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during SE coupled with an impaired embryogenic response 
of the relevant mutant and/or overexpressor line, includ-
ing ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 
were indicated as possibly being involved in SE induction. 
The study provides evidence that embryogenic induction 
strongly depends on ARFs, which are key regulators of the 
auxin signaling. Some clues on the possible functions of 
the candidate ARFs, especially ARF5, in the mechanism of 
embryogenic transition are discussed. The results provide 
guidelines for further research on the auxin-related func-
tional genomics of SE and the developmental plasticity of 
somatic cells.

Keywords ARF5 · Auxin signaling · In vitro culture · 
Monopteros · Organogenesis · Transcription factors

Abbreviations
2,4-D  2,4-Dichlorophenoxyacetic acid
ARF  AUXIN RESPONSE FACTOR
Aux/IAA  AUXIN/INDOLE-3-ACETIC ACID
CIM  Callus induction medium
Ct  Threshold cycle
E0  Auxin-free induction medium
E5  Embryogenesis induction medium with auxin
IZE  Immature zygotic embryo
NAA  1-Naphthaleneacetic acid
ORG  Organogenesis
PGR  Plant growth regulator
SAM  Shoot apical meristem
SE  Somatic embryogenesis
SIM  Shoot induction medium
TF  Transcription factor
ZE  Zygotic embryogenesis

Abstract 
Key message Extensive modulation of numerous ARF 
transcripts in the embryogenic culture of Arabidop‑
sis indicates a substantial role of auxin signaling in the 
mechanism of somatic embryogenesis induction.
Abstract Somatic embryogenesis (SE) is induced by 
auxin in plants and auxin signaling is considered to play 
a key role in the molecular mechanism that controls the 
embryogenic transition of plant somatic cells. Accord-
ingly, the expression of AUXIN RESPONSE FACTOR 
(ARF) genes in embryogenic culture of Arabidopsis was 
analyzed. The study revealed that 14 of the 22 ARFs were 
transcribed during SE in Arabidopsis. RT-qPCR analysis 
indicated that the expression of six ARFs (ARF5, ARF6, 
ARF8, ARF10, ARF16, and ARF17) was significantly up-
regulated, whereas five other genes (ARF1, ARF2, ARF3, 
ARF11, and ARF18) were substantially down-regulated in 
the SE-induced explants. The activity of ARFs during SE 
was also monitored with GFP reporter lines and the ARFs 
that were expressed in areas of the explants engaged in SE 
induction were detected. A functional test of ARFs tran-
scribed during SE was performed and the embryogenic 
potential of the arf mutants and overexpressor lines was 
evaluated. ARFs with a significantly modulated expression 
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Introduction

The developmental plasticity of plant somatic cells is 
widely exploited in green biotechnology in the micropro-
pagation and production of transgenic plants. Among the 
regeneration pathways that can be induced in a culture 
of somatic cells/tissue of plants, the process of somatic 
embryogenesis (SE) is especially attractive for biotechnol-
ogy purposes as an efficient and fast system for the clonal 
propagation of many plant species that are of commercial 
value (Karami et  al. 2009). Beside its usefulness in bio-
technology, SE was recommended as a model system with 
which to study the mechanism of embryogenic develop-
ment in plants (Zimmerman 1993).

The SE process begins with embryonic induction, which 
is frequently preceded by the de-differentiation of explant 
tissue (Elhiti et al. 2013). The earliest stage of SE induction 
attracts the most research attention, because revealing the 
exo- and endogenous determinants of the embryonic switch 
contributes to our knowledge of the general mechanism 
that is involved in developmental cell plasticity and also 
supports the improvement of the plant regeneration systems 
that are used in biotechnology.

Among the factors that play a substantial role in SE 
induction, the exogenous hormone treatment of explant 
tissue was determined to be required in a culture of most 
plant species. In over 80% of the protocols on SE induc-
tion, auxin was used alone or in combination with other 
plant growth regulators (Gaj 2004; Karami and Saidi 
2010). Thus, an auxin-related molecular mechanism is 
widely expected to operate during SE induction. As an 
additional support, a global analysis of SE-transcriptomes 
indicated that numerous auxin-related genes are transcribed 
in the embryogenic cultures of different species, includ-
ing Picea sp. (van Zyl et  al. 2003; Stasolla et  al. 2004), 
Zea mays (Che et al. 2006), Glycine max (Thibaud-Nissen 
et al. 2003), Solanum tuberosum (Sharma et al. 2008), and 
Arabidopsis thaliana (Becker et al. 2014).

In auxin-related responses, the genetic components 
of the auxin-signaling pathway including the AUXIN 
RESPONSE FACTORs (ARFs) that control the target 
gene expression in response to auxin were indicated as 
playing a central role (Teale et al. 2006). ARF genes are 
specific to the plant kingdom and they were identified in 
the genomes of different plant species, including ferns, 
gymnosperms, monocots, and dicots (Wang et al. 2012). 
Twenty-three ARF genes were described in Arabidopsis, 
and except for one pseudogene (ARF23), they all encode 
the TFs that are involved in auxin-mediated responses 
(Riechmann et  al. 2000). The proteins of ARFs contain 
a DNA-binding domain that is classified as a B3-type 
and specific to plants, which binds to the TCT CTC  motif 
(AuxRE) found in the promoters of auxin-responsive 

genes (Guilfoyle et  al. 1998). ARFs may activate or 
repress the target gene expression depending on the 
amino-acid sequence of the middle region in the func-
tional domain that interacts with DNA. ARFs with 
domains that are rich in glutamine, serine, and leucine 
(ARF5, ARF6, ARF7, ARF8, and ARF19) activate tran-
scription while an increased content of serine, proline, 
leucine, and glycine (ARF1, ARF2, ARF3, ARF4, and 
ARF9) results in the repression of target transcription 
(Guilfoyle and Hagen 2001; Tiwari et al. 2001). In addi-
tion, ARFs contain the PB1 (Phox and Bem1) domain 
that is required for the protein–protein interaction with 
other ARFs and Aux/IAA (Guilfoyle 2015). Recently, a 
second protein interaction module, the homodimerization 
DD domain, which is located in DBD, was revealed in 
at least ARF1 and ARF5 (Boer et al. 2014). The mecha-
nism of auxin-induced gene activation has been well rec-
ognized. In the absence of auxin, the Aux/IAA protein 
interacts with its partner ARF, thereby inactivating any 
ARF activity; while in the presence of auxin, the Aux/
IAA protein is degraded through ubiquitination by the 
SKP-Cullin-F-boxTIR1/AFB  (SCFTIR1/AFBs) E3 ubiqui-
tin ligase complex, which contains the auxin receptor 
TRANSPORT INHIBITOR RESPONSE1(TIR1)/AUXIN 
RECEPTOR F-BOX PROTEINS (AFBs) (Dharmasiri 
et al. 2005).

The involvement of different ARFs in the regulation 
of numerous auxin-controlled developmental processes 
including flowering, leaf senescence, gynoecium and 
seed formation, root development, vascular tissue for-
mation, and abaxial identity of organs was indicated in 
Arabidopsis (Guilfoyle and Hagen 2007). An involvement 
of ARFs in the control of ZE is also evident (Rademacher 
et  al. 2011), including an ARF-dependent suspensor 
(ARF1, ARF2, ARF6, ARF9, and ARF13) and proper 
embryo development (ARF1, ARF2, ARF5, ARF6, and 
ARF7). Consequently, mutations in ARF genes were 
found to strongly disturb zygotic embryo development 
(Rademacher et al. 2011, 2012).

In contrast to ZE, the role of ARFs in SE remains 
mostly unknown. In this study, we profiled the expression 
of all known ARF genes during SE that was induced in 
a culture of Arabidopsis immature zygotic embryo (IZE) 
explants. Gene expression profiling and analysis of inser-
tional mutants, overexpressor, and reporter lines were 
used to identify SE-involved ARFs. The ARFs were found 
to significantly differ in their activity in the embryogenic 
culture and the impact on somatic embryo induction. The 
results confirm that numerous ARFs control the embryo-
genic transition that is induced in somatic cells. Of the 
ARFs that operate during embryogenic transition that is 
induced in vitro, ARF5 seems to be of particular impor-
tance for SE.
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Materials and methods

Plant material

The Columbia (Col-0) genotype and the transgenic lines 
including insertional mutants, GFP reporter and over-
expressing lines of Arabidopsis thaliana (L.) Heynh., 
were used (Supplementary Table 1). All seeds, except for 
35S::ARF5, which were kindly provided by Dr. Ive de Smet 
(Department of Plant Systems Biology, VIB, Ghent, Bel-
gium), were supplied by NASC (The Nottingham Arabi-
dopsis Stock Centre).

Plant growth and in vitro culture conditions

The plants that were used as the source of IZE explants 
were grown in 42 mm diameter Jiffy-7 peat pots (Jiffy) in 
a ‘walk-in’ type phytotron under controlled condition at 
22 °C under a 16 h photoperiod of 100 µM  m− 2  s− 1 white, 
fluorescent light. Plant materials that were grown in sterile 
conditions were kept at 23 °C under a 16 h photoperiod of 
40 µM  m− 2  s− 1 white, fluorescent light.

Somatic embryogenesis

Immature zygotic embryos in the late cotyledonary stage 
of development were used as explants for the in vitro cul-
ture and the standard protocol was applied to induce SE in 
Arabidopsis (Gaj 2001). Ten IZEs were cultured in a Petri 
dish (35  mm) on an agar-solidified (8  g  L− l) induction 
medium containing basal B5 micro- and macro-elements 
(Gamborg et al. 1968) and 20 g  L− 1 sucrose. IZE explants 
were cultured on an SE-induction auxin medium (E5) with 
5 µM 2,4-D (2,4-dichlorophenoxyacetic acid) and on a con-
trol, hormone-free (E0) medium. Ten explants were cul-
tured in one Petri dish and thirty explants in three replicates 
in each culture combination were analyzed. The capacity 
for SE was evaluated in 3-week-old cultures. Two param-
eters of embryogenic potential were evaluated: SE effi-
ciency—frequency of the explants that produced somatic 
embryos and SE productivity—the average number of 
somatic embryos that developed per embryogenic explant.

Shoot organogenesis

To induce shoot regeneration via organogenesis (ORG), 
the IZEs were incubated for 7 days in a liquid callus induc-
tion medium (CIM), then the cotyledons were cut off and 
cultured on solid shoot induction media (SIM-C) accord-
ing to Kraut et  al. (2011). The CIM medium contained a 
basal composition of a B5 medium (Gamborg et al. 1968), 
0.5 g  L− 1 MES, 20 g  L− 1 glucose, 2.2 µM of 2,4-D, and 
0.2 µM of kinetin (Kraut et al. 2011). The SIM-C medium 

contained micro-elements of MS (Murashige and Skoog 
1962), macro-salts, vitamins of a B5 medium (Gamborg 
et al. 1968), and was supplemented with 30 g  L− 1 sucrose, 
0.5  µM of NAA (1-naphthaleneacetic acid) and 4.4  µM 
of BAP (6-benzylaminopurine). The explant capacity for 
ORG was evaluated in 3-week-old cultures. Two parame-
ters of culture morphogenic potential were evaluated: ORG 
efficiency—frequency of the explants that produced shoots 
and ORG productivity—the average number of shoots that 
developed per explant.

RNA isolation and gene expression analysis

An RNAqueous Kit (AMBION) was used to isolate total 
RNA from the IZE explants that were induced on the SE 
induction (E5), callus induction (CIM), shoot induction 
(SIM), and the hormone-free (E0) medium on days 0, 3, 5, 
10, and 15 of the culture. Depending on the age of the cul-
ture, from 250 (0 day) to 4 (15 days), explants were used 
for the isolation of RNA. The concentration and purity of 
RNA were evaluated with a ND-1000 spectrophotometer 
(NanoDrop). To prevent DNA contamination, the RNAs 
were treated with RQ1 RNase-free DNase I (Promega) fol-
lowing the manufacturer’s instructions. First-strand cDNA 
was produced in a 20 µL reaction volume using a Rever-
tAid First-Strand cDNA Synthesis Kit (Fermentas).

The product of the reverse transcription was diluted 
with water in a 1:1 ratio and 1 µL of this solution was used 
for RT-PCR. To quantify the expression of ARF genes, 
Real-Time quantitative RT-PCR (RT-qPCR) method was 
employed. The product of the reverse transcription was 
diluted in 3:1 ratio than 2.5 µL was used for reactions. RT-
qPCR was carried out in a 10 µL reaction volume using a 
LightCycler® 480 SYBR™ Green I Master (Roche) kit, a 
LightCycler® 480 Multiwell Plate 96, and MultiwellSealin 
Foil (Roche).

A LightCycler® 480 System (Roche) real-time detec-
tion system was used under the following reaction condi-
tions: denaturation one repeat of 5 min at 95 °C, followed 
by 45 repeats of 10  s at 95 °C, 20  s at 58 °C, and 10  s at 
72 °C. Denaturation for melt curve analysis was conducted 
at 95 °C followed by 5  s, at 65 °C by 1  min, and 98 °C 
(0.11ºC/s for fluorescence measurement). Cooling was at 
40 °C for 10 s.

Relative RNA levels were calculated and normal-
ized to internal controls, the AT1G07920 ELONGATION 
FACTOR1α (EF1α) gene encoded GTP-binding elonga-
tion factor (Reid et  al. 2006) and AT4G27090 (TIN) gene 
encoded 60  S ribosomal protein (Thellin et  al. 1999). 
Fold change values were calculated using the compara-
tive  2− ΔΔCt method. The control gene exhibited a constant 
expression pattern with Cp = 24 ± 1 in all of the tissue 
samples that were analyzed. The primers (Supplementary 
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Table  1) used for expression profiling of the genes were 
designed using the QuantPrime tool (http://www.quant-
prime.de/). The plant tissues for gene expression analysis 
were produced in three biological replicates and two tech-
nical replicates of each repetition were carried out. All of 
the information about the RNA and RT-qPCR quality and 
methodology are presented in Supplementary Table S1.

Microscopy

Analysis of GFP signal was carried out using a Nikon 
Eclipse Ni-E/Ni-U fluorescent microscope system. GFP 
fluorescence was excited using halogen lamphouses with 
a 100–240 VAC (Prior Lumen200) and a wavelength of 
488  nm. Photographic documentation was created from 
images that were recorded with a Nikon Digital Sight 
DS-Fi2 with DS-U3 camera. Image processing was per-
formed using the NIS-Elements F computer program ver-
sion 4.0.

Statistical analysis

The student t test was used to calculate any significant dif-
ferences (at P = 0.05) between the combinations that were 
being compared.

Results

Design of the experiment

A culture of IZEs results in SE, shoot organogenesis 
(ORG), or seedling development in Arabidopsis, and the 
type of morphogenic response of explants mainly depends 
on the hormonal content of the media that is used (Kraut 
et  al. 2011). To identify the ARFs that are differently 
expressed during SE, explant tissues that were induced 
on various media towards SE, ORG, and seedling devel-
opment were sampled (Fig.  1). The analysis covered the 
different stages of the culture, including freshly isolated 
(0  day) and media-cultured (3–15  days) IZE explants. In 
the SE culture, samples taken on days 3 and 5 of the culture 
are related to the SE-induction stage, while the later culture 
stages, which are related to the formation and development 
of somatic embryos, correspond to days 10 and 15 of the 
culture, respectively.

Expression profiling of the ARFs transcribed 
in the embryogenic culture

The analysis of the ARFs expression based on qualitative 
RT-PCR reaction, which was monitored at different stages 

Fig. 1  Diverse morphogenic pathways that were induced in vitro in a 
culture of Arabidopsis IZE explants. IZE explants of Col-0 that were 
cultured on different media resulted in: somatic embryo development, 
SE (a), shoot regeneration, ORG (b), and seedling development, E0 

(c); the tissue for the analysis of ARFs expression was sampled at dif-
ferent time points of the cultures, including 0, 3, 5, 10, and 15 days. 
Asterisk regenerated somatic embryos or shoots

http://www.quantprime.de/
http://www.quantprime.de/
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of SE, indicated that the majority (14) of the 22 analyzed 
genes were transcribed in the IZE explants and the embryo-
genic cultures that were derived, including ARF1, ARF2, 
ARF3, ARF5, ARF6, ARF7, ARF8, ARF9, ARF10, ARF11, 
ARF16, ARF17, ARF18, and ARF19 (Fig. S1). The RT-
qPCR analysis revealed that the ARFs that were transcribed 
in the embryogenic culture displayed diverse patterns of 
expression and the genes differed distinctly in the levels and 
profiles of their transcription (Fig. S2). ARF5 and ARF10 
were found to have the highest transcript accumulation in 
the SE culture, while in contrast, the activity of ARF7 and 
ARF11 was almost 7–9 threshold cycles lower. Most of the 
SE-transcribed ARFs displayed a substantial modulation 
of their expression level during SE in relation to 0 day and 
genes that displayed both increased and decreased tran-
scription levels in specific SE-stages were indicated.

ARFs up‑regulated during SE

Six of the ARFs were found to be significantly up-regu-
lated at different (3–15 days) time points of the embryo-
genic culture and the genes with a stimulated transcrip-
tion in the early (3–5 days) or late (10–15 days) stages of 
SE could be distinguished (Fig. 2). The majority (four) of 
the SE-stimulated ARFs including ARF5, ARF6, ARF10, 

and ARF16 displayed a distinct up-regulation during the 
inductive stage of SE (3–5 days), while two other genes, 
ARF8 and ARF17, showed a significantly increased level 
of expression in the advanced stages of SE that were 
associated with the formation and development of the 
somatic embryo (10–15 days).

Among the ARFs with an SE-stimulated expression, the 
ARF5 gene was found to be especially highly activated and 
its transcript level showed a distinguishably sharp increase 
in the early SE (up to 14-fold). This observation suggested 
that ARF5 strongly affects the embryogenic transition in 
explant cells.

ARFs down‑regulated during SE

Five of the ARF genes including ARF1, ARF2, ARF3, 
ARF11, and ARF18 were observed to display a significant 
reduction in their activity in the early stage of SE induction 
(3–5 days), which also remained low in the advanced cul-
ture (10–15 days) (Fig. 3). Among these genes, the activity 
of ARF11 was found to be the most reduced in the embryo-
genic culture and transcripts of this gene were up to four-
times less abundant in the SE-induced explants than in the 
freshly isolated explants.

Fig. 2   ARF5 (a), ARF6 (b), ARF8 (c), ARF10 (d) ARF16 (e), and 
ARF17 (f) of up-regulated expression during the SE process. IZE 
explants of Col-0 were cultured on an E5 medium and the tissue was 
sampled on the 0, 3, 5, 10, and 15 days of the culture. The relative 

transcript level was normalized to the internal control (TIN gene) and 
calibrated to the 0 day culture. Asterisk expression level significantly 
different to that observed at 0 day at P < 0.05. Means and SD for three 
biological replicates are shown
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ARFs with a stable expression level during SE

The observed during SE changes in transcript level were 
found not to be significant for three genes: ARF7, ARF9, 
and ARF19, and thus, these ARFs were considered to have 
a stable expression during SE (Fig. S3).

Auxin treatment and ARFs expression

To reveal the ARFs with an auxin-regulated expression, 
in addition to the E5 auxin medium with a SE-promoting 
effect, the gene expression was also evaluated in IZEs that 
had been cultured on the auxin-free medium (E0) that 
resulted in seedling development. A comparison of the ARF 
expression profiles on the E5 versus E0 medium indicated 
that six ARF genes (ARF5, ARF6, ARF8, ARF9, ARF10, 
and ARF16) had a distinctly higher expression level under 
auxin treatment (Fig.  4). The majority of these genes 
(ARF5, ARF6, ARF8, ARF10, and ARF16) also showed a 
significantly increased transcript abundance in the embryo-
genic culture (Fig. 3). Thus, auxin treatment appears to be 
responsible for the distinct up-regulation of most of the 
ARF genes that are observed during SE. Among the ARFs 
that are auxin-stimulated and up-regulated during SE, 

ARF5 was ascertained to be the most highly auxin-respon-
sive and its expression was up to 16-times higher (5 days) 
on E5 than on the E0 medium. ARF9 was also identified 
among auxin-stimulated ARFs; however, its activity was 
not significantly increased between 0–15  days of SE cul-
ture. By contrast, ARF17, which was observed to be up-reg-
ulated during SE (Fig. 2), was found not to be stimulated in 
response to auxin treatment, which implies that other fac-
tors besides auxin may be responsible for the activation of 
ARF genes during SE.

ARFs differentially expressed in SE versus ORG

To determine whether the patterns of ARFs expression 
that were observed in the embryogenic culture are unique 
for SE induction or whether they result from the general 
processes of de- and re-differentiation that are expected 
in hormone-treated explant tissue, IZE explants that had 
undergone ORG were also studied. The results revealed 
that all 14 ARFs that were transcribed in the embryogenic 
culture were also expressed in the ORG culture (Fig. S4). 
Comparison of the gene expression levels during SE and 
ORG, using the RT-qPCR method, resulted in the identi-
fication of ARF genes that displayed distinctly different 

Fig. 3   ARF1 (a), ARF2 (b), ARF3 (c), ARF11 (d), and ARF18 (e) 
of down-regulated expression during the SE process. IZE explants of 
Col-0 were cultured on an E5 medium and the tissue was sampled on 
the 0, 3, 5, 10, and 15 days of the culture. The relative transcript level 

was normalized to the internal control (TIN gene) and calibrated to 
the 0  day culture. Asterisk expression level significantly different to 
that observed at 0 day at P < 0.05. Means and SD for three biological 
replicates are shown
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levels of activity in these processes. Four of the ARFs 
(ARF5, ARF6, ARF8, and ARF9) were observed to show a 
lower expression level during ORG than in the SE culture 
(Fig. 5). Three of them (ARF5, ARF6, and ARF8) appear to 
be especially interesting in terms of their possible involve-
ment in SE due to their considerably higher expression in 
the embryogenic culture.

Summary of the results of the PCR/qPCR analysis

Comparison of the ARF expression profiles in the explants 
that were subjected to different culture conditions that 
promote SE and ORG showed that similar ARFs were 
transcribed in these processes and that the set of the SE/
ORG-expressed genes included a majority (14 of 22) of 
the analyzed genes (Supplementary Table S2). The expres-
sion patterns of five of these ARFs (ARF6, ARF8, ARF9, 
ARF16, and ARF19) were distinctly different in SE com-
pared to ORG and ARF5, ARF6, ARF8, and ARF9 dis-
played a significantly higher transcript accumulation in SE 
than in ORG. Except for three genes (ARF7, ARF9, and 
ARF19) that were transcribed at a stable level in the embry-
ogenic culture, a predominant number of ARFs (11/14; 
79%) displayed a significantly modulated expression profile 

during SE and a similar number of the up- (6) and down- 
(5) regulated ARFs were observed. In line with the key role 
of auxin in the SE induction mechanism, it was found that 
auxin treatment might have been the cause of the increased 
expression of almost all of the genes that were up-regulated 
during SE with the exception of ARF17.

GFP reporter analysis of ARF expression 
during SE‑induced explants

The spatio-temporal pattern of ARFs expression in the IZE 
explants undergoing SE induction was analyzed using the 
GFP reporter lines. In particular, the explant areas that are 
involved in SE induction, i.e., the cotyledons and the vicin-
ity of SAM (Kurczyńska et  al. 2007) were inspected in 
terms of the GFP signal.

The GFP signal was identified in nine reporter lines 
that monitored expression of ARF1, ARF2, ARF3, ARF5, 
ARF6, ARF10, ARF16, ARF18, and ARF19, and in six of 
them, a reporter signal was detected in the IZE regions 
that are involved in SE induction (Fig. 6). In freshly iso-
lated IZE explants (0  day), a GFP signal was detected 
for ARF2, ARF3, ARF5, and ARF10. During the early SE 
induction (3–5 days), ARF5, ARF6, ARF10, and ARF16 

Fig. 4  ARF5 (a), ARF6 (b), ARF8 (c), ARF9 (d), ARF10 (e), and 
ARF16 (f) genes of auxin-stimulated expression during the SE pro-
cess. IZE explants of Col-0 were cultured on an E5 medium and the 
tissue was sampled on the 0, 3, 5, 10, and 15  days of the culture. 
Relative transcript level was normalized to the internal control (TIN 

gene) and calibrated to the gene expression in explants that had been 
induced on an auxin-free (E0) medium. Asterisk expression level sig-
nificantly different to that observed on the E0 medium at P < 0.05. 
Means and SD for three biological replicates are shown
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Fig. 5  ARF genes with a 
distinctly lower expression level 
in ORG than in the SE culture: 
ARF5 (a), ARF6 (b), ARF8 
(c), and ARF9 (d). Relative 
transcript level was normalized 
to the internal control (TIN 
gene) and calibrated to the 
ARFs expression during the SE 
process. Asterisk expression 
level significantly different to 
that observed in the SE culture 
at P < 0.05. Means and SD for 
three biological replicates are 
shown

Fig. 6  GFP-monitored ARF2, 
ARF3, ARF5, ARF6, ARF10, 
and ARF16 expression in the 
IZE explants that had been cul-
tured for 0, 3, 5, 10, and 15 days 
on an SE-induction medium. 
The GFP signal in the SE-
involved parts of the explants is 
indicated by an arrow
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were observed to be expressed along the cotyledons and 
in the vicinity of SAM and an especially strong GFP 
signal was seen in the ARF5 reporter line. SE-related 
expression in the early culture (3–5 days) also displayed 
two others genes, ARF2 and ARF3, with the GFP sig-
nal localized exclusively in the vicinity of SAM. In the 
advanced embryogenic culture (10–15  days), a weak 
GFP signal was seen in the developing somatic embryos 
in some of the reporter lines (ARF2, ARF3, ARF6, and 
ARF16), while a strong fluorescence indicative of the 
expression of ARF2, ARF5, ARF10, and ARF16, was 
found to be associated with the callus tissue produced at 
the base of the somatic embryos and in the explant parts 
not engaged in SE (hypocotyl and root).

Functional test of SE‑transcribed ARFs

arf mutants

To further explore the involvement of ARF genes in SE, 
the arf insertional mutants were analyzed in terms of their 
capacity for SE induction. In total, 12 of the arf mutants 
(arf1, arf2, arf3, arf5, arf6, arf7, arf8, arf10, arf11, arf16, 
arf17, and arf19) were evaluated and the analysis indicated 
that most (seven) of the arf mutants were impaired in their 
embryogenic response (Fig. 7a). Three of the mutants, arf1, 
arf5, and arf7, displayed a significant reduction in both of 
the parameters of SE capacity, i.e., SE efficiency and SE 
productivity. The other mutants were defective in SE effi-
ciency or SE productivity, and accordingly, arf3 and arf6 
displayed a reduced frequency of SE-responsive explants, 

Fig. 7  Functional test of SE-transcribed ARFs. The embryogenic 
potential, which was measured by SE efficiency and SE productivity, 
was evaluated in cultures derived from: arf insertional mutants (a); 
arf5 explants of a weak (W), middle (M), and strong (S) mutant phe-

notype (b); 35S::ARF2 overexpressor line (c). Asterisk embryogenic 
capacity significantly different to that observed in the Col-0 control 
culture at P < 0.05. Means and SD for three biological replicates are 
shown
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while arf8 and arf11 were observed to produce a signifi-
cantly fewer number of somatic embryos per responsive 
explant.

The arf5 mutant was found to be the most hampered in 
its embryogenic response and the severity of developmen-
tal defects that were displayed by the IZEs of the mutant 
(classified as a weak, medium, and strong mutant pheno-
type) was positively correlated with a reduction of the SE 
response (Fig.  7b). An extreme decrease in embryogenic 
capacity (over 80%) was observed in the culture of IZEs 
that had a strong, the so-called monopteros, mutant pheno-
type, which is characterised by a single cotyledon and the 
lack of the root meristem and hypocotyl (Odat et al. 2014).

ARF overexpressors

Further evidence of the considerable role of ARF5 in SE 
induction was provided by the analysis of the 35S::ARF5 
line. Overexpression of ARF5 results in the strongly defec-
tive development of plants including distorted inflores-
cences, which may terminate in pin-shaped inflorescence 
tips and high plant sterility (Hardtke et al. 2004). Therefore, 
only 20 IZEs were collected from 12 plants and cultured 
on the SE-induction medium. None of the explant overex-
pressing ARF5 was capable of developing somatic embryos 
and instead only a callus was formed.

In addition to a highly expressed ARF5 gene, the effect 
of overexpression on an explant’s capacity for SE was also 
evaluated in the 35S::ARF2 line that overexpressed an ARF 
that had a substantially decreased transcription during SE. 
The analysis indicated that the increased activity of ARF2 
resulted in a substantial reduction in embryogenic response 
and both SE efficiency and productivity were significantly 
reduced (Fig. 7c).

Candidate targets of ARFs in SE

We assumed that the targets of SE-modulated ARFs might 
be identified within the auxin-responsive TF genes that play 
a regulatory role in SE. Accordingly, using the Arabidopsis 
cis-regulatory element database (AGRIS; http://arabidop-
sis.med.ohio-state.edu/AtcisDB/), we found that an Auxin 
Response Element (AuxRE) is present in the promoters of 
the majority (60%) of SE-modulated TFs (Gliwicka et  al. 
2013) including the genes that were indicated to have an 
essential function in embryogenic transition such as LEAFY 
COTYLEDON (LEC1 and LEC2; Gaj et al. 2005), FUSCA3 
(FUS3; Ledwoń and Gaj 2011), WUSCHEL (WUS; Zuo 
et  al. 2002), BABY BOOM (BBM; Boutilier et  al. 2002), 
and MYB115 (Wang et al. 2009). It remains to be revealed 
which of the candidate ARFs bind to the promoters of 
the key regulators of SE. Among the ARF-TF regulatory 
interactions that operate during SE, the direct regulation of 

LEC2 by ARF5/MP cannot be excluded due to the signifi-
cantly reduced LEC2 transcript level that was found in an 
mp/arf5 mutant that had a seriously defective embryogenic 
response (Fig. S5).

To gain more insight into the ARF-mediated regulatory 
interactions that operate in SE, we also verified the pos-
sibility of an auto-feedback regulation of ARFs (Lau et al. 
2011; Okushima et  al. 2005). Accordingly, we used the 
AGRIS analytical tool to search for AuxREs in the promot-
ers of the ARFs that were found to display a significantly 
and SE-modulated expression level in this study. The analy-
sis showed the presence of AuxREs in the majority (85%) 
of the SE-modulated ARFs (Supplementary Table 3). Thus, 
the complexity of the ARF-controlled regulatory relations 
that operate in SE might be enhanced by the auto-feedback 
regulated transcription of the candidate ARFs.

Discussion

Numerous ARFs contribute to SE‑transcriptome 
via distinctly different expression patterns

Auxin signaling is believed to play a pivotal role in plant 
development including morphogenic processes that are 
induced in in vitro cultured explants (reviewed in Ikeuchi 
et  al. 2016; Weijers and Wagner 2016). Consistent with 
this belief, the global analysis of the SE-transcriptome of 
Arabidopsis indicated that components of the auxin signal-
ing pathway, including AUX/IAA and ARF, which are the 
main regulators of the auxin signaling, together with auxin-
responsive target genes are extensively modulated during 
SE induction (Gliwicka et  al. 2013; Wickramasuriya and 
Dunwell 2015). This study, whose aim was to identify the 
candidate ARFs that are involved in SE induction indicated 
that most (14/23) of the ARFs encoded in Arabidopsis 
genome were transcribed in the embryogenic culture and 
that the great majority of these (11) displayed a signifi-
cantly and SE-modulated expression level.

ARF proteins are believed to activate or repress the tar-
get genes (Weijers and Wagner 2016) and in the transient 
and heterologous assays, individual ARFs are classified 
as activators/repressors of the gene transcription (Tiwari 
et  al. 2001). According to this classification, the ARFs of 
SE-modulated expressions that were identified in this study 
represent both the activators (ARF5, ARF6, ARF7, ARF8, 
and ARF19) and repressors (ARF1, ARF2, ARF3, and 
ARF9) of the target gene transcription. However, it is nec-
essary to experimentally validate the regulatory relation-
ship between the ARFs and their SE-targeted genes among 
which the auxin-responsive genes encoding the TFs that 
have a documented function in SE such as LEC2, FUS3, 

http://arabidopsis.med.ohio-state.edu/AtcisDB/
http://arabidopsis.med.ohio-state.edu/AtcisDB/
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WUS, BBM, and MYB115 (reviewed in Nowak and Gaj 
2016) might be considered.

It is also worth noting that more complex behaviours of 
ARFs in SE than simply the direct activation/repression of 
the target genes may exist including binding ARFs with 
repressor and activator functions to the same AuxREs in 
the same target gene (Vernoux et al. 2011; Bargmann and 
Estelle 2014; Chandler 2016). Consistent with this expec-
tation, we observed a distinct up-regulation of several 
AuxRE-containing ARFs (ARF5, ARF6, ARF8, ARF10, and 
ARF16) in response to auxin treatment. In further support 
for a vital role of auxin treatment in the regulation of ARFs 
expression during SE, we observed that ARFs that lacked 
AuxRE were not transcribed (ARF14 and ARF22) or that 
their expression was not modulated (ARF7) in the embryo-
genic culture of Arabidopsis.

In addition to auxin, various abiotic stresses were also 
indicated as modulating the transcription of ARFs (Tian 
et  al. 2004; Hannah et  al. 2005; Jain and Khurana 2009; 
Blomster et  al. 2011; Naser and Shani 2016). Thus, the 
stress conditions including ROS (Reactive Oxygen Spe-
cies), which are actively produced under embryogenic cul-
ture, may control the expression of ARFs during SE induc-
tion (Zavattieri et al. 2010; Blomster et al. 2011).

ARF-mediated transcriptional responses are believed to 
be highly specific not only to the developmental process 
but also to tissue and cell type (Weijers et  al. 2005), and 
this raises a question about the extent of the similarities 
of the ARF-mediated auxin responses that are activated in 
different SE systems. A comparison of the transcriptional 
profiles of ARFs that were identified in the embryogenic 
cultures of various plants infers that the contribution of the 
individual ARFs to the mechanism of SE induction may 
differ between embryogenic cultures (Thibaud-Nissen et al. 
2003; Ooi et al. 2012; Yang et al. 2012; Xu et al. 2013; Lin 
et al. 2015; Indoliya et al. 2016; Zheng et al. 2016).

Considering the apparent molecular similarities of SE 
to ZE (Dodeman et al. 1997; Winkelmann 2016), we found 
the expression patterns of some ARFs to be convergent 
in both the embryogenic culture and in the ZE of Arabi-
dopsis, and, e.g., a significant up-regulation of ARF5 and 
ARF6 in both of these processes is evident (present results 
versus http://www2.bri.nrc.ca/plantembryo). In ZE, these 
closely related ARFs act synergistically; however, a muta-
tion in only in one of these genes, ARF5, causes substan-
tial defects in the zygotic embryo (Rademacher et al. 2011). 
In contrast to ZE, we found the arf6 mutant to be signifi-
cantly impaired in its capacity for SE and these inconsist-
ent mutant phenotypes suggest different contributions of 
ARF6 in the regulation of SE and ZE. In particular, differ-
ent roles and regulatory relations of individual ARFs can 
be expected in the very early stages of these processes. In 
contrast to the ZE that originates from a totipotent zygotic 

cell, SE induction involves the re-programming of already 
differentiated somatic cell/cells that respond to the auxin 
treatment. As a result, IAA is accumulated in the SE-
induced cells (Michalczuk et al. 1992; Ribnicky et al. 2002; 
Kurczyńska et al. 2007; Wójcikowska and Gaj 2015) and in 
turn, a unique SE-specific set of ARFs might be triggered. 
To illustrate the assumptive differences in auxin responses 
in the early ZE and SE, we observed a distinct down-regu-
lation of ARF2 and ARF3 during an early stage of SE that 
contrasted with the high expression of these genes in a 
zygotic cell of Arabidopsis (Rademacher et al. 2011; Xiang 
et al. 2011).

SE‑involved candidate ARFs—implications 
from the mutant analysis

To validate the SE-associated functions of the ARFs that 
had an SE-modulated expression pattern, the arf mutants 
were evaluated in terms of their embryogenic potential. The 
analysis showed that in spite of the extensive functional 
redundancy of the ARFs that were indicated in the develop-
mental processes (Hardtke et al. 2004; Guilfoyle and Hagen 
2007), the majority of the arf mutants were found to be 
defective in the SE response. These distinct SE-phenotypes 
of individual arf mutants suggest that the SE-related func-
tions of the ARF proteins are not simply interchangeable as 
was also postulated in ZE (Rademacher et al. 2012).

Several arf mutants including arf10 and arf16 were 
found not to be affected in embryogenic potential, although 
a significant and auxin-dependent accumulation of ARF10 
and ARF16 transcripts was associated with SE induc-
tion (present results). Thus, it may be possible that simi-
lar to in planta development (Wang et al. 2005) the ARF10 
and ARF16 genes also act redundantly in SE. In support 
of an ARF16 and ARF10, function in SE is the fact that 
these genes, together with IAA17/AXR3, act upstream of 
the PLETHORA (PLT) genes that regulate stem cell dif-
ferentiation in Arabidopsis roots (Ding and Friml 2010) 
and have an assumed interaction with auxin in the control 
of the early SE (Horstman et al. 2014). Relevantly to this 
assumption, the significant accumulation of ARF16 and 
ARF10 transcripts (present result) was accompanied by an 
increased expression of the IAA17/AXR3, PLT1, and PLT2 
in an embryogenic culture of Arabidopsis (Gliwicka et al. 
2013; Wickramasuriya and Dunwell 2015). Further sup-
port for the engagement of ARF10 and ARF16 in SE is that 
the up-regulation of these genes in the SE of Arabidopsis 
and other plants is accompanied by the down-regulation of 
miR160, which is a post-transcriptional regulator of ARF10 
and ARF16 expression in planta (Mallory et  al. 2005; 
Zhang et al. 2012; Lin and Lai 2013; Szyrajew et al. 2017).

The present results showed that mutations in ARF1 and 
ARF3 that had a distinctly down-regulated transcription 

http://www2.bri.nrc.ca/plantembryo
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during SE resulted in a significantly impaired embryogenic 
response. Similarly, a knockout mutation in the SE-engaged 
gene, ERF022, which had a highly repressed transcription 
during SE, caused a significantly reduced embryogenic 
response (Nowak et al. 2015). To interpret these unobvious 
effects of the SE-modulated genes with regulatory function, 
fine-tuning of the gene transcript level to that required for 
the promotion of the embryogenic transition might be con-
sidered. In support of this explanation, a specific level of 
PLT genes transcription was indicated to be associated with 
embryogenic response induced in culture of Arabidop-
sis explants (Horstman et  al. 2015). Thus, SE-promoting 
effect of ARFs might be dependent on their expression level 
and relevantly to this assumption in flower development, a 
specific level of ARF5 was found to be required for tran-
scriptional regulation of the LEAFY gene (Yamaguchi et al. 
2016).

Analysis of the overexpressor lines might be more 
informative than mutant analysis in the identification of 
the redundant gene functions (Prelich 2012). In accord-
ance with this expectation, a phenotype of the arf2 mutant, 
similar to ZE (Rademacher et  al. 2011), was not affected 
in SE, while the overexpression of ARF2 resulted in a sig-
nificant reduction of the embryogenic response (present 
results). Consistent with the general function of ARF2 that 
is annotated to the repression of cell divisions (Schruff 
et  al. 2006), we indicated a distinct down-regulation of 
this gene transcripts during SE. Another line of evidence 
that supports ARF2 involvement in the SE was provided by 
reports on the contribution of this gene to hormone-related 
responses including the repression of auxin signaling (Lim 
et al. 2010) and the integration of the auxin and brassinos-
teroid pathways (Vert et al. 2008).

ARF5/MONOPTEROS contribution to SE

Consistent with the global SE-transcriptome analysis, we 
found ARF5, which encodes the MONOPTEROS (MP) 
protein, to be the most highly expressed member of the 
ARF gene family in the embryogenic culture of Arabidop-
sis. An increased activity level of MP was also reported in 
an embryogenic culture of soybean (Thibaud-Nissen et al. 
2003). Thus, MP, similar to its fundamental role in the reg-
ulation of different aspects of ZE in Arabidopsis (Hardtke 
and Berleth 1998; Aida et al. 2002; Schlereth et al. 2010) 
seems to control the development of the somatic embryo. 
Evidence about a possible function of MP in auxin sign-
aling during SE was provided recently by the indicated 
regulatory relation between MP and PHABULOSA (PHB), 
which is a positive regulator of LEC2 that has an essential 
function in SE induction (Tang et  al. 2012; Wójcikowska 
et  al. 2013; Müller et  al. 2015). In support of the regula-
tory impact of MP on the PHB-LEC2, pathway in SE is the 

up-regulation of PHB that was observed in an embryogenic 
culture of Arabidopsis (A. Wójcik, MDG, data not pub-
lished) as well as the significantly reduced LEC2 transcript 
level in an mp/arf5 mutant (present results).

MP might also contribute to the embryogenic develop-
ment that is triggered in plant somatic cells by control-
ling other TF genes that have a documented role during 
in planta development, including HOMEOBOX GENE 
8 (ATHB8) and TARGET OF MONOPTEROS3 (TMO3), 
TMO5, TMO6, and TMO7 (Donner et  al. 2009; Schlereth 
et al. 2010). All of these MP targets were found to be up-
regulated during SE in Arabidopsis (Gliwicka et al. 2013; 
Wickramasuriya and Dunwell 2015).

Similar to other ARFs, the developmental specificity of 
ARF5/MP function is generated by interactions with Aux/
IAA proteins (Kieffer et al. 2010; Weijers et al. 2005), and 
many members of the Aux/IAA family were indicated to 
interact with MP in Arabidopsis (Krogan et  al. 2014). 
Among the SE-involved AUX/IAA candidates is IAA30, 
which interacts with MP in ZE (Müller et al. 2015), and in 
support of its role in SE, a significantly impaired embryo-
genic response of the iaa30 mutant was indicated (Gli-
wicka et al. 2013). Moreover, a regulatory relation between 
MP and BDL/IAA12 might be of importance for the SE 
induction mechanism as this protein pair is a major effector 
of auxin action in the zygotic embryo that influences the 
auxin-mediated cell-fate decisions in the early embryogen-
esis (Lau et al. 2011).

The function of MP in SE may also involve the regula-
tion of the polar auxin transport and disturbed auxin trans-
port was indicated to distinctly impair the embryogenic 
response of cultured explants (Chen and Chang 2004; 
Cueva-Agila et  al. 2016). The MP-mediated control of 
the PIN1 (PIN-FORMED1) gene that encoded the auxin 
efflux carrier was reported and a feedback regulatory loop 
that involves auxin, MP, and PIN1 was proposed (Wenzel 
et  al. 2007; Krogan et  al. 2016). Relevant to the assumed 
role of MP-mediated auxin transport pathway in SE, 
explants of a pin1-7 mutant were indicated to be defective 
in embryogenic induction in vitro (Su et al. 2009). Moreo-
ver, the 35S::ARF5 line that resembles the pin1 pheno-
types (Hardtke et al. 2004) was found to be incapable of SE 
induction (present results). In conclusion, the strong inhi-
bition of embryogenic potential that was observed in this 
study in the mp/arf5 mutant and in the 35S::ARF5 line pos-
sibly result from the disturbed auxin signaling and impaired 
auxin transport that are expected in these forms (Mattsson 
et al. 2003; Lau et al. 2011).

Besides auxin, the possible contributions of MP in SE 
also involve the regulation of the cytokinin response path-
way due to the involvement of MP in the regulation of cyto-
kinin responses during plant development in planta and 
in vitro (Zhao et al. 2010; Ckurshumova and Berleth 2015). 



Plant Cell Rep 

1 3

Considering that the patterning and cell organization that 
are associated with de novo regenerated shoot meristems 
resemble the formation of the embryonic SAM (Gordon 
et  al. 2007), a cytokinin signaling-related function of MP 
in the development of the somatic embryo might also be 
expected. The distinctly up-regulated expression of ARF10 
in SE (this study), which positively regulates de novo shoot 
regeneration via the activation of the shoot meristem-spe-
cific genes, supports this assumption (Qiao et al. 2012).

In conclusion, ARF5/MP is assumed to control SE 
via versatile pathways (Fig. S6) and further analyses are 
needed to experimentally verify which of the MP-mediated 
regulatory interactions occur in an embryogenic culture.

Conclusions

The study provides several pieces of evidence that numer-
ous ARFs, which are the core regulators of auxin response, 
contribute significantly to the embryogenic switch that is 
induced in plant somatic cells in vitro. The candidate ARFs 
provide guidelines for further research on the auxin-medi-
ated regulation of SE. Among the SE-involved candidates, 
the ARF5 encoding MP protein that has a substantial role 
in the development of the zygotic embryo seems to signifi-
cantly contribute to SE.

In the regulation of SE, similar to the in planta develop-
ment including ZE, not only do the activities of individual 
ARFs need to be considered, but also the total ARF com-
plement of a cell may create a pre-pattern that determines 
the SE-specific cellular response (reviewed in Chandler 
2016). Therefore, one current challenge in deciphering the 
SE-related auxin response is the identification of the spatio-
temporal and cell-specific sets of the ARFs and the interact-
ing AUX/IAA elements that contribute to the embryogenic 
transition of somatic cells. To understand the biological 
functions of ARFs in SE, the ARF-targeted TF genes are 
required to be identified. In addition, the miRNAs and 
chromatin remodelers that control the SE-involved ARFs 
need to be uncovered considering the recently indicated 
key role of the post-transcriptional regulation of ARFs in 
plant development (Mallory et al. 2005; Oh et al. 2014).
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