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is usually assumed that, after a quench, the far-from equilibrium fields are still spatially

uniform. Here we relax this assumption and study the time evolution of a holographic

superconductor after a temperature quench but allowing spatial variations of the order

parameter. Even though the initial state and the quench are spatially uniform we show the

order parameter develops spatial oscillations with an amplitude that increases with time

until it reaches a stationary value. The free energy of these inhomogeneous solutions is

lower than that of the homogeneous ones. Therefore the former corresponds to the physical

configuration that could be observed experimentally.
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1 Introduction

Most physical processes occur under non-equilibrium conditions. Small deviations from

equilibrium are well understood in the framework of linear response theory. However the

description of the dynamics beyond linear response is still one of the most challenging

problems in theoretical physics. Recent experimental advances in the study of the far-

from equilibrium dynamics after a quench are opening new research avenues in condensed

matter [1–3] and cold atom physics [4]. A typical example is the study of the spontaneous

generation of defects [4] in a Bose gas after a temperature quench across the superfluid

transition which is qualitatively described by the Kibble-Zurek mechanism [5–7].

More quantitative theoretical results are known [8–10] in the more tractable problem

of the dynamics of a zero dimensional mean-field superconductor after a quantum quench.

An analytical study [8–10] of the far-from equilibrium time evolution of a Bardeen-Cooper-

Schrieffer (BCS) superconductor resulted, in a certain region of parameters, in undamped

time oscillations of the order parameter. However it was later [11] realized that for system

sizes larger than the superconducting coherence length the quench can excite finite mo-

mentum states. This results in spatial inhomogeneities of the order parameter that make

the time oscillations unstable. Exact results in a one dimension quantum spin-chain that

is driven from paramagnetic to ferromagnetic [12] confirm this picture.

Despite these advances there is not yet a comprehensive theoretical framework to de-

scribe quantitatively most of these phenomena. The recent introduction of the holographic

principle, also called the (Anti de Sitter/Conformal field theory) AdS/CFT correspon-

dence [13–15], in this context [16–20] has broaden considerably the theoretical tools to

tackle non-equilibrium problems. In the context of holographic superconductivity [21, 22],

the problem we study here, there are already several studies that employ AdS/CFT tech-

niques to describe the time evolution of the order parameter after a thermal [23–26] or

quantum [27, 28] quench. In these papers it was assumed that the order parameter was

spatially uniform. This is a useful simplification since the gravity equations of motion

depend only on two instead of three variables. However from the above discussion it is
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plausible that spatial inhomogeneities play a important role in the dynamic evolution of the

order parameter. Indeed recent AdS/CFT calculations have shown [29–31] that a coupling

to an axion field or a topological Chern-Simon term can induce a spontaneously breaking

of translational invariance. Spatially inhomogeneous solutions of the gravity equations are

also a crucial ingredient in the recent description of two dimensional turbulence [32] by

holographic techniques. The dynamics after a soft quench across a thermal or quantum

critical point suggests [34] that spatially inhomogeneous solutions might be stable. In the

context of heavy ion collisions it was recently studied the far-from equilibrium dynamics

in the presence of spatial inhomogeneities [33]. It is therefore timely to ask whether the

spontaneous breaking of translational symmetry can also be induced by a quench. Here

we respond this question affirmatively. We study the evolution of the order parameter

of a holographic superconductor after a quench induced by turning on the source of the

order parameter. Even though the initial state and the quench are spatially homogeneous

we have observed that, for all quenches studied, the order parameter becomes spatially

inhomogeneous for sufficiently long times. This spatially non-uniform solution has a lower

free energy than the homogeneous one. We start our analysis by introducing the gravity

dual and working out the solutions of the equations of motion (EOM).

2 The model and the boundary conditions

The starting action in the usual gravity dual of a holographic superconductor is [21, 22],

S =
∫
d4x
√
−g
[
R− 2Λ− 1

4FµνF
µν − |∇ψ − iqAψ|2 −m2|ψ|2

]
where Λ = −d(d − 1)/2L2

is the cosmological constant while d is the dimension of the boundary, Fµν = ∂µAν −
∂νAµ is the strength of the gauge field. The metric is an AdS Schwarzschild black hole,

ds2 = −f(r)dt2 + dr2

f(r) + r2
(
dx2 + dy2

)
with f (r) = r2/L2

(
1− r30/r3

)
, r the bulk radial

coordinate, r0 the horizon position, and x, y the boundary coordinates. Without loss of

generality we set q = 1, L = 1. The temperature of the black hole is T = 3r0
4π .

We aim to find solutions that depend explicitly not only on time and the holographic

coordinate r but also on the spatial coordinate x in the boundary, ψ = ψ(t, r, x), ψ∗ =

ψ∗(t, r, x), A = (At(t, r, x), Ar(t, r, x), Ax(t, r, x), 0). However these functions are not gauge-

invariant. In order to define gauge-invariant fields, we employ the following gauge trans-

formations, ψ(t, r, x) = ρ(t, r, x)eiϕ(t,r,x), ψ∗(t, r, x) = ρ(t, r, x)e−iϕ(t,r,x) and Ai(t, r, x) =

Mi(t, r, x)+∂iϕ(t, r, x), i = t, r, x. The EOM resulting from the gravity Einstein equations

for the gauge invariant fields ρ and Mi are,

∂2xMt

r2f
− 2Mtρ

2

f
− ∂txMx

r2f
− 2∂tMr

r
− ∂trMr +

2∂rMt

r
+ ∂2rMt = 0, (2.1)

−f∂
2
xMr

r2
+ 2fMrρ

2 +
f∂rxMx

r2
+ ∂2tMr − ∂trMt = 0, (2.2)

ff ′∂xMr − ff ′∂rMx + f2∂rxMr − f2∂2rMx + 2fMxρ
2 − ∂txMt + ∂2tMx = 0, (2.3)

ρ

(
f

(
M2
x

r2
+m2

)
+ f2M2

r −M2
t

)
− f∂2xρ

r2
− f2∂2rρ+ ∂2t ρ−

f (rf ′ + 2f) ∂rρ

r
= 0, (2.4)

ρ
(
−r2ff ′Mr − r2f2∂rMr − 2rf2Mr − f∂xMx + r2∂tMt

)
−2r2f2Mr∂rρ− 2fMx∂xρ+ 2r2Mt∂tρ = 0. (2.5)
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We note that the phase ϕ is automatically cancelled and that the last equation (2.5) is a

linear combination of the first three equations, i.e., eqs. (2.1), (2.2) and (2.3). Therefore

we have a well defined problem as there are four independent partial differential equations

and four fields, ρ,Mt,Mr and Mx.

In the limit of time independent fields, it is clear that only eq. (2.1) and (2.4) survive

as Mr = 0 and Mx = 0 are solutions to the above equations. However time dependent

solutions require to turn on Mr and Mx in order for the EOM to be gauge invariant and

self-consistent.

We can now introduce the boundary conditions needed to solve the EOM. Following

the standard AdS/CFT dictionary, close to the boundary we impose,

Mt = µ(t, x)− ρ̃(t, x)/r + . . . , (2.6)

and ρ = ρ1(t, x)/r+ρ2(t, x)/r2+. . . , Mr = M
(2)
r (t, x)/r2+. . . , Mx = v(t, x)+J̃(t, x)/r+. . .

where we have set m2 = −2, ρ̃ is the charge density and µ is the chemical potential. Before

the quench we impose ρ1 = 0 so that ρ2 is the order parameter,

〈O(x, t)〉 ≡ ρ2(x, t) . (2.7)

Since we do not consider the case of a finite super-current we can safely set J̃ = 0. At the

horizon we impose that Mt = 0 and that the rest of functions have no singularities. The

next task is to define the thermal quench and to solve the EOM by a suitable numerical

algorithm.

3 Definition of the quench and solution of the EOM

We aim to study the time evolution of the order parameter 〈O(x, t)〉 after a quench, namely,

an abrupt change in the system. Following ref. [24, 28] we induce the quench by turning on

the source in the expansion of scalar around the boundary, ρ = ρ1(t, x)/r + ρ2(t, x)/r2 + . . .

with

ρ1 = J tanh(vt) . (3.1)

Qualitatively the physical situation that we want to describe is the time evolution of the

order parameter of a superfluid which is suddenly put in contact with other superconductor

(the source). In the condensed matter literature this is what is called superconductivity by

“proximity effect”. In our setting, the source, if turned on fast enough, changes abruptly the

properties of the initial superfluid which induces an out of equilibrium evolution of the order

parameter. The Gaussian quench employed in ref. [24] is less suitable for our purposes. The

calculation of ref. [24] includes backreaction so this Gaussian quench effectively changes

the temperature of the field theory despite the fact the source is turned on only for a brief

period of time. We are in the probe limit so the temperature in our calculation is fixed.

For that reason thy type of quench is not suitable for our purposes.

We note that with our choice of coordinates the order parameter is still given by

ρ2(t, x), please consult the appendix for more details. For v � 1 the source goes from

zero to J very quickly which has the effect to excite the system to a far-from equilibrium

– 3 –
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state. We keep the chemical potential constant, µ = µ0 and let the charge density vary.

At t = 0 we assume the system is described by a homogeneous and static solution of the

EOM with µ(x, t = 0) = µ0. Obviously, as has been recently discussed in ref. [29–31],

it is always necessary to add a tiny seed of inhomogeneity so that the numerical code

can find true inhomogeneous solutions with a lower free energy. This seed is typically

a (quasi)random noise of amplitude much smaller than the inhomogeneity resulting after

long times after the quench. In our case it is of order 10−7 and it is induced by the spectral

method that we employ. The shape and form of this initial seed is completely unrelated to

the true inhomogeneities that develop for long times. Quantum and thermal fluctuations,

ubiquitous in any realistic physical system, have an equivalent effect.

The EOM evolves this solution to a solution that verifies the above boundary condition

for the scalar close to the boundary. We choose v, J, µ0 so that the system is always

superfluid, namely, µ0 > µc ∝ 1/Tc where in our quantization, µc = 4.0636 [21, 22]. We stay

relatively close to Tc so that the probe limit that we employ is still a good approximation.

In order to solve the coupled partial differential equations we used the spectral method [35].

We discretize the EOM on a three dimensional Chebyshev grid with 40 points along the

t direction and 20 points along the z = 1/r direction, and up to 30 points along the x

direction. We study the time evolution for different values of J, v. An important comment

is in order. For technical reasons we do not have much flexibility to tune these parameters.

If v is very large then the perturbation is very slow so it is not really a quench. Moreover

it will take a long time to observe any interesting effect. For v too small the perturbation

is very fast, a true quench, so we expect a relatively fine structure in the time and space

evolution of the order parameter which cannot be resolved by the maximum number of

points that we can simulate. More specifically we need that the coherence length which

controls the spatial inhomogeneities be larger than the cutoff induced by the finite lattice

spacing. That constraints the values of J ≤ 1 and v ∼ 0.1.

4 The spatially inhomogeneous solution

As was mentioned previously the problem of the dynamics of a holographic superconductor

after a quench has already been investigated [23–26] but in the limit of spatial homogeneity.

Here we show that a thermal quench makes the order parameter spatially inhomogeneous

at least for the abrupt changes of temperature that we explore in this paper. More impor-

tantly we provide compelling evidence that these solutions have a lower free energy than

the homogeneous ones. Results for the quench with J = 1 and v = 0.1 are shown in figure 1

and figure 2. The time evolution is similar for different spatial points. However the spatial

dependence strongly depends on time. For short times it is almost spatially homogeneous

however, for longer times, spatial oscillations of growing amplitude are clearly observed.

The dependence on x seems to be oscillatory which suggests that only few Fourier modes

are excited by the quench. For smaller v or larger J we expect a more intricate pattern.

However it would require a smaller lattice spacing which is beyond our numerical capabili-

ties. The wavevectors ko of the oscillations of the order parameter is inversely proportional

to the superconducting coherence length ko ∼ n/ξ with n an integer. For sufficiently

– 4 –
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Figure 1. Space and time dependence of the the order parameter 〈O(x, t)〉 eq. (2.7) after the

quench eq. (3.1) with v = 0.1, µ = 6 and, from top to bottom, J = 1.5, J = 1.2 and J = 0.1.

strong quenches this coherence length does not have to correspond to the equilibrium one

but rather to the one at which the evolution became non adiabatic [5–7]. This is nothing

but a consequence of the Kibble-Zurek mechanism.

Physically this relatively simple oscillating pattern is an indication that the initially

homogeneous order parameter decays into two states of finite and opposite momentum.

Finally we stress that even though the temperature is well defined across the sample,

namely the chemical potential µ is uniform, the order parameter 〈O〉 still develops a spatial

dependence that grows with time.

These findings are consistent with those previously obtained [8–10] for weakly cou-

pled superconductors in the condensed matter literature. Physically the spatial inhomo-

geneities [8–10] are a consequence of re-arrangements of the order parameter in space and

time after a quench which are compatible with the conservation of energy and momen-

tum [8–10]. Similar results, depicted in figure 3, are observed for other quench parameters.

In summary in the range of parameters that we can explore numerically we observe

that, after the quench eq. (3.1), the superconductor eventually becomes spatially inhomo-

geneous. However these results assume that the order parameter is still defined as 〈O〉 = ρ2
after the quench. How can be sure about it? In principle the definition of the order param-

eter might depend on the quench details and the system of coordinates. In the appendix

we carry out the calculation explicitly for our case and show that indeed 〈O〉 = ρ2 after

the quench. As an additional check we also verify numerically, see figure 4, that the only

contribution to ρ1 comes from the quench itself J tanh(vt).
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Figure 2. Upper: the order parameter 〈O(t)〉 for a quench µ = 6, v = 0.1, J = 1.2 as a function of

time for different x’s: x = 0 (red), x = 1.1322 (pink), x = 3.247 (black) and x = 4 (blue). Lower:

the order parameter 〈O(x)〉, for the same quench but for different times, t = 0 (blue), t = 1 (red)

t = 5 (black), and t = 40 (green).

Figure 3. Space and time dependence of the the order parameter 〈O(x, t)〉 eq. (2.7) after the

quench eq. (3.1) with v = 0.1, µ = 4.5 and J = 0.8 (left), J = 1.2 (right).

Another issue more specific of the quench eq. (3.1) is that it does not vanish for t→∞.

In principle it is not clear whether the final state corresponds to a system with spontaneous

symmetry breaking. Previously [36] it has been shown that in certain cases a double trace

deformation, similar to adding a source, can still induce spontaneous symmetry breaking.

Here our motivation is not to fully enter in this question but rather to show that our results

are independent of the quench details or the exact nature of the final state. For that purpose

we also study, see figure 5, a quench ρ1 = J(1− tanh(vt)) for which the source vanishes for

sufficiently long times and therefore the symmetry is, without any doubt, spontaneously

broken. As was expected the results for this quench are almost identical to those obtained

from the eq. (3.1). This is a further confirmation that the spontaneous generation of spatial

inhomogeneities is a universal phenomenon that do not depend on the quench details.
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Figure 4. The difference between the numerical result of ρ1 and the value of the source J tanh(vt)

in the case v = 0.1, µ = 6 and J = 1.5. It is clearly observed that the difference is extremelly small

for all times considered. This is a further confirmation that also after the quench 〈O〉 = ρ2.

Figure 5. Space and time dependence of the the order parameter 〈O(x, t)〉 eq. (2.7) after the

quench ρ1 = J(1− tanh(vt)) for µ = 4.1, J = 0.1 and v = 1.1.

5 Stability of the inhomogeneous solution

Next we investigate whether these inhomogeneous solutions correspond to the physical state

of minimum energy. For that purpose we compare the free energy of the homogeneous and

non-homogeneous solutions for long times around t = tf so that spatial inhomogeneities

are more clearly observed. The free energy F = −TSos + . . . is directly related to the on

shell action Sos [37]. In order to evaluate Sos it is convenient to integrate by parts and use

the equations of motion which results in,

Sos =

∫
z=0

d3x

[
h

z2
ρρ′−MtM

′
t+hMxM

′
x+h2MrM

′
r

]
−
∫
d4x

[
M2
t

hz2
ρ2 − M2

xρ
2

z2
+
h

z2
M2
r ρ

2

]
,

where z = 1/r, h(z) = 1 − z3 and ′ stands for the derivative with respect to z. We work

in the grand canonical ensemble characterized by a fixed µ. It is possible to show that

boundary contributions have divergences coming from the scalar contribution. Fortunately

this divergence can be removed by adding a counterterm. The resulting renormalized free

– 7 –
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Figure 6. The difference between the free energy eq. (5.1) of the inhomogeneous and the homoge-

neous solution ∆F (t) as a function of time for two different quenches. Interestingly the difference

becomes clearly negative after the spatial inhomogeneities become substantial. The fluctuations

observed for short times are a numerical artefact. A finer grid, beyond our numerical capabilities,

would be needed to capture accurately the far from equilibrium dynamic shortly after the quench.

energy is given by,

F ∝
∫
z=0

d3x
[
MtM

′
t

]
+

∫
d4x

[
M2
t

hz2
ρ2 − M2

xρ
2

z2
+
h

z2
M2
r ρ

2

]
. (5.1)

This expression is already suitable to compute the free energy for both homogeneous and

inhomogeneous solutions at four different times which are close to tf . The results, depicted

in figure 6, provide clear evidence that for all quenches the inhomogeneous solution has

always a lower free energy. This is a confirmation that, in general, thermal quenches

not only make the order parameter time dependent but also space dependent. Therefore

spatial inhomogeneity is an intrinsic ingredient in the dynamics of a strongly coupled

superconductor after a homogeneous thermal quench.

In conclusion we have studied the time evolution of a holographic superconductor after

abruptly turning on the source of the scalar field. For all the quenches studied the solution

with the lowest free energy is spatially non-uniform. Time oscillations become unstable as

spatial non homogeneities develop. To a good approximation the spatial dependence is a

simple oscillatory function with an amplitude that increases with time until reaches, in the

range of times studied, a constant value.
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A Vacuum Expectation Value 〈O〉

The generic on-shell action of the Maxwell-complex scalar action is,

Son-shell = −1

2

∫
d4x∂a

[√
−g
(
AbF

ab + ψ∗∂aψ + ψ∂aψ∗
)]

+
iq

2

∫
d4x
√
−gAa

(
ψ∗∂aψ − ψ∂aψ∗ − 2iqAa|ψ|2

)
. (A.1)

The first integral in eq. (A.1) is related to the surface term since there is a total derivative

before the integrand, while the second integral is in the bulk.

If we are going to calculate the vacuum expectation value (VEV) of the operator 〈O〉,
we should focus on the surface integral rather than the bulk integral in eq. (A.1). It is

Ssurface = −1

2

∫
d4x∂a

[√
−g
(
AbF

ab + ψ∗∂aψ + ψ∂aψ∗
)]

= −1

2

[∫
drdxdy r2

(
−ArFtr −

Ax
fr2

Ftx + ψ∗∂tψ + ψ∂tψ∗
) ∣∣∣∣tf

ti

+

∫
dtdxdy r2

(
−AtFrt +

Axf

r2
Frx + ψ∗∂rψ + ψ∂rψ∗

) ∣∣∣∣r∞
r0

+

∫
dtdrdy r2

(
− At
fr2

Fxt +
Arf

r2
Fxr + ψ∗∂xψ + ψ∂xψ∗

) ∣∣∣∣xf
xi

]
. (A.2)

The first and the last terms in the second equality will not be considered when we are

calculating the VEV of the operator, since they are integrals in the r direction which do

not explicitly contain the source term ρ1. Therefore, only the following term remains,

Ssurface−new = −1

2

∫
dtdxdy r2

(
−AtFrt +

Axf

r2
Frx + ψ∗∂rψ + ψ∂rψ∗

) ∣∣∣∣r∞
r0

(A.3)

= −1

2

∫
dtdxdy r2

[
−At (∂rAt − ∂tAr) +

Axf

r2
(∂rAx − ∂xAr) + 2fρ∂rρ

] ∣∣∣∣r∞
r0

.

Since f(r0) = At(r0) = 0, therefore the above eq. (A.3) becomes,

Ssurface−new = −1

2

∫
dtdxdy

[
r2(At∂tAr −At∂rAt)

∣∣
r=r∞

+ f(Ax∂rAx −Ax∂xAr)
∣∣
r=r∞

+ 2fr2ρ∂rρ
∣∣
r=r∞

]
. (A.4)

The first two terms are finite at the infinite boundary r = r∞, only the last term is divergent

near the boundary, therefore we can add a counter term

Scounter−term = −
∫
dtdxdy

√
−γ|ψ|2 = −

∫
dtdxdy

√
−γρ2 , (A.5)

– 9 –
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where γ is a reduced metric on the boundary and
√
−γ = r2

√
f . Therefore, the regularized

action is

Sregular = Ssurface−new + Scounter−term

= −1

2

∫
dtdxdy

[
r2(At∂tAr −At∂rAt) + f(Ax∂rAx −Ax∂xAr)

] ∣∣
r=r∞

+

∫
dtdxdy ρ1ρ2 +O(1/r). (A.6)

Therefore, the VEV 〈O〉 is

〈O〉 =
δSregular
δρ1

= ρ2 (A.7)

which is the same as the one in ref. [21, 22].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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