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1 Introduction

In [1] it was argued that the tree level S-matrix of massless theories can be captured by

the so-called scattering equations (to be defined later) that connect the space of kinematic

invariants of n particles in arbitrary spacetime dimensions to the positions of n points on

a sphere. Prior to [1] the scattering equations had appeared in the literature in different

contexts in [2–10].

After the initial conception and application of the scattering equations to Yang-Mills

and gravity [11], an increasing number of theories, whose tree level amplitudes can be

expressed in terms of the scattering equations, has been found [12–18] some of them gen-

eralizing to massive cases, with the promise that this is not the complete list. It is still not

known what kind of theories admit a representation in terms of scattering equations.

The formalism was proven for Yang-Mills in [13], where the authors showed that it

reproduces the BCFW [19] recursion relations. A polynomial form of the scattering equa-

tions that greatly facilitates computations was also presented in [20]. Extensions at loop

level include [21–23] and connection to twistor-string-like models can be found in [24–26].

One of the questions is how to use the formalism in order to get explicit answers for

the amplitudes. Some attempts have appeared in the past and involved special solutions

of the equations associated to particular polymonials [12, 20, 27–29], that in some of the

cases allowed for the explicit construction of the amplitude [12, 27]. Besides all the efforts

there is no known general solution of the scattering equations.

Fortunately, one does not need to know the explicit solutions of the equations in order

to evaluate the amplitude. The amplitude is always given as sums of all possible solutions

of the scattering equations, which are polynomial in nature, and one can then use the well

known in mathematics formulas of Vieta, that associate the sums of roots of polynomials

to the coefficients of these polynomials. This can be the first step, but still the answer is

complicated to evaluate and write it down.
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In this work we attempt to organize the expressions of tree level amplitudes. We first

identify a fundamental quantity, whose general form depends on products of cross ratios.

We claim that all amplitudes can be written as linear combinations of this quantity. In the

case of n = 5, we explicitly evaluate this fundamental quantity by constructing a generating

function that captures the combinatorics of the problem. We then give specific examples

for the case of Yang-Mills.

2 Scattering equation formalism

The fundamental ingredient that allows the formulation of S-matrices in arbitrary dimen-

sions is the scattering equations and are defined as

fa =

n
∑

b 6=a

kab
σab

, (2.1)

where ka is the momentum of the ath particle. In the above we have used the short notation

kab = ka · kb and σab = σa − σb. Not all of the n equations in (2.1) are independent, but

instead they satisfy three constraints

n
∑

a=1

fa =
n
∑

a=1

σafa =
n
∑

a=1

σ2
afa = 0. (2.2)

This is due to the SL(2,C) invariance of (2.1), which is a direct consequence of total

momentum conservation and the on-shell condition of the external particles. This allows

us to fix three of the σis to arbitrary values. The number of solutions of (2.1) is known [1]

to be (n− 3)! and in general they can be complex.

The S-matrices of the theories that admit a scattering equation description have the

general form

Mn =

∫

dnσ

vol SL(2,C)
σijσjkσki

∏

a 6=i,j,k

δ(fa) In(k, ǫ, σ), (2.3)

where In(k, ǫ, σ) depends on the theory and carries information about the external particles,

namely their momentum k and polarization vectors ǫ. Invariance of the integrand in (2.3)

under SL(2,C) transformations restricts the form of In(k, ǫ, σ). Finally, the delta functions

appearing in (2.3) completely localize all integrals.

We will now present how the scattering equations are used in the case of Yang-Mills

amplitudes, since later we will make use of the formulas in our examples. From [11] we

know that after performing the integration (2.3) the tree level n-gluon partial amplitude

An of Yang-Mills in arbitrary dimensions can be expressed through

An =
∑

roots

1

σ12σ23 · · ·σn1
Pf ′Ψ(k, ǫ, σ)

det′Φ
, (2.4)

where the sum runs over all solutions of (2.1). The 2n × 2n antisymmetric matrix Ψ is

given by

Ψ =

(

A −CT

C B

)

, (2.5)
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where the n× n matrices A, B, C are given by

Aab =
ka · kb
σab

δa 6=b, Bab =
ǫa · ǫb
σab

δa 6=b, Cab =
ǫa · kb
σab

δa 6=b − δab

n
∑

c 6=a

ǫa · kc
σac

. (2.6)

The matrix Φ is defined as

Φab =
∂fa
∂σb

=
ka · kb
σ2
ab

δa 6=b − δab

n
∑

c 6=a

ka · kc
σ2
ac

(2.7)

and the primes in (2.4) denote

Pf ′Ψ = 2
(−1)i+j

σij
Pf(Ψij

ij), det′Φ =
det(Φijk

pqr)

(σijσjkσki)(σpqσqrσrp)
. (2.8)

The matrix Ψij
ij in (2.8) is derived from the matrix Ψ after the removal of the ith and jth

row and the ith and jth column, with 1 ≤ i < j ≤ n. Finally, the matrix Φijk
pqr is derived

from the matrix Φ after removing the {i, j, k} rows and the {p, q, r} columns.

3 An algorithm to evaluate the amplitudes

The first question we would like to address is whether the scattering equations can be

explicitly solved and whether such a solution is useful for calculating the amplitudes. As it

was shown in [20] the scattering equations admit a polynomial form. According to [20] one

can use the elimination theory and completely decouple the scattering equations. Then

one ends up with a one variable (n − 3)! degree polynomial equation, p(σi) = 0, for one

of the (n− 3) variables σi, whereas the rest (n− 4) variables can be uniquely determined

from the solution of the aforementioned polynomial. The coefficients of p(σi) depend only

on products and sums of the kinematic invariants ki · kj and in general can be very long

to write them explicitly. For the simplest non trivial case, n = 5, the solution of p(σi) = 0

already occupies several lines, whereas for the next case, n = 6, as explicit calculations for

special kinematics show, the six solutions become long in an uninspiring way and extend

into several pages.

In general it is not known whether one can explicitly solve any higher case. Fortunately,

one does not have to do so in order to evaluate the amplitude. The explanation is simple.

One can in principle obtain all amplitudes of any known theory that admits a scattering

equation description using the following procedure, which does not require the explicit

solution of the scattering equations. The idea is the following. One uses the results of [20]

in order to write the amplitude in terms of only one variable. The answer for the amplitude

will then be a ratio of two polynomials of the same variable of degree much higher than

(n−3)!. Then one can iteratively use the scattering equation of the remaining variable and

bring the amplitude to the form of a ratio of two polynomials of degree (n−3)!−1. Then one

can use the well known Vieta formulas that associate the sum of roots of a polynomial to

its coefficients and obtain the amplitude as a rational function of the kinematic invariants.

– 3 –
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Let us illustrate the algorithm with the help of the following toy model. We consider

the toy scattering equation to be

x2 − ax+ b = 0 (3.1)

and the toy amplitude to be

Atoy =
∑

roots

x4 − c

x3 − d
. (3.2)

Iterative use of (3.1) in (3.2) gives

Atoy =
∑

roots

(a3 − 2ab)x+ (b2 − a2b− c)

(a2 − b)x− (ab+ d)
. (3.3)

Let the two solutions of (3.1) be denoted by r1 and r2. Substitution to (3.3) yields

Atoy =
(a3 − 2ab)r1 + (b2 − a2b− c)

(a2 − b)r1 − (ab+ d)
+

(a3 − 2ab)r2 + (b2 − a2b− c)

(a2 − b)r2 − (ab+ d)

=
c1 + c2(r1 + r2) + c3r1r2
c4 + c5(r1 + r2) + c6r1r2

=
c1 + c2a+ c3b

c4 + c5a+ c6b
,

(3.4)

where the constants ci are simple functions of a, b, c, d that can be easily computed. In the

above we have made use of the Vieta formula that states that the sum of roots of (3.1) is

r1 + r2 = a and the product r1r2 = b. Our toy model can be easily applied to the most

general case. One has a polynomial scattering equation of degree higher than two, therefore

the final expression of the amplitude contains not only the sum and the product of roots of

the scattering equation, but all the elementary symmetric polynomials of the roots. Hence,

we conclude that one does not need to solve the scattering equations, whereas at the same

time we have shown that the amplitude is a rational function of the kinematic invariants

ki · kj as expected.

Although the above algorithm does not require the explicit solution of the scattering

equations, it becomes quickly complicated. The authors of [20] have stopped the demon-

stration of their construction at n = 6. Although in principle it is possible to extend the

analysis to higher cases, it becomes difficult to continue beyond n = 6 or n = 7 and one

should perhaps rely on other ideas in order to explicitly obtain, organize or write down the

amplitude. One such idea is the expression of the amplitudes with the help of a generating

function, to which we now turn.

4 Calculation of the generating function

All n = 5 amplitudes can be decomposed as sums of the following fundamental quantity

P~α ≡ P =
∑

roots

1

det′Φ

1

σ122+α1σ232+α2σ342+α3σ452+α4σ152+α5σ13α6σ14α7σ24α8σ25α9σ35α10

,

(4.1)

with momentum and helicity dependent coefficients. In the above, the αis are assumed to

be integers. Such a decomposition might not be immediately obvious and we explain how
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this can be done later in an example. We demand SL(2,C) invariance that will fix five of

the αis to the values

α6 = −α1 − α2 + α4, α7 = +α2 − α4 − α5,

α8 = −α2 − α3 + α5, α9 = −α1 + α3 − α5,

α10 = +α1 − α3 − α4.

(4.2)

In the definition of P in (4.1) one can shift any of the αis by an integer value without

loss of generality. Since there is no canonical way to express that, we have chosen P to

correspond to the color ordered φ3 amplitude [12] when we set αi = 0, i = 1, . . . , 5. Other

starting points can also be considered and lead to final expressions of the same or higher

complexity.

Substitution of (4.2) in (4.1) yields

P =
∑

roots

1

det′Φ

5
∏

i=1

1

σ2
i,i+1

(

σi,i+2σi+1,i+4

σi,i+1σi+2,i+4

)αi

. (4.3)

The number of cross ratios appearing in (4.3) coincides with the number of independent

cross ratios in d-dimensions, namely n(n− 3)/2. Since our problem is one dimensional the

number of independent cross ratios in our case is n − 3, which means that the conformal

ratios in (4.3) are dependent, in general in a complicated way. We have traded away this

complication by considering a larger set of cross ratios that has the advantage that all

remaining cross ratios can be simply expressed as products of quantities of that set.

The scattering equations for the n = 5 case are quadratic in nature and admit two

solutions that contain one square root. After we fix the SL(2,C) invariance and substitute

the solution of the scattering equations in P we get an expression of the following form

P =
1

2
(b0 + c0

√
r)

5
∏

i=1

(bi + ci
√
r)αi +

1

2
(b0 − c0

√
r)

5
∏

i=1

(bi − ci
√
r)αi , (4.4)

where the b0, bi, c0, ci, r appearing in the above expression are rational functions of the

kinematic invariants ki · kj and in general can be complicated. b0, c0 depend on how we

choose to parametrize the αi = 0 case. For integer αis the quantity P is a rational function

of the kinematic invariants. Here and in the rest of this work the index i always takes the

values 1, . . . , 5 and never zero. We consider cyclicity of indices and identify i+ 5 ∼ i.

There is a nice way in mathematics to express (4.4) via a generating function namely

P =

(

5
∏

i=1

1

αi!

∂αi

∂xαi

i

)

G(xi)

∣

∣

∣

∣

∣

xi=0

. (4.5)

We first consider the case where all αis are positive. We find that the generating function

G(xi) is given by

G(xi) =

∑5
i<j<k<l<m(d0+dixi+dijxixj+dijkxixjxk+dijklxixjxkxl+dijklmxixjxkxlxm)

∏5
i=1(1− 2bixi + (b2i − rc2i )x

2
i )

,

(4.6)
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where
d0 = b0,

di = −bid0 + rcic0 ≡ −bid0 − rcif0,

dij = −bjdi + rcj(bif0 + cid0) ≡ −bjdi − rcjfi,

dijk = −bkdij + rck(bjfi + cjdi) ≡ −bkdij − rckfij ,

dijkl = −bldijk + rcl(bkfij + ckdij) ≡ −bldijk − rclfijk,

dijklm = −bmdijkl + rcm(blfijk + cldijk).

(4.7)

We see that the dij... coefficients have the structure of nested sums.

So far we have considered the case ai > 0. When one or more of the ais are negative

we simply make the replacement in the generating function bj → bj/(b
2
j − rc2j ) and cj →

−cj/(b
2
j − rc2j ), for every j with aj negative.

We need to express (4.6) in terms of kinematic data. This can be achieved without the

need of knowing the explicit solutions of the scattering equations by considering special

cases of (4.4) and then using our algorithm in order to evaluate these special cases. There

are many ways to do this and here we provide one of them. We have

b0 = P(0,0,0,0,0), b21 − rc21 =
2b0b1 − P(1,0,0,0,0)

P(−1,0,0,0,0)
,

b1 =
P(2,0,0,0,0)P(−1,0,0,0,0) − b0 P(1,0,0,0,0)

2P(1,0,0,0,0)P(−1,0,0,0,0) − 2b20
,

(4.8)

and similarly for the remaining indices. For the numerator of (4.6) we have d1 = P(1,0,0,0,0)−
2b0b1, whereas in order to find d12 we can consider the P(1,1,0,0,0) case, in order to find d123
the P(1,1,1,0,0) case and so on. Performing the algebra we find

b0 =
5
∑

i=1

1

ki,i+1ki+2,i+3
, 2ci = ± 1

ki,i+1ki+2,i+4
, b2i − rc2i =

ki,i+2ki+1,i+4

ki,i+1ki+2,i+4
,

2bi =
ki+1,i+3ki+2,i+3

ki,i+1ki+2,i+4
− ki,i+2

ki+2,i+4
− ki+1,i+4

ki,i+1
=

ki,i+3ki+3,i+4

ki,i+1ki+2,i+4
− ki,i+2

ki,i+1
− ki+1,i+4

ki+2,i+4
,

−bib0 + rcic0 =
ki,i+2ki+1,i+4(ki,i+3ki+2,i+3 + ki,i+3ki+1,i+2 + ki+1,i+2ki+1,i+3)

k12k23k34k45k15ki+2,i+4
.

(4.9)

This is enough data to determine the generating function for all of the 25 = 32 possibilities

of signs of the different αis. From (4.4) we see that we can simultaneously change the signs

of c0 and cis without altering the final result. This can also be seen from the fact that

the coefficients of the generating function always involve products of c0 and cis that cancel

the sign. In (4.9) we have given two equivalent expressions for the bis. One can go from

one to the other using conservation of momentum. One might think that since in (4.7)

we have nested sums, the coefficients will become increasingly complicated. This is not

necessarily the case, since cancellations can and do occur. For example, in the case of all

αi > 0 we simply have dijklm = 0. We should finally mention that for the n = 5 case one

can alternatively use the explicit solutions of the scattering equations in order to find the

coefficients in (4.9).
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For completeness, let us briefly consider the n = 4 case. We have that the amplitudes

are linear combinations of the following fundamental quantity

∑

roots

1

det′Φ

4
∏

i=1

1

σ2
i,i+1

(

σ13σ24
σ12σ34

)α1
(

σ13σ24
σ23σ14

)α2

. (4.10)

Since we only have one root that we need to sum over, we can explicitly evaluate (4.10)

to be

−
(

1

k12
+

1

k23

)(

1 +
k23
k12

)α1
(

1 +
k12
k23

)α2

. (4.11)

One can easily find a generating function that reproduces the result. For example, for

αi > 0 we get

−
(

1

k12
+

1

k23

)[(

1−
(

1 +
k23
k12

)

x1

)(

1−
(

1 +
k12
k23

)

x2

)]−1

. (4.12)

We see that for xi = 0 the generating function gives the expected answer for the color

ordered φ3 theory.

5 Examples

As we have mentioned the amplitude is not always manifestly expressed as a linear com-

bination of the fundamental quantity (4.1). Nevertheless, we can always bring it to the

desired form and we demonstrate how this can be done in the case of Yang-Mills.

We choose to remove the first two rows and columns of the reduced pfaffian in (2.4).

Then we are left with an 8 × 8 antisymmetric matrix, whose naive pfaffian expansion

contains 105 terms. Most of the terms are already of the form (4.1), except for three cases.

The first case involves one diagonal element of the matrix Cab, the second case involves a

product of two diagonal elements of Cab, whereas the last case consists of three diagonal

elements. In all of the three cases the treatment is the same. We pick up one of the four

terms of each Caa and we replace it using conservation of momentum. Let us illustrate this

with an example. Upon expanding the reduced pfaffian of the Yang-Mills, one of the 105

terms has the form

1

σ24σ15σ45

(

ǫ3 · k1
σ31

+
ǫ3 · k2
σ32

+
ǫ3 · k4
σ34

+
ǫ3 · k5
σ35

)

. (5.1)

We have omitted an overall factor that depends purely on helicities and momenta and

we have kept only the part that contains the σi variables. We now replace in the above

expression the momentum k1 → −k2 − k3 − k4 − k5 to get

1

σ24σ15σ45

(

− σ12
σ13σ23

ǫ3 · k2 +
σ14

σ13σ34
ǫ3 · k4 +

σ15
σ13σ35

ǫ3 · k5
)

. (5.2)

We have now achieved our goal. Combining all elements together the contribution of our

term to the scattering amplitude is proportional to

∑

roots

1

det′Φ

5
∏

i=1

1

σ2
i,i+1

(

σ12σ34
σ13σ24

ǫ3 · k2 −
σ14σ23
σ13σ24

ǫ3 · k4 −
σ15σ23σ34
σ13σ24σ35

ǫ3 · k5
)

. (5.3)

– 7 –
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In terms of our fundamental quantity (4.1), the above expression becomes

ǫ3 · k2P(−1,0,−1,0,0) − ǫ3 · k4P(0,−1,0,0,0) − ǫ3 · k5P(0,−1,−1,0,−1). (5.4)

The three P s appearing in (5.4) can be easily computed from (4.5). We find

P(0,−1,0,0,0) =
b2d0 − rc2c0
b22 − rc22

=
1

k12k45
+

1

k12k34
+

1

k15k34
, (5.5)

where the denominator b22−rc22 comes from the fact that the α2 is negative in our example.

The same way we find

P(−1,0,−1,0,0) =
(b1b3 + rc1c3)d0 − (b1c3 + b3c1)rc0

(b21 − rc21)(b
2
3 − rc23)

=
1

k15k23
+

1

k23k45
, (5.6)

and finally.

P(0,−1,−1,0,−1) =
1

k12k45
. (5.7)

The case of the full Yang-Mills and gravity can be treated the same way, whereas for

more general theories we expect similar considerations.

6 Discussion

The main motivation of this work was to nicely organize and even calculate the tree am-

plitudes of theories whose S-matrix can be described through the scattering equations. In

doing so, we considered the most general quantity consistent with SL(2,C) invariance, that

in general depends on conformal cross ratios of the variables that appear in the scattering

equation. Then, all amplitudes can be written as linear combinations of this quantity, with

coefficients that depend on kinematic data. We have found that our fundamental quantity

can be nicely expressed through a generating function, that we have explicitly calculated

for the first non-trivial case, namely n = 5. Although the solutions of the scattering equa-

tions are complicated in nature, we have argued that knowledge of them is not necessary

to evaluate the amplitude. We have also presented a simple argument why the amplitude

is a rational function of the kinematic invariants.

Although all five point amplitudes can also be obtained by brute force, it might be time

consuming to simplify all square roots appearing, whereas the final answer can be given

in a disorganized form. Experience shows that for practical purposes the computation can

be simplified using the polynomial form of the scattering equations, but even that does

not solve the problem of organization. Our proposed generating function gives the answer

in a neat way. One can also see that it is rational in the kinematic invariants, it has the

structure of nested sums and it knows about all signs coming from combinatorics.

Our method can certainly be applied to the n = 6 case using our algorithm and the

results of [20], whereas a generalization to the arbitrary n case remains to be seen. The

general case is expected to be captured by a generating function of n(n − 3)/2 variables,

which is simply the number of all possible σijs with i < j after we subtract the n condi-

tions coming from the SL(2,C) invariance of the problem. The form of our fundamental

– 8 –
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quantity (4.1) can be easily extended to the general case and it involves the product of

n(n−3)/2 cross ratios each one appearing an integer number of times. The form of the gen-

erating function in the general case is also easy to be found. It will involve a denominator

of n(n−3)/2 polynomials, each one of degree (n−3)!. The difficult part of the computation

is to express the various coefficients of the generating function in terms of kinematic data.

One possible way to achieve this would be to assume the form of the generating function

and fix its coefficients by studying simple cases, where we already know the answer. It

is also worth to investigate whether there is an even simpler but equivalent form of our

generating function for n = 5, having always in our mind application to the general case.
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