
Sacomoto et al. Algorithms Mol Biol  (2015) 10:20 
DOI 10.1186/s13015-015-0046-4

RESEARCH

A polynomial delay algorithm for the 
enumeration of bubbles with length  
constraints in directed graphs
Gustavo Sacomoto1,2,3,4*, Vincent Lacroix1,2,3,4 and Marie‑France Sagot1,2,3,4

Abstract 

Background: The problem of enumerating bubbles with length constraints in directed graphs arises in transcrip‑
tomics where the question is to identify all alternative splicing events present in a sample of mRNAs sequenced by 
RNA‑seq.

Results: We present a new algorithm for enumerating bubbles with length constraints in weighted directed graphs. 
This is the first polynomial delay algorithm for this problem and we show that in practice, it is faster than previous 
approaches.

Conclusion:  This settles one of the main open questions from Sacomoto et al. (BMC Bioinform 13:5, 2012). Moreover, 
the new algorithm allows us to deal with larger instances and possibly detect longer alternative splicing events.
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Background
Transcriptomes of model or non model species can now 
be studied by sequencing, through the use of RNA-seq, a 
protocol which allows to obtain, from a sample of RNA 
transcripts, a (large) collection of (short) sequencing 
reads using Next Generation Sequencing (NGS) tech-
nologies [1, 2]. Nowadays, a typical experiment produces 
100M reads of 100  nt each. However, the original RNA 
molecules are longer (typically 500–3,000  nt) and the 
general computational problem in the area is then to be 
able to assemble the reads in order to reconstruct the 
original set of transcripts. This problem is not trivial for 
mainly two reasons. First, genomes contain repeats that 
may be longer than the read length. Hence, a read does 
not necessarily enable to identify unambiguously the 
locus from which the transcript was produced. Second, 
each genomic locus may generate several types of tran-
scripts, either because of genomic variants (i.e. there 
may exist several alleles for a locus) or because of tran-
scriptomic variants (i.e. alternative splicing or alternative 

transcription start/end may generate several transcripts 
from a single locus that differ by the inclusion or exclu-
sion of subsequences). Hence, if a read matches a sub-
sequence shared by several alternative transcripts, it is 
a priori not possible to decide which of these transcripts 
generated the read.

General purpose transcriptome assemblers [3–5] aim 
at the general goal of identifying all alternative transcripts 
from a set of RNA-seq reads, but due to the complexity 
of the problem several simplifications and approxima-
tions are applied, as a result they usually fail to identify 
infrequent transcripts, tend to report several fragments 
for each gene, or fuse genes that share repeats. Local tran-
scriptome assemblers [6], on the other hand, aim at a sim-
pler goal as they do not reconstruct full length transcripts. 
Instead, they focus on reporting all variations, whether 
genomic (SNPs, indels) or transcriptomic (alternative 
splicing events). They are much less affected by the issue 
of repeats, since they focus only on the variable regions. 
They can afford to be exact and therefore are able to have 
access to infrequent transcripts. The fundamental idea is 
that each variant corresponds to a recognizable pattern, 
called a bubble in the de Bruijn graph (DBG) built from 
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the RNA-seq reads. In practice, only bubbles with spe-
cific length constraints are of interest. However, even with 
this restriction, the number of such bubbles can be expo-
nential in the size of the graph. Therefore, as with other 
enumeration problems, the best possible algorithm is one 
spending time polynomial in the input size between the 
output of two bubbles, i.e. a polynomial delay algorithm.

There were four main algorithmic questions left open 
in [6]: (i) a polynomial delay algorithm to enumerate 
bounded length bubbles, (ii) a practical algorithm to 
retrieve events with a long variable part, (iii) a practical 
algorithm to retrieve mutually exclusive exons, and (iv) a 
practical algorithm to deal with complex regions (likely 
repeat-associated) in DBGs.

In this paper, we provide a solution to the first ques-
tion and partial one to the second. We introduce the first 
polynomial delay algorithm to enumerate all bubbles 
with length constraints in a weighted directed graph. Its 
complexity in the best theoretical case for general graphs 
is O(n(m+ n log n)) (“An O(n(m+ n log n)) delay algo-
rithm”) where n is the number of vertices in the graph, 
m the number of arcs. In the particular case of de Bruijn 
graphs, the complexity is O(n(m+ n log α)) (“Dijkstra’s 
algorithm with different priority queues”) where α is a 
constant related to the length of the skipped part in an 
alternative splicing event. In practice, an algorithmic 
solution in O(nm log n) (“Comparison with the Kissplice 
algorithm”) appears to work better on de Bruijn graphs 
built from such data. We implemented the latter, show 
that it is more efficient than previous approaches and 
outline that it allows to discover novel long alternative 
splicing events. Note that it is out of the scope of this 
paper to analyze the precision and recall of the algorithm. 
For that we refer to [6]. Finally, we consider (“A natural 
generalization”) the enumeration of a structure that is a 
natural generalization of bubbles.

De Bruijn graphs and variations in the 
transcriptome
A DBG is a directed graph G = (V ,A) whose vertices V  
are labeled by words of length k over an alphabet �. An 

arc in A links a vertex u to a vertex v if the suffix of length 
k − 1 of u is equal to the prefix of v. The out and the in-
degree of any vertex are therefore bounded by the size of 
the alphabet �. In the case of NGS data, the k-mers cor-
respond to all words of length k present in the reads of 
the input dataset, and only those. In relation to the clas-
sical DBG for all possible words of size k, the DBG for 
NGS data may then not be complete. Given two vertices 
s and t in G, an (s, t)-path is a path from s to t. As defined 
in [7], by a (s, t)-bubble, we mean two vertex-disjoint (s, t)
-paths. This definition is, of course, not restricted to de 
Bruijn graphs.

As was shown in [6], variations in a transcriptome 
(including SNPs, indels, AS events, but not alternative 
transcription start/end) correspond to recognizable pat-
terns in the DBG that are precisely the (s, t)-bubbles. 
Intuitively, the variable parts correspond to alternative 
paths and the common parts correspond to the beginning 
and end points of those paths. More formally, any process 
generating patterns awb and aw′b in the sequences, with 
a, b,w,w′

∈ �∗, |a| ≥ k , |b| ≥ k and w and w′ not sharing 
any k-mer, creates a (s, t)-bubble in the DBG.

Bubbles can then be classified according to the length 
of their paths. In the case of SNPs, |w| = |w′

| = 1 and 
each path of the bubble corresponds to the set of k  
k-mers overlapping the variable nucleotide. In the case of 
genomic indels and most types of AS events (exon skip-
ping, alternative donor/acceptor, intron retention), w′ is 
empty and one of the paths corresponds to the junction 
of ab, i.e. to k-mers that contain at least one letter of each 
sequence. Thus the number of vertices of this path in the 
DBG is predictable: it is at mosta k − 1. An example is 
given in Figure 1.

In the special case of mutually exclusive exons, w′ is 
not empty and this restriction on the length of one of the 
paths does not hold. Additionally, transcriptomes contain 
repeats, which may also generate bubbles. Repeat-asso-
ciated bubbles have unpredictable length. In practice, 
some of these bubbles may have one path with less than 
k − 1 nodes. However, they exhibit a high sequence simi-
larity between w and w′, a property that can be used to 

ACT CTG

TGG GGA GAG AGC

GCG

TGC

Figure 1 Bubble in DBG. DBG with k = 3 for the sequences: ACTGGAGCG (awb) and ACTGCG (ab). The pattern in the sequence generates a (s, t)
‑bubble, from CTG to GCG. In this case, b = GCG and w = GGA have their first letter G in common, so the path corresponding to the junction ab has 
k − 1− 1 = 1 vertex.
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discriminate them, in a post-processing step, from true 
AS events.

Moreover, in order to optimise the specificity, a lower 
bound β on both paths is imposed  [6]. Bubbles with 
at least one very small path tend to be false positives. 
Finally, in order to optimize the time performance, and to 
a lesser extent, the specificity, an upper bound α for the 
longer path is also imposed [6].

Overall, if we neglect mutually exclusive exons, search-
ing for AS events corresponds to searching for (s, t)
-bubbles with paths p1 and p2 such that p1 has at most 
α vertices, p2 at most k − 1, and both have at least β ver-
tices. Increasing the upper bound of p2 to k instead of 
k − 1 also captures SNPs.

Given a directed graph G with non-negative 
arc weights w : E �→ Q

≥0, the length of the path 
p = (v0, v1) · · · (vn−1, vn) is the sum of the weights of 
the edges in p and is denoted by |p|. The distance, that is 
the length of the shortest path from u to v is denoted by 
d(u, v). We extend the definition of bubble given above.

Definition 1 ((s, t,α1,α2)-bubble) A (s, t,α1,α2)-bubble 
in a weighted directed graph is a (s, t)-bubble with paths 
p1, p2 satisfying |p1| ≤ α1 and |p2| ≤ α2.

In practice, when dealing with DBGs built from NGS 
data, in a lossless preprocessing step, all maximal non-
branching linear paths of the graph (i.e. all paths con-
taining only vertices with in and out-degree 1) are 
compressed each into one single vertex, whose label 
corresponds to the label of the path [i.e. it is the concat-
enation of the labels of the vertices in the path without 
the overlapping part(s)]. The resulting graph is the com-
pressed de Bruijn graph (cDBG). In the cDBG, the verti-
ces can have labels larger than k, but an arc still indicates 
a suffix-prefix overlap of size k − 1. Finally, since the 
only property of a bubble corresponding to an AS event 
is the constraint on the length of the path, we can dis-
regard the labels from the cDBG and only keep for each 
vertex its label length. Resulting in a graph with weights 
in the vertices. Here, however, we consider weights in the 
arcs. Since this is more standard and, in our case, both 
alternatives are equivalent, we can transform one into 
another by splitting vertices or arcs. In this way, search-
ing for bubbles corresponding to AS events in a cDBG 
can be seen as a particular case of looking for (s, t,α1,α2)
-bubbles satisfying the lower bound β in a non-negative 
weighted directed graph.

Actually, it is not hard to see that the enumeration, 
for all s and t, of (s, t,α1,α2)-bubbles satisfying the lower 
bound β is NP-hard. Indeed, deciding the existence of at 
least one (s, t,α1,α2)-bubble, for some s and t, with the 
lower bound β in a weighted directed graph where all the 
weights are 1 is NP-complete. This follows by a simple 

reduction from the Hamiltonian st-path problem  [8]: 
given a directed graph G = (V ,A) and two vertices s and 
t, build the graph G′ by adding to G the vertices s′ and 
t ′, the arcs (s, s′) and (t, t ′), and a new path from s′ to t ′ 
with exactly |V | vertices. There is a (x, y, |V | + 2, |V | + 2)

-bubble, for some x and y, satisfying the lower bound 
β = |V | + 2 in G′ if and only if there is a Hamiltonian 
path from s to t in G.

From now on, we consider the enumeration of all 
(s, t,α1,α2)-bubbles (without the lower bound) for a 
given source (fixed s) in a non-negative weighted directed 
graph G (not restricted to a cDBG). The number of verti-
ces and arcs of G is denoted by n and m, respectively.

An O(n(m+ n logn)) delay algorithm
In this section, we present an O(n(m+ n log n)) 
delay algorithm to enumerate, for a fixed source s, all 
(s, t,α1,α2)-bubbles in a general directed graph G with 
non-negative weights. In a polynomial delay enumeration 
algorithm, the time elapsed between the output of two 
solutions is polynomial in the instance size. The pseudoc-
ode is shown in Algorithm 1. It is important to stress that 
this pseudocode uses high-level primitives, e.g. the tests 
in lines 5, 11 and 19. An efficient implementation for the 
test in line 11, along with its correctness and analysis, is 
implicitly given in Lemma 4. This is a central result in this 
section. For its proof, we need Lemma 2.

Algorithm  1 uses a recursive strategy, inspired by the 
binary partition method that successively divides the 
solution space at every call until the considered subspace 
is a singleton. In order to have a more symmetric struc-
ture for the subproblems, we define the notion of a pair 
of compatible paths, which is an object that generalizes 
the definition of a (s, t,α1,α2)-bubble. Given two verti-
ces s1, s2 ∈ V  and upper bounds α1,α2 ∈ Q

≥0, the paths 
p1 = s1 � t1 and p2 = s2 � t2 are a pair of compat-
ible paths for s1 and s2 if t1 = t2, |p1| ≤ α1, |p2| ≤ α2 and 
the paths are internally vertex-disjoint. Clearly, every 
(s, t,α1,α2)-bubble is also a pair of compatible paths for 
s1 = s2 = s and some t.

Given a vertex v, the set of out-neighbors of v is denoted 
by δ+(v). Let now Pα1,α2(s1, s2,G) be the set of all pairs of 
compatible paths for s1, s2, α1 and α2 in G. We haveb that:

where α′

2 = α2 − w(s2, v) and G′

= G − {(s2, v)|v ∈δ+(s2)}. 
In other words, the set of pairs of compatible paths for 
s1 and s2 can be partitioned into: Pα1,α

′

2
(s1, v,G − s2),  

the sets of pairs of paths containing the arc (s2, v), for each 

(1)

Pα1,α2(s1, s2,G)

= Pα1,α2(s1, s2,G
′)

⋃

v∈δ+(s2)

(s2, v)Pα1,α
′

2
(s1, v,G − s2),
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v ∈ δ+(s2); and Pα1,α2(s1, s2,G
′), the set of pairs of paths 

that do not contain any of them. Algorithm 1 implements 
this recursive partition strategy. The solutions are only 
output in the leaves of the recursion tree (line 3), where the 
partition is always a singleton. Moreover, in order to guar-
antee that every leaf in the recursion tree outputs at least 
one solution, we have to test if Pα1,α

′

2
(s1, v,G − s2) (and 

Pα1,α2(s1, s2,G
′)) is not empty before making the recursive 

call (lines 11 and 19).
The correctness of Algorithm 1 follows directly from the 

relation given in Eq. 1 and the correctness of the tests per-
formed in lines 11 and 19. In the remaining of this section, 
we describe a possible implementation for the tests, prove 
its correctness and analyze the time complexity. Finally, 
we prove that Algorithm 1 has an O(n(m+ n log n)) delay.

Lemma 2 There exists a pair of compatible paths 
for s1 �= s2 in G if and only if there exists t such that 
d(s1, t) ≤ α1 and d(s2, t) ≤ α2.

Proof Clearly this is a necessary condition. Let us prove 
that it is also sufficient. Consider the paths p1 = s1 � t 
and p2 = s2 � t, such that |p1| ≤ α1 and |p2| ≤ α2. Let 
t ′ be the first vertex in common between p1 and p2. The 
sub-paths p′1 = s1 � t ′ and p′2 = s2 � t ′ are internally 
vertex-disjoint, and since the weights are non-negative, 
they also satisfy |p′1| ≤ |p1| ≤ α1 and |p′2| ≤ |p2| ≤ α2. �

Using this lemma, we can test for the existence of a pair 
of compatible paths for s1 �= s2 in O(m+ n log n) time. 
Indeed, let T1 be a shortest path tree of G rooted in s1 and 
truncated at distance α1, the same for T2, meaning that, for 
any vertex w in T1 (resp. T2), the tree path between s1 and w 

(resp. s2 and w) is a shortest one. It is not difficult to prove 
that the intersection T1 ∩ T2 is not empty if and only if there 
is a pair of compatible paths for s1 and s2 in G. Moreover, 
each shortest path tree can be computed in O(m+ n log n) 
time using Dijkstra’s algorithm [8]. Thus, in order to test for 
the existence of a (s, t,α1,α2)-bubble for some t in G, we can 
test, for each arc (s, v) outgoing from s, the existence of a 
pair of compatible paths for s �= v and v in G. Since s has at 
most n out-neighbors, we obtain Lemma 3.

Lemma 3 The test of line 5 can be performed in 
O(n(m+ n log n)).

The test of line  11 could be implemented using the 
same idea. For each v ∈ δ+(u), we test for the existence 
of a pair of compatible paths for, say, u = s2 (the same 
would apply for s1) and v in G − u, that is v is in the sub-
graph of G obtained by eliminating from G the vertex 
u and all the arcs incoming to or outgoing from u. This 
would lead to a total cost of O(n(m+ n log n)) for all 
tests of line 11 in each call. However, this is not enough 
to achieve an O(n(m+ n log n)) delay. In Lemma  4, we 
present an improved strategy to perform these tests in 
O(m+ n log n) total time.

Lemma 4 The test of line  11, for all v ∈ δ+(u), can be 
performed in O(m+ n log n) total time.

Proof Let us assume that u = s2, the case u = s1 is sym-
metric. From Lemma  2, for each v ∈ δ+(u), we have 
that deciding if there exists a pair of compatible paths 
for s1 and s2 in G that uses (u, v) is equivalent to decid-
ing if there exists t satisfying (i) d(s1, t) ≤ α1 and (ii) 
d(v, t) ≤ α2 − w(u, v) in G − u.

Algorithm 1: enumerate bubbles(s1, α1, s2, α2, B,G)
1 if s1 = s2 then
2 if B = ∅ then
3 output(B)
4 return
5 else if there is no (s, t, α1, α2)-bubble, where s = s1 = s2 then
6 return
7 end
8 end
9 choose u ∈ {s1, s2}, such that δ+(u) = ∅

10 for v ∈ δ+(u) do
11 if there is a pair of compatible paths using (u, v) in G then
12 if u = s1 then
13 enumerate bubbles(v, α1 − w(s1, v), s2, α2, B ∪ (s1, v), G− s1)
14 else
15 enumerate bubbles(s1, α1, v, α2 − w(s2, v), B ∪ (s2, v), G− s2)
16 end
17 end
18 end
19 if there is a pair of compatible paths in G− {(u, v)|v ∈ δ+(u)} then
20 enumerate bubbles(s1, α1, s2, α2, B,G− {(u, v)|v ∈ δ+(u)})
21 end
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First, we compute a shortest path tree rooted in 
s1 for G − u. Let Vα1 be the set of vertices at a dis-
tance at most α1 from s1. We build a graph G′ by add-
ing a new vertex r to G − u, and for each y ∈ Vα1,  
we add the arcs (y, r) with weight w(y, r) = 0. We 
claim that there exists t in G − u satisfying conditions 
(i) and (ii) if and only if d(v, r) ≤ α2 − w(u, v) in G′.  
Indeed, if t satisfies (i) we have that the arc (t, r) is in G′,  
so d(t, r) = 0. From the triangle inequality and (ii), 
d(v, r) ≤ d(v, t)+ d(t, r) = d(v, t) ≤ α2 − w(u, v). The 
other direction is trivial.

Finally, we compute a shortest path tree Tr rooted in 
r for the reverse graph G′R, obtained by reversing the 
direction of the arcs of G′. With Tr, we have the distance 
from any vertex to r in G′, i.e. we can answer the query 
d(v, r) ≤ α2 − w(u, v) in constant time. Observe that the 
construction of Tr depends only on G − u, s1 and α1, i.e. 
Tr is the same for all out-neighbors v ∈ δ+(u). Thus, we 
can build Tr only once and use it to answer each test of 
line 11 in constant time. The cost to build Tr is dominated 
by the two calls to Dijkstra’s algorithm. Therefore, it takes 
O(m+ n log n) time to build Tr. �

Theorem  5 Algorithm  1 has O(n(m+ n log n)) delay 
and uses O(m+ n) space.

Proof The height of the recursion tree is bounded by 2n 
since at each call the size of the graph is reduced either by 
one vertex (lines 13 and 15) or all its out-neighborhood 
(line  20). After at most 2n recursive calls, the graph is 
empty. Since every leaf of the recursion tree outputs a 
solution and the distance between two leaves is bounded 
by 4n, the delay is O(n) multiplied by the cost per node 
(call) in the recursion tree. From Lemma 2, line 19 takes 
O(m+ n log n) time, and from Lemma  4, line  11 takes 
O(m+ n log n) total time. This leads to an O(m+ n log n) 
time per call, excluding line  5. Lemma  3 states that the 
cost for the test in line 5 is O(n(m+ n log n)), but this line 
is executed only once, at the root of the recursion tree. 
Therefore, the delay is O(n(m+ n log n)).

Let us now analyze the memory complexity. We need 
to store only a single copy of the graph G and for each 
recursive call we store the difference, i.e. the removed 
arcs, from the previous graph. The total number of differ-
ences stored is at most the size of the graph, since for any 
path in the recursion tree each arc can be removed only 
once. Thus, the algorithm uses O(m+ n) space. �

Implementation and experimental results
We now discuss the details necessary for an efficient 
implementation of Algorithm  1 and the results on two 
sets of experimental tests. For the first set, our goal is 
to compare the running time of Dijkstra’s algorithm (for 
typical DBGs arising from applications) using several 

priority queue implementations. With the second set, 
our objective is to compare an implementation of Algo-
rithm  1 to the Kissplice (version 1.8.1) algorithm [6]. 
For both cases, we retrieved from the Short Read Archive 
(Accession code ERX141791) 14M Illumina 79  bp sin-
gle-ended reads of a Drosophila melanogaster RNA-seq 
experiment. We then built the DBG for this dataset with 
k = 31 using the Minia algorithm  [9, 10]. In order to 
remove likely sequencing errors, we discarded all k-mers 
that are present less than three times in the dataset. The 
resulting graph contained 22M k-mers, which after com-
pressing all maximal linear paths, corresponded to 600k 
vertices.

In order to perform a fair comparison with Kissplice, 
we pre-processed the graph as described in [6]. Namely, 
we decomposed the underlying undirected graph into 
biconnected components (BCCs) and compressed all 
non-branching bubbles with equal path lengths. In the 
end, after discarding all BCCs with less than four ver-
tices (as they cannot contain a bubble), we obtained 
7,113 BCCs, the largest one having 24,977 vertices. This 
pre-processing is lossless, i.e. every bubble in the origi-
nal graph is entirely contained in exactly one BCC. In 
Kissplice, the enumeration is then done in each BCC 
independently.

Dijkstra’s algorithm with different priority queues
Dijkstra’s algorithm is an important subroutine of Algo-
rithm  1 that may have a large influence on its running 
time. Actually, the time complexity of Algorithm  1 can 
be written as O(nc(n,m)), where c(n,m) is the complex-
ity of Dijkstra’s algorithm. There are several variants of 
this algorithm  [8], with different complexities depend-
ing on the priority queue used, including binary heaps 
(O(m log n)) and Fibonacci heaps (O(m+ n log n)). In the 
particular case where all the weights are non-negative 
integers bounded by C, Dijkstra’s algorithm can be imple-
mented using radix heaps (O(m+ n logC)) [11]. As stated 
in “De Bruijn graphs and variations in the transcriptome”, 
the weights of the de Bruijn graphs considered here are 
integer, but not necessarily bounded. However, we can 
remove from the graph all arcs with weights greater than 
α1 since these are not part of any (s, t,α1,α2)-bubble. This 
results in a complexity of O(m+ n log α1) for Dijkstra’s 
algorithm.

We implemented four versions of Lemma 3 (for decid-
ing whether there exists a (s, t,α1,α2)-bubble for a given 
s), each using a different version of Dijkstra’s algorithm: 
with Fibonacci heaps (FIB), with radix heaps (RAD), 
with binary heaps (BIN) and with binary heaps without 
decrease-key operation (BIN-NO-DEC). The last version 
is Dijkstra’s modified in order not to use the decrease-key 
operation to allow the adoption of a simpler binary heap 
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that does not support such operation  [12]. We then ran 
the four versions, using α1 = 1,000 and α2 = 2k − 2 = 60,  
for each vertex in all the BCCs with more than 150 ver-
tices. The results are shown in Figure 2. Contrary to the 
theoretical predictions, the versions with the best com-
plexities, FIB and RAD, have the worst results on this 
type of instances. It is clear that the best version is BIN-
NO-DEC, which is at least 2.2 times and at most 4.3 
times faster than FIB. One of the factors possibly contrib-
uting to a better performance of BIN and BIN-NO-DEC 
is the fact that cDBGs, as stated in “De Bruijn graphs and 
variations in the transcriptome”, have bounded degree 
and are therefore sparse.

Comparison with the Kissplice algorithm
In this section, we compare Algorithm 1 to the Kissplice 
(version 1.8.1) enumeration algorithm  [6]. To this pur-
pose, we implemented Algorithm  1 using Dijkstra’s 
algorithm with binary heaps without the decrease-key 
operation for all shortest paths computation. In this way, 
the delay of Algorithm 1 becomes O(nm log n), which is 
worse than the one using Fibonacci or radix heaps, but is 
faster in practice. The goal of the Kissplice enumeration 
is to find all the potential alternative splicing events in a 
BCC, i.e. to find all (s, t,α1,α2)-bubbles satisfying also the 
lower bound constraint (“De Bruijn graphs and variations 

in the transcriptome”). In order to compare Kissplice 
to Algorithm  1, we (naively) modified the latter so 
that, whenever a (s, t,α1,α2)-bubble is found, we check 
whether it also satisfies the lower bound constraints and 
output it only if it does.

In Kissplice, the upper bound α1 is an open param-
eter, α2 = k − 1 and the lower bound is k − 7. Moreover, 
there are two stop conditions: either when more than 
10,000 (s, t,α1,α2)-bubbles satisfying the lower bound 
constraint have been enumerated or a 900  s timeout 
has been reached. The first stop condition is imposed 
in Kissplice for specificity reasons, BCCs with more 
than 10,000 bubbles are likely to contain too many 
false positives. So, in order to be as close as possible to 
Kissplice original setup we also use this stop condition 
in our tests. We ran both Kissplice (version 1.8.1) and 
the modified Algorithm  1, with the stop conditions, for 
all 7,113 BCCs, using α2 = 60, a lower bound of 54 and 
α1 = 250, 500, 750 and 1,000. The running times for all 
BCCs with more than 150 vertices (there are 37) is shown 
in Figure 3. For the BCCs smaller than 150 vertices, both 
algorithms have comparable (very small) running times. 
For instance, with α1 = 250, Kissplice runs in 17.44 s for 
all 7,113 BCCs with less than 150 vertices, while Algo-
rithm 1 runs in 15.26 s.

The plots in Figure 3 show a trend of increasing running 
times for larger BCCs, but the graphs are not very smooth, 
i.e. there are some sudden decreases and increases in the 
running times observed. This is in part due to the fact that 
the time complexity of Algorithm 1 is output sensitive. The 
delay of the algorithm is O(nm log n), but the total time 
complexity is O(|B|nm log n), where |B| is the number of 
(s, t,α1,α2)-bubbles in the graph. The number of bubbles 
in the graph depends on its internal structure. A large 
graph does not necessarily have a large number of bubbles, 
while a small graph may have an exponential number of 
bubbles. Therefore, the value of |B|nm log n can decrease 
by increasing the size of the graph. A decrease in running 
time when the size of the graph increases is explained by a 
smaller number of bubbles in the larger graph.

Concerning now the comparison between the algo-
rithms, as we can see in Figure  3, Algorithm  1 is usu-
ally several times faster (keep in mind that the axes are 
in logarithmic scale) than Kissplice, with larger differ-
ences when α1 increases (10 to 1,000 times faster when 
α1 = 1,000). In some instances however, Kissplice is 
faster than Algorithm 1, but (with only one exception for 
α1 = 250 and α1 = 500) they correspond either to very 
small instances or to cases where only 10,000 bubbles 
were enumerated and the stop condition was met. More-
over, the plots for α1 = 750 and α2 = 1,000 seem identi-
cal. Actually, the running times are very similar, but not 
identical, implying that there are few bubbles with upper 
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path larger than 750 and smaller than 1,000. Finally, using 
Algorithm  1, the computation finished within 900  s for 
all but three BCCs, whereas using Kissplice, 11 BCCs 
remained unfinished after 900  s. The improvement in 
time therefore enables us to have access to bubbles that 
could not be enumerated with the previous approach.

Finally, the memory consumption of Kissplice and 
Algorithm  1 are very similar, since Kissplice also uses 
memory linear in the size of the graph [6]

On the usefulness of larger values of α1
In the implementation of Kissplice, the value of α1 was 
experimentally set to 1,000 due to performance issues, 
as indeed the algorithm quickly becomes impractical for 
larger values. On the other hand, the results of “Com-
parison with the Kissplice algorithm” suggest that Algo-
rithm 1, that is faster than Kissplice, can deal with larger 
values of α1. From a biological point of view, it is a priori 
possible to argue that α1 = 1,000 is a reasonable choice 

because 90% of annotated internal exons in Drosophila 
indeed are shorter than 1,000  nt [13]. However, missing 
the top 10% may have a big impact on downstream analy-
ses of AS events not to mention the possibility that not yet 
annotated AS events could be enriched in long skipped 
exons. When studying intron retention, being able to deal 
with larger values of α1 is critical since introns are notori-
ously longer than exons. In this section, we give an indica-
tion that larger values of α1 indeed produce more results 
that are biologically relevant. For this, we exploit another 
RNA-seq dataset, with deeper coverage.

To this purpose, we retrieved 32M RNA-seq reads from 
human brain and 39M from human liver from the Short 
Read Archive (accession number ERP000546). Next we 
built the DBG with k = 31 for both datasets, then merged 
and decomposed the DBG into 128 BCCs (containing more 
than 4 vertices). We ran Algorithm  1 for each BCC with 
α1 = 5,000. There were 114 bubbles with the length of the 
upper path strictly larger than 1,000 bp. In order to assess if 

200 400 600 8001e
-0

2
1e

+0
0

1e
+0

2
1e

+0
4 Running time, 1 = 250

BCC size

tim
e 

(s
)

Kissplice's algorithm
Algorithm 1

(a)
200 300 400 500 700

1e
-0

2
1e

+0
0

1e
+0

2
1e

+0
4 Running time, 1 = 500

BCC size

tim
e 

(s
)

Kissplice's algorithm
Algorithm 1

(b)

200 300 400 500 7001e
-0

2
1e

+0
0

1e
+0

2
1e

+0
4

Running time, 1 = 750

BCC size

tim
e 

(s
)

Kissplice's algorithm
Algorithm 1

(c)
200 300 400 500 700

1e
-0

2
1e

+0
0

1e
+0

2
1e

+0
4

Running time, 1 = 1000

BCC size

tim
e 

(s
)

Kissplice's algorithm
Algorithm 1

(d)

Figure 3 Running times comparison. Running times of Algorithm 1 and of the Kissplice algorithm [6] for all the BCCs with more than 150 vertices. 
Each graph a, b, c and d shows the running time of both algorithms for α1 = 250, 500, 750 and 1,000, respectively. The BCCs where both algorithms 
reach the timeout were omitted from the plots to improve the visualization. For α1 = 250, 500, 750 and 1,000 there are 1, 2, 3 and 3 BCCs omitted, 
respectively.



Page 8 of 10Sacomoto et al. Algorithms Mol Biol  (2015) 10:20 

these bubbles were true AS events, we aligned both paths 
of each bubble to the human reference genome (version 
hg19) using STAR [14] with default parameters. We found 
no case where the two paths of a bubble mapped to two 
distinct genomic locations, which would be a hallmark of 
a repeat-associated artifactual bubble. We further clustered 
the bubbles which had the exact same genomic coordi-
nates. The bubbles contained in a cluster correspond to the 
same AS event, they simply differ by a SNP or an indel in 
the variable region, which happens frequently for long AS 
events. Since we are only interested in AS events here, and 
not in the coupling of genomic variations and AS, we fur-
ther study only one representative per cluster. We therefore 
end up with 61 bubbles with unique genomic coordinates.

We classified them according to the number of align-
ment blocks the two paths generated on the reference 
and found that out of 61 cases, 19 were intron retentions, 
17 were alternative donor or alternative acceptor sites 
and 25 were exon skipping events (out of which 9 are 
multiple exons, and 10 are skipped exons combined with 
an alternative donor or acceptor). In contrast with events 
smaller than 1,000 nt (a total of 3,540 events), long events 
are enriched in intron retentions (25 vs. 7%), depleted in 
exon skippings (44 vs. 54%) and depleted in alternative 
donors and acceptors (30 vs. 34%). We also compared the 
genomic locations of the long events with the Ensembl 
v75 annotation [13]. We found that out of 61 cases, 37 
had all their splice sites annotated, while 24 exhibited at 
least one novel splice site. Out of these 24, 4 contained 
non-canonical splice sites (i.e. different from GT-AG). In 
contrast with events smaller than 1,000  nt, the propor-
tion of novel events is larger (39 vs. 14%) and the propor-
tion of non-canonical is similar (18 vs. 17%).

Clearly, the proportions we give in this section are 
obtained with small numbers and should be interpreted 
with caution. Furthermore, we rely on STAR for the iden-
tification of the splice sites and we cannot exclude that the 
exact position may be erroneous because of a mapping 
error. However, we can argue that the vast majority of long 
bubbles do correspond to true AS events, which were over-
seen using Kissplice (version 1.8.1). All the annotated AS 
events predicted by our approach are publicly availablec.

A natural generalization
An intractable case: paths with length constraints
For the sake of theoretical completeness, in this section, 
we extend the definition of (s, t,α1,α2)-bubble to the case 
where the length constraints concern d vertex-disjoint 
paths, for an arbitrary but fixed d. This situation also 
arises in real data, when more than 2 variants share the 
same flanking splice sites (for instance for single and dou-
ble exon skipping), or when a SNP has 3 variants.

Definition 6 ((s, t,A)-d-bubble) Let d be a natural 
number and A = {α1, . . . ,αd} ⊂ Q

≥0. Given a directed 
weighted graph G and two vertices s and t, a (s, t,A)-d- 
bubble is a set of d pairwise internally vertex-disjoint 
paths {p1, . . . pd}, satisfying pi = s � t and |pi| ≤ αi, for 
all i ∈ [1, d].

Analogously to (s, t,α1,α2)-bubbles, we can define two 
variants of the enumeration problem: one seeks all bub-
bles with a given source (s fixed), while the other iden-
tifies all bubbles with a given source and target (s and t 
fixed). In both cases, the first step is to decide the exist-
ence of at least one (s, t,A)-d-bubble in the graph.

Problem 7 ((s, t,A)-d-bubble decision problem) Given 
a non-negatively weighted directed graph G, two verti-
ces s, t, a set A = {α1, . . . ,αd} ⊂ Q

≥0 and d ∈ N, decide if 
there exists a (s, t,A)-d-bubble in G.

This problem is a generalization of the two-disjoint-
paths problem with a min-max objective function, which 
is NP-complete  [15]. More formally, this problem can 
be stated as follows: given a directed graph G with non-
negative weights, two vertices s, t ∈ V , and a maximum 
length M, decide if there exists a pair of vertex-disjoint 
paths such that the maximum of their lengths is less 
than M. The (s, t,A)-d-bubble decision problem, with 
A = {M,M} and d = 2, is precisely this problem.

Problem 8 ((s, ∗,A)-d-bubble decision problem) Given 
a non-negatively weighted directed graph G, a vertex s, 
a set A = {α1, . . . ,αd} ⊂ Q

≥0 and d ∈ N, decide if there 
exists a (s, t,A)-d-bubble in G, for some t ∈ V .

The two-disjoint-path problem with a min-max objec-
tive function is NP-complete even for strictly positive 
weighted graphs. Let us reduce Problem  8 to it. Con-
sider a graph G with strictly positive weights, two vertices 
s, t ∈ V , and a maximum length M. Construct the graph 
G′ by adding an arc with weights 0 from s to t and use this 
as input for the (s, ∗, {M,M, 0})-3-bubble decision prob-
lem. Since G has strictly positive weights, the only path 
with length 0 from s to t in G′ is the added arc. Thus, there 
is a (s, ∗, {M,M, 0})-3-bubble in G′ if and only if there are 
two vertex-disjoint paths in G each with a length ≤ M.

Therefore, the decision problem for fixed s and t (Prob-
lem 7) is NP-hard for d ≥ 2, and for fixed s (Problem 8) is 
NP-hard for d ≥ 3. In other words, the only tractable case 
is the enumeration of (s, t,A)-2-bubbles with fixed s, the 
one considered in “An O(n(m+ n log n)) delay algorithm”.

A tractable case: paths without length constraints
In the previous section, we showed that a natural gener-
alization of (s, t,α1,α2)-bubbles to contain more than two 
vertex-disjoint paths satisfying length constraints leads to 
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an NP-hard enumeration problem. Indeed, even decid-
ing the existence of at least one (s, t,A)-d-bubble is NP-
hard. In this section, we consider a similar generalization 
for (s, t)-bubbles instead of (s, t,α1,α2)-bubbles, that is, 
we consider bubbles containing more than two vertex-
disjoint paths without any path length constraints. The 
formal definition is given below.

Definition 9 ((s, t)-d-bubble) Let d be a natural number. 
Given a directed graph G and two vertices s and t, a (s, t)
-d-bubble is a set of d pairwise internally vertex-disjoint 
paths {p1, . . . pd}.

Clearly, this definition is a special case of Definition 6: 
consider a weighted graph G = (V ,E) with unitary 
weights (i.e. an unweighted graph), the (s, t,A)-d-bubbles 
with αi = |V | for i ∈ [1, d] are precisely the (s, t)-d-bub-
bles of G. As in “An intractable case: paths with length 
constraints”, let us first consider the problem of deciding 
whether a graph contains a (s, t)-d-bubble for fixed s and t.

Problem 10 ((s, t)-d-bubble decision problem) Given 
a directed graph G and two vertices s, t, decide whether 
there exists a (s, t)-d-bubble in G.

Contrary to Problem  7, this problem can be decided 
in polynomial time. Indeed, given a directed graph 
G = (V ,A) and two vertices s and t, construct the 
graph G′

= (V ′,A′) by splitting each vertex v ∈ V  in 
two vertices: an incoming part vin with all the arcs 
entering v, and an outgoing part vout with all the 
arcs leaving v; and add the arc (vin, vout). More for-
mally, G′ is defined as V ′

= {{vin, vout}|v ∈ V } and 
A′

= {(uout , vin)|(u, v) ∈ A} ∪ {(vin, vout)|v ∈ V }. Now, it 
is not hard to prove that every set of arc-disjoint paths 
in G′ corresponds to a set of vertex-disjoint paths in G. 
Thus, considering G′ a network with unitary arc capaci-
ties  [8], we have that G contains a (s, t)-d-bubble if and 
only if G′ contains a (s, t)-flow f  such that |f | ≥ d. There-
fore, using the augmenting path algorithm  [8] for the 
max-flow problem, we can decide if there exists a (s, t)-d
-bubble in G in O(md) time. Actually, using an iterative 
decomposition of the (s, t)-flow f  into (s, t)-paths, we can 
explicitly find a (s, t)-d-bubble in the time bound.

Lemma 11 Given a directed graph G = (V ,A) and two 
vertices s, t ∈ V , a (s, t)-d-bubble in G can be found in 
O(md) time.

We now consider the problem of enumerating (s, t)-d
-bubbles in G for fixed s and t. The reduction from (s, t)
-d-bubbles to (s, t)-flows used in the last paragraph may 
induce us to think that we can enumerate (s, t)-d-bub-
bles in G by enumerating (s, t)-flows in G′, and since 
there is a polynomial delay algorithm for the latter  [16], 
we would be done. Unfortunately, there is no one-to-one 

correspondence between (s, t)-flows in G′ and (s, t)-d
-bubbles in G: we can always add a circulation c to a (s, t)
-flow f  to obtain a new (s, t)-flow f ′, but f  and f ′ cor-
respond to the same (s, t)-d-bubble. In fact, there can be 
exponentially more (s, t)-flows in G′ than (s, t)-d-bubbles 
in G. On the other hand, the strategy used in Algorithm 1 
can be adapted to enumerate (s, t)-d-bubbles.

Similarly to “An O(n(m+ n log n)) delay algorithm”, in 
order to have a more symmetric structure for the sub-
problems, we define the notion of a set of compatible 
paths, which is an object that generalizes the definition 
of a (s, t)-d-bubble. Given a set of sources S = {s1, . . . , sd} 
and a target t, a set of paths Pt = {p1, . . . , pd} is compat-
ible if pi = si � t and they are internally vertex-disjoint. 
We then focus on the more general problem of enumer-
ating sets of compatible paths. Let P(S, t,G) be the set of 
all compatible paths for S and t in G. The same partition 
given in Eq. 1 is also valid for P(S, t,G). Namely, for any 
s ∈ S such that δ+(s) �= ∅,

where G′

= G − {(s, v)|v ∈ δ+(s)}. Now, adding a new 
source to G with an arc to each vertex in S, we can use an 
augmenting path algorithm to test whether P(S, t,G) �= ∅ 
in O(md) time. That way, an algorithm implementing the 
partition scheme of Eq. 2 can enumerate (s, t)-d-bubbles 
in O(n2md) delay, where the bound on the delay holds 
since each node of the recursion tree costs O(nmd) (at 
most n emptiness checks are performed) and the height 
of the tree is bounded by n.

Theorem  12 Given a directed graph G and two ver-
tices s, t, the (s, t)-d-bubbles in G can be enumerated in 
O(n2md) delay.

Conclusion
We introduced a polynomial delay algorithm which 
enumerates all bubbles with length constraints in 
directed graphs. We show that it is faster than previ-
ous approaches and therefore enables us to enumerate 
more bubbles. These additional bubbles correspond to 
longer AS events, overseen previously but biologically 
very relevant. Newer versions (from 2.0.0) of Kissplice, 
source code available on [17], are implemented using 
Algorithm 1. As shown in  [11], by combining radix and 
Fibonacci heaps in Dijkstra, we can achieve a complexity 
in O(n(m+ n

√
log α1)) for Algorithm  1 in cDGBs. The 

question whether this can be improved, either by improv-
ing Dijkstra’s algorithm (exploiting more properties of a 
cDBG) or by using a different approach, remains open.

(2)

P(S, t,G)

= P(S, t,G′)
⋃

v∈δ+(s)

(s, v)P(S\{s} ∪ {v}, t,G − s),
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An important question raised in [6], related to this 
paper, but not considered here is how to deal with 
complex BCCs. In the tests of “Comparison with the 
Kissplice algorithm”, the complex BCCs are the ones 
where the enumeration is not finished, i.e. either there 
are more than 10,000 bubbles of the 900  s timeout was 
reached. We have strong indications that their are gener-
ated mainly by ancient copies of transposable elements, 
present in UTRs and intronic regions. Thus, in order to 
find the AS “trapped” inside complex BCCs we need a 
proper modeling of the ancient copies of transposable 
elements present in RNA-seq experiment.

Endnotes
aThe size is exactly k − 1 if w has no common prefix 

with b and no common suffix with a.
bThe same relation is true using s1 instead of s2.
chttp://kissplice.prabi.fr/amb2015.
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