
tected behind a firewall and that all monitored equipment is protected behind firewalls.
Therefore the software on-board the equipment connects to a SVALI server as a client
to register its data stream source. After the registration the on-board software starts
emitting stream elements to the server.

4. It is important that the system scales with the number of monitored machines and sites
while validation in real-time can be performed with low delays. To investigate the scala-
bility of the system, many instances of SVALI were run on a multi-core computer where
the number of received streams (i.e. number of monitored machines), their stream rates,
and the number of CQs were scaled.

The paper is organized as follows: Section 2 gives the motivating application scenario
from Volvo CE followed by a detailed description of the SVALI system in Section 3. In
Section 4 the anomaly detection algorithm used by Volvo CE is described followed by the
corresponding SVALI implementation. Section 5 evaluates the scalability of the SVALI sys-
tem. Section 6 presents related work and, finally, conclusions and future work are discussed
in Section 7.

2 Application scenario

In the construction equipment business breakdown of component parts may result in
unnecessary stops in machines, leading to customer dissatisfaction. To avoid unnecessary
stops and breakdowns, methods to continuously monitor the equipment components, thus
enabling proactive measures, predictive maintenance, or graceful degradations, are crucial
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to the business. The automatic transmission clutches of the heavy duty equipment is a com-
ponent whose failure may be costly, hence, an on-board condition monitoring of the clutches
based on real time sensor data is desirable.

In automatic transmission, multiple wet clutches are used as in Fig. 1. It consists of steel-
core friction discs, separator discs, two shafts, a piston, and automatic trans-mission fluid
(ATF), usually referred to as the lubricant (Miki 2003a). The ATF is the main difference
between a dry clutch and a wet clutch. The multiple wet clutch pack is integrated with an
electro-mechanical hydraulic actuator, which controls the engagement and disengagement
process (Ompusunggu et al. 2013). The components of the electro-mechanical hydraulic
actuator include a piston, a returning spring, a control valve, and an oil pump (Ompusunggu
et al. 2013).

The L9OF Wheel Loader was slightly modified to replicate clutch slippage by installing
manual needle valves on the pressure outlet for clutch one and two. The driving was carried
out on a steep uphill with one driver and with similar driving style. The monitored CANBUS
data are differential speed 1, differential speed 2, output speed, turbine torque, turbine speed,
and the gearshift parameters.

3 SVALI - Stream VALIdator

Figure 2 illustrates the architecture of the Stream VALIdator (SVALI) system.

In the figure data streams from different data sources are emitted to a SVALI monitoring
server. The monitoring server processes queries that transform, combine, and analyze data
from many different distributed data sources. Application programs access the monitoring
server to perform various analyses.

Each SVALI system manages its own main-memory SVALI darabase that contains an
ontology and local data. At each data source a site SVALI is running that manages data
local to the source. The SVALI database in the monitoring server contains a global ontology
describing meta-data about all kinds of monitored equipment, while the SVALI database at
each site contains a local ontology describing the particular monitored equipment.

One kind of data source is data streams from wheel loaders, which are streamed to the
monitoring server through a SVALI peer via a CANBUS interface. This kind of data source
producing online streams is called a streaming data source. A SVALI peer encapsulates a
streaming data source and a local ontology over which CQs are executed.

Another important kind of data source is CSV files containing logged data streams from
monitored equipment. Data streams logged in CSV files can be played-back by SVALI and
also streamed to the monitoring server.

7 / Separator Disc
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Friction Dise

:>O—.1:pu: torque

Fig. 1 A multiple wet clutch pack
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Fig. 2 The SVALI architecture

The ontologies are organized in three levels, as illustrated by Fig. 2. The equipment
model is a common meta-data model that describes general properties common to all kinds
of equipment, e.g. meta-data about sensor models and wheel loaders. The data source model
maps raw data from a particular kind of data source to the common meta-data model. The
validation model identifies anomalies in each kind of monitored equipment in terms of the
data source and common meta-data models.

For example, the data source model of wheel loaders, the wheel loader model, maps
data from raw data streams and log files into the common meta-data model. The validation
model of wheel loaders includes a statistical model that identifies clutch slippages based on
streams from sensors monitored through a CANBUS interface.

To handle computations in CQs that cannot be expressed as built-in functions, the SVALI
engine provides an algorithm plug-in mechanism. The plug-ins can be used to implement
specific algorithms, like indexing, computations, matching, optimization, and classification
functions in Java, Python, or C.

The applications are other systems accessing the monitoring server by sending CQs to it
through the SVALI external API. An application can be, e.g., a visualizer that graphically
displays data streams derived from malfunctioning equipment to indicate what is wrong,
a query formulator (Bauleo et al. 2014) with which CQs are constructed graphically, or a
stream logger that saves derived streams on disk.
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3.1 The functional data model of SVALI

SVALI is built on top of the functional database management system AMOS (Katchaounov
et al. 2003) extending it with stream primitives, windowing operators, and validation
functionality.

The basic primitives of SVALIs functional model are objects and functions. SVALI has
two kinds of objects, literal and surrogate objects, where literals are immutable objects
like numbers and string while surrogate objects are mutable objects represented by OIDs
(object IDs) managed by the system. Objects can also be collections, where one important
kind of collections in SVALI is called stream with the following properties: A stream is a
sequence of stream elements representing measurements where a time stamp defines when
the measurement was made. The stream elements are ordered by their time stamps, streams
are continuously extended, and can potentially be unbounded. A stream has a pace, which
is determined by the time stamps of the stream elements.

A query in SVALI defined as a select-from-where expression where variables can be
bound to objects from any domain and functions can be used in the condition.

Functions can be of three kinds:

Stored functions model attributes of entities and relationships between entities.
Derived functions define rules or views as queries over other functions. Derived func-
tions are similar to views in relational DBMS, but can be parameterized similar to
prepared queries in JDBC.

3. Foreign functions are parameterized functions defined in an external program-ming
languages such as C, Java, or Python.

[N

Functions returning a stream as result are called stream functions. A CQ is defined by
executing a query calling stream functions. To illustrate how regular queries and CQs can be
defined, consider the simplified global meta-database in Fig. 3 of the scenario in Section 2.

Fig. 3 Simplified equipment
meta-data schema @ @

machine

Sensor

ProducedStream
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In SVALTI’s data model entity types are defined as types while relationships and attributes
are functions. In Fig. 3 the entity types Machine and Sensor are defined as following:

create type Machine;

create function name(Machine) —> Charstring as stored;

create function description (Machine) —> Chartring as stored;
create function manufacturer (Machine) —> Charstring as stored;
create type Sensor;

create function name(Sensor) —> Charstring as stored;

create function onMachine(Sensor) —> Machine as stored;

A query is an expression select projection from bindings where condition, where bindings
specify the domains of variables, the condition is a predicate that specifies restrictions of
variable bindings, and the projection specifies the result tuples.

For example, the following query returns the names of all sensors installed on a machine
“L90F_A”:

select name(s) from Sensor s, Machine m
where onMachine(s) = m and name(m) = "LI0F_A";

The definition of a function is an expression create function signature as definition. The
signature is an expression fu(argtypes) — restypes specifying the types of the arguments
and results of the function named fn, while the definition specifies what kind of function it
is (stored, derived, or foreign) and how its values are computed. For a derived function the
definition is a query, while stored and foreign functions are defined by the keywords stored
and foreign, respectively.

For example, to be able run the same query with different machine names, one can define
the following derived function:

1 create function hasSensor (Charstring machineName)
—> Bag of Sensor

2 as select s from Sensor s, Machine m

3 where onMachine(s) = m and name(m) = machineName;

The function hasSensor returns a multi-set (bag) of sensors installed in machine
machineName. The query can thus be expressed as hasSensor(“L9OF_A”);

Here the signature hasSensors(Charstring machineName) — Bag of Sensor specifies
that the function has an argument of type Charstring while the result is a bag of objects
representing sensors. The implementation of the function on lines 2-3 specifies the result of
the function for given parameters as a query.

All functions modeling attributes of object are stored functions. Streams can also be
stored, for example:

create function producedStream (Sensor)
—> Stream of Vector of Number as stored;

The function producedStream returns a stream of vector of numbers, i.e. it is a stored
stream function. Here, what is stored is not the stream elements themselves, but code that
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generates the elements of the stream, i.e. by receiving them through the CANBUS-wrapper.
Queries can be defined on streams, for example,

producedStream (hasSensor (” L90F_A”));

The elements are retrieved as soon as the system can compute them. For example, the
elements of a raw data stream of the CANBUS are delivered at the same as the CAN-
BUS stream wrapper emits them. However, buffering, communication, and windowing may
distort the pace and cause bursty result delivery, so SVALI does not guarantee that the
measurements are returned in real-time at the same pace as the sources produce them.

To play back a stream according to the pace specified by their time stamps, use:

playback (producedStream (hasSensor (”LI90F_A")));

In this case the system uses the difference in time between the time stamps to determine
when to deliver an emitted stream element to the user.
It is possible to make derived functions that return streams, for example:

create function machineStream (Charstring machineName)
—> Stream of Vector of Number
as producedStream (hasSensor (machineName ));

Here machineStream() is a derived stream function that returns a stream of vectors
of numbers from a sensor installed on the named machine. The implementation function
calls the derived function hasSensor() and the stored stream function producedStream().
Executing machineStream(“L90F_A”) is another example of a CQ.

One important data type in SVALI is called stream windows. Stream windows are moti-
vated by the idea that only the most recent stream elements are of interest, e.g. only the most
recent 100 elements (count windows) or the stream elements during the last second (time
windows). In SVALI, functions that take data streams as input and return streams of win-
dows as output are called window functions. There are several window functions in SVALI
that form different kinds of stream windows including the most common ones such as count
windows and time windows. New kinds of windows are also supported by SVALI, e.g.
predicate windows (Xu et al. 2013) and partition windows explained below. For example,
count windows are formed by the function cwindowize(Stream s, Integer size, Integer slide)
— Stream of Window, where s is the input stream, size is the number of stream element in
the window, and slide defines how many elements will be expired when a new window is
formed. The following CQ creates a stream of count windows with size 4 and slide 2.

cwindowize (siota (1, 10), 4, 2);

Here siota(1, 10) is a built-in stream function that generates a stream of integers from 1
to 10.

3.2 Validation functionality

In order to detect unexpected equipment behavior, a validation model defines the correctness
of a type of equipment as a set of validation functions, which for each validated stream from
the equipment produces a validation stream describing the difference between measured
and expected behavior. The validation model is stored as meta-data in the local database.
Each tuple in a validation stream has the format (zs, mv, x, ...) where ts is the time of the
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measurement, m is the measured value, and x is the expected value. In addition, application
dependent values describing an anomaly are included in each validation stream element.

For example, a CANBUS stream contains measurements of different kinds, so the vali-
dation stream elements (s, mv, x, s, ...) include an identifier of the anomaly s, called a signal
identifier. The validation models can also produce alert streams, whose elements (s, my,
X, msg, ...) are time stamped error messages msg describing the detected anomalies. Empty
strings indicate normal behavior.

The validation functions can be executed per received element to test for anomalies.
This kind of validation is called instant validation. A simple example of this kind is, “the
temperature of functioning equipment should not exceed 90 °C”.

Some monitoring is based on stream windows rather than individual stream elements.
In SVALI this is naturally handled since the result of a window function is a stream of
windows. For example, manufacturing often is cyclic since the same behavior is repeated for
each manufactured item. Monitoring manufacturing cycles often is more meaningful than
instant validations of the measurements during the cycle. This kind of validation requires the
validation models be built based on stream windows and is called window validation. For
example, instead of validating the temperature of the equipment within each time interval,
the moving average of the temperature during each manufacturing cycle is checked.

With model-and-validate, physical models are defined as functions that map measured
parameters to the expected values of the variables to be validated based on physical prop-
erties of the equipment. To detect anomalies, each element of a received stream is checked
against the physical model of the equipment stored in the local database. For example, in
Xu et al. (2013) a mathematical model is developed estimating the expected normal power
usage based on sensor readings in stream elements. The mathematical model is expressed
as derived functions and installed in SVALI’s local database. The system provides a general
function, called model_n_validate(), which compares data elements in CQs with the installed
physical model and emits a validation stream of significant deviations.

The model-and-validate() function has the following signature:

model_n_validate (Stream s, Function modelfn, Function validatefn)
—> Stream of (Number ts, Object m, Object x, ...)

The second input parameter, modelfn(Object 1, ...) — Object x, is a function computing
expected values x of validated physical properties (e.g. expected power consumption) in
terms of a received stream element r in s, where r can be, e.g., a number, a vector, or a
window. The expected value x can be a single value or a complex object specifying several
allowed physical properties and their expected values.

The function validatefn(Object 1, Object x, ...) — Bag of (Number ts, Charstring mid,
Object m) returns the non-valid measured physical properties in r. That is, validatefn(r
modelfn(r)) extracts from modelfn(r) time stamped invalid property value tuples (s, mid, m),
representing the time ts when each invalid physical property mid had the invalid measured
value m.

The model function can also be a stored function populated by, e.g., mining historical
data. In that case the reference model is first mined offline and the computed parameters
explicitly stored in the stored function modelfn() passed to model_n_validate(). In this paper,
the reference model of the wheel loader scenario is learnt offline and then used by the
validation function.

With learn-and-validate, models are defined that dynamically adapt to received stream
elements, for example based on statistical models collecting data from the stream during
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learning phases where the behavior of the equipment is guaranteed to be correct. Such
kind of model is called a learn-and-validate model. To automatically learn a model of cor-
rect equipment behavior based on observed streaming data, the system provides the built-in
function learn_n_validate(). It records the actual behavior of the monitored equipment and
builds a statistical model based on the sampled correct behaviors. After the learning phase,
the learnt model is used as the reference model with which the streaming data will be
compared. As model-and-validate, the system emits a validation stream when significant
deviations are detected.
The learn-n-validate() function has the following signature:

learn_n_validate (Stream s, Function learnfn ,Integer n, Function
validatefn) —> Stream of (Number ts, Object m, Object e, ...)

The learning function learnfn(Vector of Object s) — Object x returns statistics x as a
reference model based on n sampled stream elements s. The advantage with learn-and-
validate is that the statistics is more up-to-date than with an offline model such as model-
and-validate. Also it does not require defining the physical model. Offline models may be
defined based on comparing the online stream with historical data.

3.3 Extensibility

Parts of the data processing will require advanced computations such as numerical and sta-
tistical computations made in real-time over the data elements streaming through SVALL
The numerical computations are often provided as algorithms and packages implemented
in some conventional programming language such as Java or C. Rather than having to
re-implement the algorithms in a new language, it should be possible to call packages
implemented in a programming language from CQs without having to change the imple-
mentations of the algorithms. To cope with this challenge, SVALI is extensible by allowing
for calling (dynamically linked) application dependent foreign functions implemented in
some conventional programming language. The foreign functions can be used in CQs as any
other functions. The algorithms themselves can be left unmodified and only simple inter-
face code needs to be developed. There is a large library of system functions implemented
as foreign functions in SVALLI, e.g. for numerical, statistical, stream, and set operations. For-
eign functions provide the basic mechanism for extending the system and to access external
systems and data sources.

As an example, to use the built-in Python function floor(x) in CQs the following foreign
function can be defined:

create function pyfloor (Number x) —> Real

’

as foreign ’py:math. floor ’;

The prefix py: indicates that the foreign language implementing the foreign function
pyfloor() is Python; the rest of the definition specifies that the function is implemented by
the built-in Python function floor() in package math. It is particularly simple to call foreign
functions in Python since it is a very powerful and interpreted, even though slow language.
The foreign function interfaces to Java and C require more programming. For maximal
performance C should be used, which provides for highest achievable performance, e.g. for
FFT over data streams.
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3.4 The stream uploader

For security reasons the SVALI server has to run on a computer separated by a firewall from
the monitored equipment. The firewall allows client applications to call the SVALI server,
not vice versa. This requires the data sources to establish an authorized connection to the
SVALI server and then issue CQs and SVALI commands to the server.

Figure 4 illustrates the equipment data stream monitoring architecture. On the remote
sites there are embedded SVALI source clients, running on-board the wheel loaders, which
access local data streams via their CANBUS data stream wrappers. The STREAM uploader
is a SVALI component executes local CQs that receive streaming data from the equipment.
The CQs filter and transform the data streams before emitting them to the SVALI server.
To authenticate stream delivery to the SVALI server, the source client has to first issue
an authentication request. After authentication the system starts online stream delivery to
the SVALI server in real-time. The STREAM uploader logs the uploaded measurements in
temporary CSV files on the server, which are simultaneously tailed by the SVALI server
when one or several CQs are activated. These CSV files also provide logs of the uploaded
data. The logs can either be automatically deleted by the system after some time or uploaded
to regular databases for further analyzes.

The uploaded streams are analyzed by application CQs accessing them in terms of stream
identifiers managed by the SVALI server. Client applications can access SVALI either
through a CQ query editor (Bauleo et al. 2014) that allows engineers to graphically specify
CQs, or through client applications sending CQs to SVALI for execution.

4 Functional anomaly detection

The theory behind the validation model used for monitoring wheel loaders is based on a
general statistical model to determine anomalies in streaming data, presented next.

Client
Application 1

Stream

uploader
cQ
Query editor
Client
Application 2 \

. SVALI SVALI SVALI
source client source client source client

CANBUS wrapper CANBUS wrapper CANBUS wrapper ‘

PN N ON

Fig. 4 Equipment data stream monitoring architecture
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4.1 Higher order cumulant

Higher-order cumulants are useful in diverse applications for many years for their ability to
handle non-Gaussian processes (Olsson et al. 2014). Cumulants above the third-order are
regarded as higher order cumulants while lower order cumulants are from the third-order
and below (Cumulant, http://en.wikipedia.org/wiki/Cumulant).

Higher-order cumulants are preferred instead of second-order for signals corrupted with
Gaussian measurement noise since they are blind to Gaussian processes (Mendel 1991).

Cumulants and Moments are different terms (Dodge 1999). The moment of an ergodic
random process is given as Bendat and Piersol (1980)

o0
or = E[x*] = / HfPxydx k=1,2,...
—00
where P (x) is the probability density function.
Moments defined about the mean are referred to as central moments (Bendat and Piersol
1980). The central moment of an ergodic random process is defined as

o
o = E[(x — 0] = / (x—OfPxydx k=1,2,...
—00

where X is the mean and P (x) is the probability density function (Bendat and Piersol 1980).

The first central moment is always zero, the second central moment is the variance, and
the third central moment is the skewness (Dodge 1999; Mendel 1991). The first, second and
third order cumulants happens to be equal to the first, second and third central moments, but
the fourth order cumulant is not equal to the fourth central moment but rather a complicated
polynomial function of the central moment (Dodge 1999; Cumulant http://en.wikipedia.org/
wiki/Cumulant; Olson et al. 2014).

Cumulants higher than the fourth order result in even much more mathematical compli-
cations (Dodge 1999).

The first, second, third and fourth order cumulants are defined as Mendel (1991):

Cix = E[x(n)]
Cax(k) = E[(x(n) — E[x(n)])(x(n + k) — E[x(n + k)])]
Csx(ki, ko) = E[(x (1) — E[x(m)D)(x(t + k1) — E[x(n + k) (x(t + k2) — E[x(n + k2)])]

Cax(ki, ko, k3) = E[(x(n) — E[x(m)])(x(n + k1) — E[x(n + k1)])
(x(n +k2) — E[x(n + k2))(x(n + k3) — E[x(n + k3)])]

where the kth-order cumulants is a function of k — 1 lags (Mendel 1991).

C4 x(k1, ko, k3) is a higher order cumulant (Cumulant, http://en.wikipedia.org/wiki/
Cumulant).

Kurtosis is based on the fourth order cuamulant and thus a higher order cumulant (Decarlo
1997). The Kurtosis is the normalized fourth order cumulant about the mean and it is
given by

- Ela®) - Ex@DY _ pt
Kurtosis = =
(E[(x(t) = E[x()]D?])?  o*
Where //,4 is the fourth order cumulant and o is the standard deviation (Decarlo 1997).

The Kurtosis gives an indication of the “peakedness” of a signal and the tailedness of a
probability density function. For a normal distribution the Kurtosis value is 3 but Kurtosis —
3 = 0 is often used (Decarlo 1997).
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4.2 Implementation of Kurtosis in SVALI

The data is streamed to SVALI through in the format of vectors of numbers called frames.
Each frame is a tuple with the following format:

(ts, frame;y, v1, V2, ..., V;)

where 75 is the time of the measurement. Each frame of type frame;; measures a set of
signals, signals(frame;;) = sigi, siga, ..., sig;, which are stored as meta-data in SVALI. v;
is the sensor reading of sig; in the frame. In the application there are five types of frames,
as in Table 1.

A value set vs(sig, w) is a set of values for a signal sig in a window w. In order to analyze
statistics about a set of observed signals named sig; € SIG in CQs, SVALI provides a
function valueSets(SIG, w) that computes the values sets of the signals named o; in window
w, vs(sigi, w). On the value sets different kinds of statistical aggregate functions can be
applied, e.g to determine anomalies in the values sets of SIG by using Kurtosis.

In the application, the aggregate function kurtosis(V) computes a measure of the peaked-
ness of the probability distribution of the values in a value set V. To determine anomalies
of signals SIG detected in window w, the Kurtosis of vs(sig;, w) is compared with the
expected maximum Kurtosis emk(sig;) for each signals sig; stored as meta-data. An
anomaly is detected when kursosis(vs(sig;, w)) > emk(sig;) for some signal sig;
measured by some frame in window w.

Partition windows In the Volvo wheel loader scenario, one important signal is the gear
sensor reading, which specifies the current gear of the wheel loader. All the frames read from
sensors when the current gear does not change are called one gear cycle and is defined as a
partition window, where a new window is started when the gear changes. In general, parti-
tion windows in SVALI are defined based on the value changes of one or several partition
attributes of the stream elements. In the example the partition attribute is gear, which identi-
fies the current gear. When partition attribute values change, the previous window is emitted
and new one is started. Partition windows are defined by the function partwindowize(Stream
s, Function partitionBy) — Stream of Window. The partition function partitionBy(Object o)
— Object p maps a received stream element o to p, where the value change of p is used to
partition the stream s to form stream windows.

In the Volvo wheel loader scenario, the partition function defines the gear as the partition
attribute, which is element 8 in the frame.

create function gear(Vector of Number frame)
—> Number g as frame [8];

Table 1 Five types of frames

Frame ID Signals

10 ForwardPressurel, ForwardPressure2, MainPressure, ForwardPressure3

11 PressureR, RearTorque, FrontTorque

2364542723 InputSpeed, TurbTorque, TrmOiltem, ShiftinglTo2, OffgSlipping,
OngSlipping, Gear, DirGear

2364542467 DiffSpeed1, DiffSpeed2, TurbSpeed, OutgSpeed

15 OutputCoolerTemp
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The stream s is partitioned into a stream of windows when the gear is changed by the
function partwindowize(s, #°gear’). To detect anomalies in observed signals during each
gear cycle, on each partition window the Kurtosis of each observed signal is calculated
as physical property and compared with its maximum allowed Kurtosis value. The vali-
dation over a CANBUS stream s is specified by model_n_validate(s, #‘allowedKurtosis’,
#‘anomalies’).! The model function allowedKurtosis(Window pw) — Bag of (Charstring
sigi, Number ai) returns a set of pairs (sig;, a;) representing the allowed Kurtosis a; of
each observed signal sig; in the partition window pw. The validation function anoma-
lies(Window pw, Bag of (Charstring sigi, Number a) exp) — Bag of (Number ts, Charstring
sigj, Number mj) returns a set of triples (¢s, sig;, m;), indicating timestamped invalid
measurements 7 ; of signal sig; in pw.

The derived function allowedKurtosis() is defined as:

create function allowedKurtosis(Window pw)
—> Bag of (Charstring sigi, Number ai)
as select sigi, maxAllowedKurtosis(sigi)
from Vector of Number vs
where vs = valueSet (sigi, pw);

The stored function maxAllowedKurtosis(Charstring sig) — Number m returns the
allowed Kurtosis m for a signal sig.
The function anomalies() is defined as:

create function anomalies(Window pw,
Bag of (Charstring sigi, Number ai) exp)
—> Bag of (Number ts, Charstring sig, Number mi)
as select ts(w), sigi, mi
where mi = measuredKurtosis (exp)
and (sigi, ai) in exp and mi > ai;

The function returns the anomalies detected in pw by selecting the unexpected measured
Kurtosis values m; of signal sig; that exceeds the maximum allowed value a;. The func-
tion measuredKurtosis(sigi, pw) returns the computed Kurtosis for signal sig; in pw. It is
defined as:

create function measuredKurtosis(Charstring sigi , Window pw)
—> Number mi as kurtosis(valueSet(sigi, pw));

The function kurtosis(vs) of a value set vs is defined as:

create function kurtosis(Bag of Number vs) —> Number
as cumulant4(vs) / stdv(vs) 4;

where cumulant4() computes the 4th cumulate of value set vs:

create function cumulant4 (Bag of Number vs) —> Number
as sum(select (e — avg(vs))“4
from Number e
where e in vs);

IThe syntax #‘fn’ denotes the function named “fn’.
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A CQ that returns a stream containing invalid measurements for the wheel loader named
“LI90F_A” is defined as:

select model_n_validate (gearcycles ,# allowedKurtosis ’,

#’anomalies 7)
from Stream of Window gearcycles
where gearcycles = partwindowize (
machineStream (” wheelLoaderA”),

# partBy ) ;

The function partwindowize() produces a stream of windows for each gear cycle on
which model_n_validate() is applied using the above model.

5 Distributed equipment monitoring

Figure 5 shows a typical configuration of SVALI in a distributed setting where a number
of wheel loaders are monitored to produce data streams transmitted to a monitoring center
where they are merged. Each wheel loader runs a local SVALI system running the following
CQ to produce a stream of gear cycle windows from CANBUS channel 007 uploaded to the
monitoring center “M1”:

upload (partwindowize (CANstream (007), #’gear’), "M1”);

Each site has an identifier which is sent to the monitoring center and there stored in
a function enumerating the monitored sites, sites(Number id) — Charstring Name. The
monitoring center identifies anomalies in any monitored machine by merging and validating
the uploaded gear cycle window streams from all the sites with the CQ:

Data source . Monitoring center

~

N
N
\

. . . \ /ﬁ
windowize oy SVALI clustg
'm

logged CSV stream
e —)

—

abiaw mopuIpy
uonepijea

windowize

" 7
.l_ logged CSV strea) P
/I
4
’

|

Fig. 5 Central validation
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select model_n_validate (gearCycles ,# allowedKurtosis 7,
#’anomalies ”)
from Stream of Window gearCycles
where gearCycles = merge(select streamFrom(site (i))
from Integer i);

The function streamFrom(Charstring site) — Stream returns the stream uploaded from
a given site. The merging is done asynchronously as new tuples arrive from the sites, while
local queries produce streams of gear cycle windows in parallel on each wheel loader. This
is possible since SVALI systems run both in the monitoring center and on each wheel loader.
The execution of local queries on each wheel loader furthermore gives local control on each
site what data to send to the monitoring center. The validation is done at the monitoring
center. This is called central validation.

The local SVALI systems on each wheel loader enable parallel processing of expensive
functions. In particular also the expensive model_n_validate() can be run in parallel on each
wheel loader as illustrated by Fig. 6. This should improve the response and throughput of
the validation. This is called parallel validation. In this case the following CQ runs on each
wheel loader:

upload(select model_n_validate (gearCycles,
#’allowedKurtosis >, #’anomalies’)
from Stream of Window gearCycles
where gearCycles = partwindowize (CANstream (007),
#7gear7) , 77M177);

The following CQ runs at the monitoring center which just merges the validation stream
from each site:

merge (select streamFrom(site(i)) from Integer i);

Data source . Monitoring center
windowize and validation Va/i"a;i;)K
stea,, | SVALI clustgr
\ 2
M) logged CSV streg @ b (.;
. \
il Q. P 2
: K> S 3
A &
qa“&\o | %
I
windowize and validation k
1

|

MM logged CSV strea K
//
7’

Fig. 6 Parallel validation
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6 Evaluation

The two validation strategies are experimentally evaluated to investigate the performance
improvement by local SVALI validation on each site. For experimental purposes, we use
logged CSV files from Volvo CE wheel loaders to simulate online streams on each site.
The number of validated wheel loaders is scaled up to 100 by starting new SVALI instances
on separate nodes. The size of each recorded source data stream is around 40 MB (543917
tuples) having more than 500 partition windows. The result stream for validating the
recorded source data consists of 1054 tuples, i.e. the data reduction is about 99.81 %. The
experiments were made on a Dell PowerEdge R815 which has 4 CPUs with 16 2.3 GHz
cores each. Both the processing capacity of SVALI and the response times (delays) were
measured for different experimental settings.

6.1 System capacity

The purpose of the first experiment is to investigate the capacity of the system, i.e. how
much data can be validated as the number of wheel loaders is increased. In the experiment
all of the recorded data was streamed to each site SVALI at disk read speed, which is 201316
tuples/s (20 Mbytes/s per site or 5 ws/tuple), and processed by SVALI with the model above
using central and parallel validation. The total through-put of processing the entire recorded
streams at full speed was measured in Fig. 7. The throughput of the central validation on
one core was around 3.5 Mbps. The throughput of parallel validation reached a maximum
of 110 Mbps when the number of machines was more than the available number of cores,
64, since more than one SVALI instance then have to run on the same core.

6.2 Response time

First the average and maximum response times with central and parallel validation were
measured. Each wheel loader WL,,,n = 1...N has a recorded data stream S,, over which

120

100

= parallel validation
central valiadtion

80

60

Throughput (Mbps)

40

20

20 40 60 80 100
Number of Machines

Fig. 7 Full speed streaming throughput
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I,, partition windows are created by SVALI during the processing. As in the linear road
benchmark (Arasu et al. 2004), the response time is defined as the difference between the
time receiveT; when the stream element is received by the DSMS and emit7; when the
DSMS emits the result. Maximum and average response times are calculated as following:

E,I,vzl Eili1 (emitT; — receiveT;)

avgReponseTime =
gurep E,],vzlln

max ReponseTime = max ( min (emitT; — receiveT;))
I<n<N 1<i<I,

6.2.1 Scaling the number of monitored streams

All of the recorded data was streamed to each site SVALI at disk read speed, i.e. 20 Mbytes/s
per site or 5 ps/tuple, and validated with the model above using both central and parallel
validation. Both the average and maximum validation times were measured in Fig. 8.

Figure 8 shows that parallel validation clearly outperforms the central one by several
orders of magnitude. The max response time with central validation was much more slower
than the average and therefore not included in the diagram. For parallel validation only, the
maximum validation time is compared with the average in Fig. 9. It shows that the average
validation time increases with a very small slope, while the maximum time increases faster,
in particular when the number of machines exceeds the available number of cores, 64. The
figure also shows that the average times are much lower than the maximum one, which
means most of the validations are cheap with a few outliers.

6.2.2 Using actual stream rates

The previous experiment was conducted with a very high data rate per site stream. In prac-
tice the stream rate is lower. We therefore measured the scalability of the system over the
number of machines using the actual stream rates. The streams are time stamped around

45
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Fig. 8 Full speed streaming response time
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each 5 ms / tuple and the playback() function was used, unlike in the first experiment.
Figure 10 shows that in this case parallel validation also outperforms the central one. With
parallel validation the average response time stays almost constant while it increases slowly
when scaling the number of machines with full speed validation. However, the central
validation here performs comparably better, as illustrated by Fig. 11 measuring the improve-
ment ratio of central and parallel validation for the full speed and actual data rates. It shows
that the response time of central validation improves a lot with the actual stream rate, which

Response Time (s)

==&=parallel avg response time
== parallel max response time

central avg response time

pe o o o ° ——

20 40 60 80 100
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Fig. 10 Playback stream average response time
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Fig. 11 Improvement ratio between full speed and actual rates

is because the playback function delays the delivery of the data streams and thus gives more
room for the central server to do the validation.

6.2.3 Scaling the site stream rates

To investigate how different site stream rates influence the validation scalability, they were
scaled from 1 ms to 10 ms per tuple while keeping the number of machines constant at 100.
As shown in Figs. 12 and 13, central validation gets saturated when the stream rate is high
while for parallel validation both the maximum and average response times are virtually
rate independent as long as there are sufficient computational resources.

In conclusion, we show that the parallel validation in SVALI scales very well w.r.t.
response time and system throughput when pushing expensive computations as close to the
source as possible. In the experiments parallel validation has 0.09 second average response
time, which is sufficient for our application. Different from hard real-time systems, for
equipment anomaly detection the average response time is much more important than the
maximum as long as the overall stream process can keep up with the stream rate.

7 Related work

In the last decades, data stream processing has gained a lot of research interests. Sev-
eral Data Stream Management Systems (DSMSs), such as Aurora (Abadi et al. 2003), and
STREAM (Motwani et al. 2002), have been developed based on modified relational data
models where variables in queries are bound to rows. By contrast, SVALI uses a functional
data model to express CQs where streams are first class objects in domain calculus queries.
Furthermore, SVALI allows calling external libraries as foreign functions so that complex
algorithms over data streams can be efficiently implemented and used in CQs.
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Various research issues on outlier detection for data streams are discussed in Sadik and
Gruenwald (2014). In our work, unexpected behavior of the equipment can also be seen as
outliers from normal behavior. Because data streams are online and dynamic, outlier detec-
tion in the stream context becomes fundamentally different than regular outlier detection,
which often done in a store-and-process fashion. In Sadik and Gruenwald (2014) previous
work on stream outlier detection is categorized into four major classes: (i) outlier detec-
tion over sliding windows (Angiulli and Fassetti 2010; Cao et al. 2014; Subramaniam et al.
2006; Yang et al. 2009), (ii) auto-regression (Shuai et al. 2008) , (iii) data stream clustering
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(Yang et al. 2009), and (iv) statistical density functions over data stream elements (Huang
et al. 2012; Subramaniam et al. 2006; Zhang et al. 2008). Because SVALI makes no dif-
ference between regular data types and stream objects, anomaly detection using SVALI’s
built in validation functions falls into the first category. Our application that validate correct
behavior of wheel loaders with a Kurtosis-based statistical model shows that the domain
query language of SVALI provides a powerful tool to express statistical and other numerical
functions in mathematical models that identify abnormal behavior of the equipment. Hence,
our work also belongs to the fourth category.

There are two main parallelization strategies for processing data streams. One is to paral-
lelize continuous query execution plans (Abadi et al. 2005; Jain et al. 2006) where operators
are placed on different compute nodes. The other is to partition the input streams into sub-
streams, on which CQs are applied in parallel (Brenna et al. 2009; Zeitler and Risch 2011).
In SVALL the latter strategy is used by parallelizing expensive validations over the equip-
ment sites. The very high reduction in streams data rates for anomaly detection makes
parallel validation particularly favorable.

In Xue et al. (2006), the authors describe an approach resembling our Kurtosis model for
fault detection in locomotives as an add-on to the CBR (Case Based Reasoning) diagnosis
system (Varma and Roddy 1999). Like in our system, the signals are processed individually
to detect an anomaly and then fused together using another machine learning algorithm.
They use a non-parametric test to detect individual anomalies and a generalized regression
neural network to combine the signals to one anomaly indication output. However, they
do not describe how they integrate the CBR system and the anomaly detection part, while
we show how the functional data model of SVALI enables convenient integration of data
streams from distributed equipment.

In other work on anomaly detection from equipment, e.g by Miura et al. (1998), Miki
(2003b), Marklund (2010), Ito et al. (2012), Fatima et al. (2012), Okabe (2009), Berglund
(2013), the anomaly detection is made in test-rigs, but not in the actual heavy duty machines.
In our application clutch slippage detection and diagnoses are done on-board the equipment
where streams of sensors are processed on the machine by SVALI using a CAN bus wrapper.
SVALI enables the anomaly detection to be expressed on a very high level as CQs using a
functional anomaly detection model.

8 Conclusions and future work

We presented a general system, SVALI, to detect anomalies in data streams. Anomalies in
the behavior of heavy duty equipment streams are detected by running SVALI on-board
the machines. In SVALI anomaly detection rules are expressed declaratively as continuous
queries over mathematical/statistical models that match incoming streamed sensor readings
against an on-board database of normal readings.

To enable scalable validation of geographically distributed equipment, SVALI is a dis-
tributed system where many SVALI instances can be started and run in parallel on the
equipment. Central analyses are made in a monitoring center where streams of detected
anomalies are combined and analyzed.

The functional data model of SVALI provides definition of meta-data and validations
models in terms of typed functions. Continuous queries are expressed declaratively in terms
of a domain calculus where streams are first class objects. Further-more, SVALI is an exten-
sible system where functions can be implemented using external libraries written in C, Java,
or Python without any modifications of the original code.
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To control the transmission of equipment data streams to the monitoring center, there
is a firewall around the monitoring center. Therefore, the data streams from the equipment
are transmitted to the monitoring center using a stream uploader, rather than accessing the
sensored data in the inverse direction from the monitoring center.

To enable stream validation on a high level, the system provides two system vali-dation
functions, model_n_validate() and learn_n_validate(). model_n_validate() allows the user to
define mathematical models based on physical properties of the equipment to detect unex-
pected equipment behavior. The model can also be built using historical data and then stored
in the database as reference model. In the scenario from Volvo CE, the maximum allowed
Kaurtosis is first built off-line and then used to detect clutch slippages of wheel loaders. By
contrast, learn_n_validate() builds a statistical model by sampling the stream on-line as it
flows. The model can also be re-learnt in order to keep it updated, e.g. after some time units
or amount of processed stream elements.

Experimental results show that the distributed SVALI architecture enable scalable mon-
itoring and anomaly detection with low response times when the number of monitored
machines and their data stream rates increase. The experiments were made using real
data recorded in running equipment. The experiments show that parallel validation where
expensive computations are done in the local SVALI peers has good response time and
throughput.

The monitoring capability presented is furthermore a necessary means for monitoring
large numbers, or fleets, of for instance vehicles or production equipment when customers
are offered result or availability oriented contracts. Examples of such offers are Industrial
Product-Service Systems and Functional Products, where the ability to act in a proactive
manner and conduct predictive maintenance based on facts are key (Olsson et al. 2014).

A future work is to combine different kinds of data streams from different equipment
exploring more information to refine the model. New scalability challenges may come up
w.r.t. stream joins. Another direction is to analyze parallelization strategies when there are
shared computations between CQs over the same data stream.
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