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Abstract
In this paper, the existence of at least one nontrivial solution for a class of semilinear
elliptic equations on R

N is established by using the linking methods.
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1 Introduction
In this paper we consider the question of the existence of solutions for a class of semilinear
equations of the form

(Pλ) –�u + λu = g(x,u), x ∈ R
N ,

where λ >  is a parameter and the nonlinearity g ∈ C(RN × R) is asymptotically linear,
i.e.,

lim|t|→∞
g(x, t)
t

= V (x), lim|x|→∞V (x) = v∞ (.)

for some V (x) ∈ C(RN ,R) and v∞ ∈ R. In case this equation is considered in a bounded
domain � ⊂ R

N (with, say, the Dirichlet boundary condition), there is a large amount of
literature on existence and multiplicity results, with the case of resonance being of partic-
ular interest (see [–]). We recall that the problem is said to be at resonance if –λ ∈ σ (S),
where σ (S) denotes the spectrum of S, the ‘asymptotic linearization’ of the problem. In
other words, S :D(S)⊂ L(�) → L(�) is the operator given by

Su(x) = –�u(x) –V (x)u(x), D(S) =H
(�)∩H(�). (.)

On the other hand, a systematic study of such asymptotically linear problems set in un-
bounded domains or the whole space RN is more recent and presents a number of math-
ematical difficulties (see [, ]). As an example, we note that in the case of problem (Pλ),
the asymptotic linearization operator S (now defined onD(S) =H(RN )) has a muchmore
complicated spectrum (including an essential part [–v∞,∞)), which in turn makes the
study of this problem more challenging. In [], motivated by the paper [], Tehrani and
Costa studied the existence of positive solutions to (Pλ) by using the mountain pass theo-
rem if g(x,u) satisfies some strong asymptotically linear conditions. Comparingwith previ-
ous paper [], in [], Tehrani obtained the existence of a (possibly sign-changing) solution
for problem (Pλ) under essentially condition (.) only. In fact, he proved the following.
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Theorem . [] Let g(x, s) := g(x, s) –V (x)s and assume that
(G) for every ε > , there exists  ≤ bε(x) ∈ L(RN ) such that

∣∣g(x, s)∣∣ ≤ bε(x) + ε|s| a.e. x ∈R
N , s ∈R.

If � ≥  or max{, v∞} < λ < –� and –λ /∈ σp(S), then (Pλ) has a solution in H(RN ).

Now, one naturally asks: Are there nontrivial solutions for problem (Pλ) if –λ ∈ σ (S) in
the above theorem?Obviously, this case is resonance. But, this problem is not easy because
we face the difficulties of verifying that the energy functional satisfies the (PS) condition if
we still follow the idea of []. Here, there is still an interesting problem:Are there nontrivial
solutions for problem (Pλ) if –λ ∈ σ (S) and g(x, s) (in Theorem .) is more generalized
superlinear? We will answer the above problems affirmatively by using Li and Willem’s
local linking methods (see []).
Next, we recall a few basic facts in the theory of Schrödinger operators which are rele-

vant to our discussion (see []).
. Since lim|x|→∞ V (x) = v∞, one has σess(S) = [–v∞,∞).
. The bottom of the spectrum σ (S) of the operator S is given by

� = λ = inf

=u∈H(RN )

∫ |∇u| –V (x)u∫
u

.

Therefore we clearly have � ≤ –v∞. If � < –v∞, then by using the concentration
compactness principle of Lions, one shows that � is the principle eigenvalue of S
with a positive eigenfunction �:

S� = λ�, � ∈H(
R

N)
,� > .

. The spectrum of S in (–∞, –v∞), namely σ (S)∩ (–∞, –v∞), is at most a countable
set, which we denote by

� = λ < λ < λ < · · · ,

where each λk is an isolated eigenvalue of S of the finite multiplicity. Let Eλjdenote
the eigenspace of S corresponding to the eigenvalue λj.

Now, we state our main results. In this paper, we always assume that lim|x|→∞ V (x) = v∞
and v∞ < . The conditions imposed on g(x, t) (see Theorem .) are as follows:

(H) g ∈ C(RN ×R,R), and there are constants C,C ≥  such that

∣∣g(x, t)∣∣ ≤ C +C|t|s–, ∀x ∈R
N ,∀t ∈ R, s ∈ (

,p∗) (N ≥ ),

where p∗ = N
N– ;

(H) g(x, t) = ◦(|t|), |t| → , uniformly on R
N ;

(H) lim|t|→∞ g(x,t)
t = +∞ uniformly on R

N ;
(H) There is a constant θ ≥  such that for all (x, t) ∈R

N × R and s ∈ [, ],

θ
(
g(x, t)t – G(x, t)

) ≥ (
sg(x, st)t – G(x, st)

)
,

where G(x, t) =
∫ t
 g(x, s)ds;
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(H) For some δ > , either

G(x, t)≥  for |t| ≤ δ,x ∈R
N

or

G(x, t)≤  for |t| ≤ δ,x ∈R
N ;

(H) lim|x|→∞ sup|t|≤r
g(x,t)

|t| =  for every r > .

Theorem. Assume that conditions (H)-(H)hold. If–λ is an eigenvalue of S(–λ < –v∞),
assume also that (H) and (H) hold. Then the problem (Pλ) has at least one nontrivial
solution.

Remark . It follows from the condition (H) that our nonlinearity g(x, t) does not sat-
isfy the classical condition of Ambrosetti and Rabinowitz:
(AR) There is μ >  such that  < μG(x,u)≤ ug(x,u) for all x ∈R

N and u 
= .
In recent years, there have been some papers devoted to replacing (AR) with more natural
conditions (see [–]). But our methods are different from the references therein.

We also consider asymptotically quadratic functions. We assume that:

(H) For every ε > , there exists ≤ bε(x) ∈ L(RN ) such that

∣∣g(x, s)∣∣ ≤ bε(x) + ε|s| a.e. x ∈R
N , s ∈ R,

and λk < –λ < λk+.

Theorem . Assume that conditions (H), (H), (H) and one of the following conditions
hold:

(A) λj <  < λj+, j 
= k;
(A) λj =  < λj+, j 
= k for some δ > ,

G(x,u)≥  for |u| > δ,x ∈R
N ;

(A) λj <  = λj+, j 
= k for some δ > ,

G(x,u)≥  for |u| ≤ δ,x ∈R
N .

Then problem (Pλ) has at least one nontrivial solution.

2 Preliminaries
Let X be a Banach space with a direct sum decomposition

X = X ⊕X.

http://www.boundaryvalueproblems.com/content/2013/1/163
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Consider two sequences of subspaces

X
 ⊂ X

 ⊂ · · · ⊂ X, X
 ⊂ X

 ⊂ · · · ⊂ X

such that

Xj =
⋃
n∈N

Xj
n, j = , .

For every multi-index α = (α,α) ∈ N, let Xα = Xα ⊕Xα . We know that

α ≤ β ⇔ α ≤ β, α ≤ β.

A sequence (αn) ⊂N is admissible if, for every α ∈N, there ism ∈N such that n≥ m ⇒
αn ≥ α. For every I : X → R, we denote by Iα the function I restricted Xα .

Definition . Let I be locally Lipschitz on X and c ∈ R. The functional I satisfies the (C)∗c
condition if every sequence (uαn ) such that (αn) is admissible and

uαn ∈ Xαn , I(uαn )→ c,
(
 + ‖uαn‖

)
I ′(uαn ) → 

contains a subsequence which converges to a critical point of I .

Definition . Let I be locally Lipschitz onX and c ∈ R. The functional I satisfies the (C)∗

condition if every sequence (uαn ) such that (αn) is admissible and

uαn ∈ Xαn , sup
n

I(uαn ) ≤ c,
(
 + ‖uαn‖

)
I ′(uαn ) → 

contains a subsequence which converges to a critical point of I .

Remark . . The (C)∗ condition implies the (C)∗c condition for every c ∈ R.
. When the (C)∗c sequence is bounded, then the sequence is a (PS)∗c sequence (see []).
. Without loss of generality, we assume that the norm in X satisfies

‖u + u‖ = ‖u‖ + ‖u‖, uj ∈ Xj, j = , .

Definition . Let X be a Banach space with a direct sum decomposition

X = X ⊕X.

The function I ∈ C(X,R) has a local linking at , with respect to (X,X) if, for some
r > ,

I(u) ≥ , u ∈ X,‖u‖ ≤ r,

I(u) ≤ , u ∈ X,‖u‖ ≤ r.

Lemma . (see []) Suppose that I ∈ C(X,R) satisfies the following assumptions:

(B) I has a local linking at  and X 
= {};

http://www.boundaryvalueproblems.com/content/2013/1/163
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(B) I satisfies (PS)∗;
(B) I maps bounded sets into bounded sets;
(B) For every m ∈ N , I(u) → –∞, ‖u‖ → ∞, u ∈ X = X

m ⊕ X. Then I has at least two
critical points.

Remark . Assume that I satisfies the (C)∗c condition. Then this theorem still holds.

Let X be a real Hilbert space and let I ∈ C(X,R). The gradient of I has the form

∇I(u) = Au + B(u),

where A is a bounded self-adjoint operator,  is not the essential spectrum of A, and B is
a nonlinear compact mapping.
We assume that there exist an orthogonal decomposition,

X = X +X,

and two sequences of finite-dimensional subspaces,

X
 ⊂ X

 ⊂ X
 ⊂ · · · ⊂ X, X

 ⊂ X
 ⊂ · · · ⊂ X,

such that

Xj =
⋃
n∈N

Xj
n, j = , ,

AXj
n ⊂ Xj

n, j = , ,n ∈N .

For every multi-index α = (α,α) ∈ N, we denote by Xα the space

X
α ⊕X

α ,

by pα : X → Xα the orthogonal projector onto Xα , and by M–(L) the Morse index of a
self-adjoint operator L.

Lemma . (see []) I satisfies the following assumptions:
(i) I has a local linking at  with respect to (X,X);
(ii) There exists a compact self-adjoint operator B∞ such that

B(u) = B∞(u) + ◦(‖u‖), ‖u‖ → ∞;

(iii) A + B∞ is invertible;
(vi) For infinitely many multiple-indices α := (n,n),

M–((A + PαB∞)|Xα

) 
= dimX
n .

Then I has at least two critical points.
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3 The proof of main results
Proof of Theorem . () We shall apply Lemma . to the functional

I(u) =



∫ (|∇u| –V (x)|u|) + 

λ

∫
u –

∫
�

G(x,u)

defined on X =H(RN ). We consider only the case –λ ∈ σ (S), and

G(x,u) ≤  for |u| ≤ δ,x ∈ R
N . (.)

Then other case is similar and simple.
Let X be a finite dimensional space spanned by the eigenfunctions corresponding to

negative eigenvalues of S + λ and let X be its orthogonal complement in X. Choose a
Hilbertian basis en (n≥ ) for X and define

X
n = span(e, e, . . . , en), n ∈N ;

X
n = X, n ∈N ;

X =
⋃
n∈N

X
n.

By the condition (H) and Sobolev inequalities, it is easy to see that the functional I belongs
to C(X,R) and maps bounded sets to bounded sets.
() We claim that I has a local linking at  with respect to (X,X). Decompose X into

V +W when V = E–λ,W = (X +V )⊥. Also, set u = v +w, u ∈ X, v ∈ V , w ∈W .
For the convenience of our proof, we state some facts for the norm of the whole space X.

It is well known that there is an equivalent norm ‖ · ‖ on X =H(RN ) such that

∫ (|∇u| –V (x)|u|) = –‖u‖, u ∈ X

and

∫ (|∇u| –V (x)|u|) = ‖u‖, u ∈W .

By the equivalence of norm in the finite-dimensional space, there exists C >  such that

‖v‖∞ ≤ C‖v‖, ∀v ∈ V . (.)

It follows from (H) and (H) that for any ε > , there exists Cε such that

∣∣G(x,u)
∣∣ ≤ εu +Cε |u|s. (.)

Hence, we obtain

I(u) ≤ –m‖u‖ + c∗‖u‖s+,

http://www.boundaryvalueproblems.com/content/2013/1/163
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wherem > , c∗ is a constant and hence, for r >  small enough,

I(u) ≤ , u ∈ X,‖u‖X ≤ r.

Let u = v +w ∈ X be such that ‖u‖X ≤ r = δ
C and let

A =
{
x ∈R

N :
∣∣w(x)∣∣ ≤ δ



}
,

A =R
N \A.

From (.), we have

∣∣v(x)∣∣ ≤ ‖v‖∞ ≤ C‖v‖ ≤ δ



for all ‖u‖ ≤ r and x ∈R
N . On the one hand, one has |u(x)| ≤ |v(x)|+ |w(x)| ≤ ‖v‖∞+ δ

 ≤ δ

for all x ∈A. Hence, from (H), we obtain
∫
A

G(x,u)dx≤ .

On the other hand, we have

∣∣u(x)∣∣ ≤ ∣∣v(x)∣∣ + ∣∣w(x)∣∣ ≤ δ


+

∣∣w(x)∣∣ ≤ 
∣∣w(x)∣∣

for all x ∈A. It follows from (.) that

G(x,u) ≤ εu +Cε |u|s+ ≤ εw + s+Cε |w|s+

for all x ∈A and all u ∈ X with ‖u‖ ≤ r, which implies that

∫
G(x,u) ≤ ε

∫
A

w dx +
∫
A

s+Cε |w|s+ dx

≤ (C)ε‖w‖ + (C)λ+Cε‖w‖s+,

where C is a constant. Hence, there exist positive constants C∗∗, C and C such that

I(u) =


‖w‖ –

∫
A

G(x,u)dx –
∫
A

G(x,u)dx

≥ C∗∗‖w‖ – (C)ε‖w‖ – (C)λ+Cε‖w‖s+ –
∫
A

G(x,u)dx

≥ C‖w‖ –C‖w‖s+

for all u ∈ X with ‖u‖ ≤ r, which implies that

I(u) ≥ , ∀u ∈ X with ‖u‖ ≤ r

for  < r small enough.

http://www.boundaryvalueproblems.com/content/2013/1/163
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()We claim that I satisfies (C)∗c . Consider a sequence (uαn ) such that (uαn ) is admissible
and

uαn ∈ Xαn , I(uαn )→ c,
(
 + ‖uαn‖

)
I ′(uαn ) →  (.)

and

lim
n→∞

∫ (


g(x,uαn )uαn –G(x,uαn )

)
= c. (.)

Let wαn = ‖uαn‖–uαn . Up to a subsequence, we have

wαn ⇀ w in X, wαn → w in Lloc, wαn (x) → w(x) a.e. x ∈R
N .

If w = , we choose a sequence {tn} ⊂ [, ] such that

I(tnuαn ) = max
t∈[,]

I(tuαn ).

For anym > , let vαn = 
√
mwαn . Now, we claim that

lim
n→∞

∫
G(x, vαn ) = .

Let ε > ; for r ≥ , then,
∫

|vαn |≥r
G(x, vαn )dx ≤ Crp–

∗
∫

|vαn |≥r
|vαn |∗

dx

≤ Crp–
∗ |vαn |∗

∗ .

Since p < ∗, we may fix r large enough such that

∣∣∣∣
∫

|vαn |≥r
G(x, vαn )dx

∣∣∣∣ ≤ ε



for all n. Moreover, by (H), there exists R >  such that
∣∣∣∣
∫

|vαn |≥r
G(x, vαn )dx

∣∣∣∣ ≤ |vαn | sup
|t|≤r,|x|≥R

|G(x, t)|
t

≤ ε



for all n. Finally, since vαn →  in Ls(BR()) for s ∈ [, ∗), we can use (H) again to derive

∣∣∣∣
∫

|vαn |≤r∩|x|≤R
G(x, vαn )dx

∣∣∣∣ ≤ ε



for n large enough. Combining the above three formulas, our claim holds.
So, for n large enough, 

√
m‖uαn‖– ∈ (, ), we have

I(tnuαn ) ≥ I(vαn ) ≥ m – ε ≥ m

, (.)

where ε is a small enough constant.

http://www.boundaryvalueproblems.com/content/2013/1/163
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That is, I(tnuαn ) → ∞. Now, I() = , I(uαn ) → c, we know that tn ∈ [, ] and

∫ (∣∣∇(tnuαn )
∣∣ –V (x)tn|uαn |

)

+ λ

∫
tn|uαn | –

∫
g(x, tnuαn )tnuαn = tn

d
dt

∣∣∣∣
t=tn

I(tuαn ) = . (.)

Therefore, using (H), we have

∫ 

g(x,uαn )uαn –G(x,uαn ) ≥


θ

∫ (


g(x, tnuαn )tnuαn –G(x, tnuαn )

)
→ +∞.

This contradicts (.).
Ifw 
= , then the set� = {x ∈R

N : w(x) 
= } has a positive Lebesguemeasure. For x ∈ �,
we have |uαn (x)| → ∞. Hence, by (H), we have

g(x,uαn (x))uαn (x)
|uαn (x)|

∣∣wαn (x)
∣∣ → ∞. (.)

From (.), we obtain

 – ◦() ≥
(∫

w 
=
+

∫
w=

)
g(x,uαn (x))uαn (x)

|uαn (x)|
∣∣wαn (x)

∣∣ dx. (.)

By (.), the right-hand side of (.) → +∞. This is a contradiction.
In any case, we obtain a contradiction. Therefore, {uαn} is bounded.
Next, we denote {uαn} as {un} and prove {un} contains a convergent subsequence.
In fact, we know that {un} is bounded in X. Passing to a subsequence, we may assume

that un ⇀ u in X. In order to establish strong convergence, it suffices to show that

‖un‖ → ‖u‖.

By the condition (H) and 〈I ′(un),un – u〉 → , we can similarly conclude it according to
the above proof of our claim.
Finally, we claim that for everym ∈N ,

I(u) → –∞ as ‖u‖ → ∞,u ∈ X
m ⊕X.

By (H) and (H), there exist large enoughM and some positive constant T such that

G(x, t)≥ Mt, x ∈ R
N , t ≥ T .

So, for any u ∈ X
m ⊕X, we have

I(tu) =


t

∫ (|∇u| –V (x)|u|) + t


λ

∫
u –

∫
G(x, tu)

≤ 

t

∫ (|∇u| –V (x)|u|) + t


λ

∫
u –Mt

∫
u → –∞ as t → +∞.

Hence, our claim holds. �

http://www.boundaryvalueproblems.com/content/2013/1/163
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Proof of Theorem . We omit the proof which depends on Lemma . and is similar to
the preceding one since our result is a variant of Ding Yanheng’s Theorem . (see []).
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