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1 Introduction

Four dimensional conformal gravity whose action is given in terms of the Weyl tensor, is

a theory that is invariant under a Weyl transformation of the metric. This, indeed, leads

to a theory which depends on angles, but not on distances. Unlike the Einstein gravity1

which is ghost free, the conformal gravity has ghost, though it is renormalizable [1, 2]. It is

also known that the solutions of Einstein gravity are solutions of the conformal gravity too,

though the inverse is not necessarily correct. It is, however, possible to impose a certain

boundary condition on the metric in the conformal gravity, so that the theory admits only

Einstein solutions [3].

An interesting feature of the four dimensional conformal gravity is its relation to the

Einstein gravity in four dimensions. Actually, it was shown [4] that the renormalized on

shell action of a four dimensional Einstein gravity in an asymptotically hyperbolic Einstein

spaces is given by the action of conformal gravity. Of course the action must be evaluated on

an Einstein solution. Moreover the author of [3] has also argued that the certain boundary

condition, mentioned above, removes the ghost from the theory and indeed the physical

content of both theories would be the same.

Motivated by these observations, in the present paper, we will study the holographic

entanglement entropy in the four dimensional conformal gravity with the aim of comparing

the results with that of the Einstein gravity.

The action of the conformal gravity in four dimensions is

S = − κ

32π

∫

d4x
√−g CµνρσC

µνρσ

= − κ

32π

∫

d4x
√−g

(

RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2

)

. (1.1)

1In this paper by “Einstein gravity” we mean an Einstein gravity with a cosmological constant.
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Here κ is a dimensionless coupling constant which is the only free parameter of the theory.

The corresponding equations of motion, which is essentially the vanishing of the Bach

tensor, are
(

∇µ∇ν − 1

2
Rµν

)

Cµρσν = 0. (1.2)

These equations admit black hole solutions as follows [5] (see also [6])

ds2 = −F (r) dt2 +
dr2

F (r)
+ r2dΩ2

2, F (r) = ±
√
1 + am− m

r
− r2

L2
+

ar

3
, (1.3)

where L is the radius of curvature and the ± signs refer to two branches of the solutions [3].

In what follows we will only consider the plus sign, where the solutions are asymptotically

AdS. It is also possible to consider the large volume limit [7] so that the resultant solutions

will be black branes

ds2 =
L2

r2

(

− b(r) dt2 +
dr2

b(r)
+

2
∑

i=1

dx2i

)

, b(r) = 1− a

3
r ±

√
mar2 −mr3. (1.4)

Here a and m are the parameters of the solutions. Note that if one sets a = 0 in the

above solutions, they reduce to AdS black hole (brane) solutions of the Einstein gravity in

four dimensions.

On top of these solutions, we found another solution which is, indeed, an AdS wave

solution (see also [8–10])

ds2 =
L2

r2

(

dr2 + dy2 − 2dx−dx+ + k(x+, r) dx
2
+

)

, (1.5)

with

k(x+, r) = c0(x+) + c1(x+)r + c2(x+)r
2 + c3(x+)r

3. (1.6)

For c1 = c2 = 0 this solution reduces to an AdS wave solution in the Einstein gravity. Note

that since the Weyl transformation is a symmetry of the model, rescaling the above solu-

tions with an arbitrary function leads to new metrics which are still solutions of the model.

As we already mentioned the above solutions are not necessarily solutions of the Ein-

stein gravity, though if one sets some of their parameters to zero they reduce to solutions

of the Einstein gravity. Therefore it is natural to pose a question whether there is a sys-

tematic way one could remove these terms from the solutions. Actually the answer is

yes. To explore the situation note that generally, using the Fefferman-Graham coordinates

for a conformally asymptotically locally AdS solution, the equations of motion allow the

following form for the metric

ds2 = eφ(r)
L2

r2

(

dr2+gij(x, r)dx
idxj

)

, gij(x, r) = g
(0)
ij +g

(1)
ij r+g

(2)
ij r2+g

(3)
ij r3+· · · (1.7)

It is then clear that by imposing a Neumann boundary condition as ∂rgij | = g
(1)
ij = 0 at

the boundary one can remove the linear term leading to an Einstein solution [3]. This is

– 2 –
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indeed the ghost mode which is removed by the boundary condition. It is clear that this

condition sets a = 0.2

It is worth noting that in the context of holographic renormalization it was argued that

this extra term would correspond to a source of a relevant operator in the dual conformal

field theory [11, 12]. More precisely, having non-zero linear term corresponds to deforming

the corresponding dual theory with a relevant operator.

This is the aim of the present paper to compute the entanglement entropy of a three

dimensional field theory whose gravitational dual is given by the four dimensional conformal

gravity (1.1). Since the action of the conformal gravity in four dimensions contains higher

derivative terms, the simple procedure of calculating the holographic entanglement entropy

in terms of a minimal surface in the bulk [13] is not applicable. Therefore to compute the

holographic entanglement entropy one should proceed with another method.

Actually using a method based on the regularization of squashed cones the authors

of [14] proposed an expression for the holographic entanglement entropy for actions with

curvature squared higher derivative terms. This proposal has been further studied in [15,

16] for certain higher derivative gravities. A general formula for the holographic entangle-

ment entropy for higher derivative gravities has been also proposed in [17, 18]. In what

follows we will use the procedure of [14] in which the corresponding entropy functional for

our case becomes

SA =
κ

8

∫

d2ζ
√
h

[

2

3
R−2

(

Rµνn
µ
i n

ν
i −

1

2
KiKi

)

+2

(

Rµνρσn
µ
i n

ν
jn

ρ
in

σ
j −Ki

µνKµν
i

)]

, (1.8)

where i = 1, 2 denotes two transverse directions to a co-dimension two hypersurface in

the bulk, nµ
i are two unit mutually orthogonal normal vectors on the co-dimension two

hypersurface and K(i) is the trace of two extrinsic curvature tensors defined by

K(i)
µν = πσ

µπ
ρ
ν∇ρ(ni)σ, with πσ

µ = ǫσµ + ξ
∑

i=1,2

(ni)
σ(ni)µ , (1.9)

where ξ = −1 for space-like and ξ = 1 for time-like vectors. Moreover h is the induced

metric on the hypersurface whose coordinates are denoted by ζ.

Now the procedure is to consider an entangling region on the dual field theory on the

boundary, then consider a co-dimension two hypersurface in the bulk whose intersection

with the boundary coincides with the boundary of the entangling region. The profile

of the co-dimension two hypersurface may be obtained by minimizing the above entropy

functional. Moreover the entanglement entropy is the value of the entropy functional

evaluated on the co-dimension two hypersurface.

The main results of our paper are as follows. We found that the entanglement entropy

of theories whose gravitational dual are provided by the four dimensional conformal gravity

2For the wave solution (1.5) in order to get an Einstein solution one needs to set both c1 and c2 to

zero. But imposing the Neumann boundary condition leads to c1 = 0 and c2 could still be non-zero. More

probably there should be another constrain on the solution to set either a relation between c1 and c2 or

c2 = 0, though we could not realize it. We should admit the resolution is not clear to us. Nevertheless since

we are just interested in the Einstein solution ( and not the way we get it) one could simply set them to

zero by hand.
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are finite and has no UV divergences which usually appear as the effects of short term

interactions. Nevertheless, if one subtracts the four dimensional Gauss-Bonnet action from

the conformal action, as long as the entanglement entropy is concerned, the resultant action

has the same physical content as that of the Einstein gravity.

The paper is organized as follows. In the next section we will study holographic

entanglement entropy for black hole solutions in the conformal gravity in four dimensions

where we observe that the resultant entanglement entropy is finite. Moreover for the

Einstein solution this finite part is exactly the same as that one finds in the Einstein

gravity using the minimal surface . In section three in order to explore our observation of

the section two, we will study the entanglement entropy for the AdS plane wave solution

of the model. The last section is devoted to discussions.

2 Entanglement entropy for black brane solutions

In this section we study holographic entanglement entropy for a black brane solution in

the four dimensional conformal gravity. We will consider the cases where the entangling

region is either a strip or a disk.

2.1 Strip entangling region

In this subsection we calculate entanglement entropy for an entangling region in the shape

of a strip with the width of ℓ. To do so, setting
2
∑

i=1
dx2i = dx2 + dy2 in the equation (1.4)

the entangling region may be given by

− ℓ

2
≤ x ≤ ℓ

2
, 0 ≤ y ≤ Ly, t = fixed. (2.1)

Then the corresponding co-dimension two hypersurface in the bulk may be parametrized

by t = 0 and x = f(r) whose induced metric becomes3

ds2 =
L2

r2

[(

1

b
+ f ′2

)

dr2 + dy2
]

. (2.2)

Moreover the two unit vectors normal to the co-dimension two hypersurface are

Σ1 : t = 0 n1 =
L
√
b

r
(1, 0, 0, 0)

Σ2 : x− f(r) = 0 n2 =
L

r
√

1 + bf ′2
(0,−f ′, 1, 0). (2.3)

Following the equation (1.9) one can compute the extrinsic curvatures of the hypersurface.

Indeed one gets

K(1)
µν = 0, K(2)

µν =











0 0 0 0

0 b−1A f ′A

0 f ′A bf ′2A 0

0 0 0 B











, (2.4)

3Through out this paper we will be dealing with three functions f(r), b(r) and k(r) which are functions

of r. But in order to simplify the expressions we will drop their explicit dependence on r and will write

them as f , b and k, respectively.
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where

B =
bLf ′

r2
√

1 + bf ′2
, A =

L
[

(2b− rb′) f ′ + 2b2f ′3 − 2brf ′′
]

2r2 (1 + bf ′2)5/2
. (2.5)

Using the expression for the extrinsic curvatures and the normal vectors one can compute

the entropy functional (1.8). In fact in the present case one finds

SA = −κLy

4

∫

dr

[

(b′f ′ + 2bf ′′)2

4
√
b (1 + bf ′2)5/2

+

(

2bf ′2 − 1
)

b′′

3
√
b
√

1 + bf ′2

]

. (2.6)

Now the aim is to minimize this entropy functional to find the profile of the hypersurface

parametrized by f with conditions that f is a smooth differentiable function and f(0) = ℓ
2 .

Before going into details of minimizing procedure, we would like to make a comment on

the form of the above entropy functional.

Note that neither L nor the radial coordinate r appeared explicitly in the final form

of the entropy functional. This observation together with the fact that both b and f

are smooth differentiable functions, leads to an interesting prediction on the form of the

entanglement entropy in this case. Namely, since the integrand does not diverge at r = 0,

the resultant entanglement entropy does not have UV divergent terms. This is unlike

the area formula in the Einstein gravity where the integrand has the following typical

divergent form

A ∼
∫

dr

√

1 + bf ′2

rd−1
√
b

r→0−→ A ∼
∫

ǫ

dr

rd−1
, (2.7)

where ǫ is a UV cut off. Therefore one may wonder how the conformal gravity would

produce the Einstein gravity’s results once the Neumann boundary condition on the metric

is imposed. This is, indeed, the aim of this subsection to address this question.

In order to minimize the above entropy functional one may proceed with the well

known procedure in the literature. Namely one may consider the entropy functional as

a one dimensional action whose Lagrangian is defined by SA =
∫

drL. Therefore, in the

present case, the corresponding equation of motion is

∂2

∂r2

(

δL
δf ′′

)

− ∂

∂r

(

δL
δf ′

)

+
δL
δf

= 0. (2.8)

Since the entropy functional (2.6) is independent of f , one gets a conservation law which

might be solved to find f . We note, however, that in general it is difficult to solve the

resultant equation. Of course for pure AdS solution where b = 1 there is an exact solution

as follows

f ′(r) =
r2

√

r4t − r4
. (2.9)

where rt is the turning point where f ′(r) → ∞.

Then, one may expand the equation around the AdS solution for small deformations

of parameters m and a. It is, however, important to note that since the equation of motion

we get for f ′(r) is a third order differential equation, in general it has three free parameters

– 5 –



J
H
E
P
0
2
(
2
0
1
4
)
0
0
8

which should be fixed by proper boundary conditions. The corresponding condition we will

impose are finiteness and reality conditions on ℓ. More precisely at leading order one finds

f ′(r) =
r2

√

r4t − r4

[

1 + g(r) +O(m2, a2,ma)
]

, (2.10)

with

g(r) =
3mr5

(

r4 − r4t
)

+ ar3
(

r4 − 2r4t
)

−√
am
(

3r8 − 4r4r4t + r8t
)

6r2
(

r4 − r4t
) +

c1

r
(

r4 − r4t
)

+
c2

2
(

r4 − r4t
) + c3





1

12r2r4t
√

r4t − r4
+

E
(

sin−1 r
rt
,−1

)

− F
(

sin−1 r
rt
,−1

)

6rr3t
(

r4t − r4
)



 .

(2.11)

where E and F are Elliptic functions. Using the fact that ℓ
2 =

∫ rt
0 drf ′(r) one can find a

relation between the width of the entangling region and the turning point. Of course the

resultant width should be real and finite. Indeed, requiring these conditions, one finds

c3 = 0, c2 =
a

3
r5t −

2c1
rt

. (2.12)

Moreover in the limit of ℓ → 0, the turning point must approach zero. This condition

would also require to set c1 = 0. Therefore we arrive at4

f ′(r) =
r2

√

r4t − r4

[

1 +
1

2
mr3 +

a
(

r5 − 2rr4t + r5t
)

6
(

r4 − r4t
)

+

√
am(r4t − 3r4)

6r2
+O(m2, a2,ma)

]

. (2.13)

As a result, at leading order one gets

ℓ

2
=

√
πΓ
(

3
4

)

Γ
(

1
4

) rt +
mπ

16
r4t +

√
πΓ
(

3
4

)

12Γ
(

1
4

) ar2t +O(m2, a2,ma), (2.14)

which can be inverted to find the turning point as a function of the width of the entan-

gling region

rt =
Γ
(

1
4

)

2
√
πΓ
(

3
4

)ℓ− Γ
(

1
4

)5

256π3/2Γ
(

3
4

)5 mℓ4 − Γ
(

1
4

)2

48πΓ
(

3
4

)2 aℓ2 +O(m2, a2,ma). (2.15)

On the other hand plugging the profile (2.13) into the entropy functional one arrives at

SEE = −κLy

4

[

4
√
πΓ
(

3
4

)

Γ
(

1
4

)

1

rt
− mπ

2
r2t −

√
πΓ
(

3
4

)

3Γ
(

1
4

) a

]

+O(m2, a2,ma) (2.16)

4Note that in each order one needs to impose the reality and finiteness conditions on ℓ.
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which, by making use of the equation (2.15), can be recast to the following form

SEE = κLy

[

−2πΓ
(

3
4

)2

Γ
(

1
4

)2

1

ℓ
+

Γ
(

1
4

)2

64Γ
(

3
4

)2 mℓ2

]

+O(m2, a2,ma). (2.17)

This is, indeed, our final result for the holographic entanglement entropy for a black hole

solution in the conformal gravity.

An interesting feature of the resultant entanglement entropy is that it does not contain

UV divergent terms, as we had already anticipated. Moreover those finite terms which are

independent of a, up to an overall factor, are exactly the same as that in the Einstein

gravity [19]. Therefore setting a = 0, the entanglement entropy reduces to that of Einstein

gravity which can be obtained from the minimal area.

It is worth noting that although the entanglement entropy by definition is a positive

quantity, its finite term could be negative [19]. Therefore if with any procedure one removes

the UV divergences of the theory, the resultant entanglement entropy could be negative.

Having found a finite negative entanglement entropy for the conformal gravity, it would

mean that the corresponding theory is intrinsically regularized. In what follows we will

see this is, indeed, the case and moreover we show how the divergences could be detached

and removed.

In fact the finiteness of the entanglement entropy may be understood from the fact

that the four dimensional conformal gravity could be considered as a regularized four

dimensional Einstein gravity [4]. So that all the divergences in the theory should have

been removed. On the other hand following the results of [3] one would also expect that

setting a = 0 where the solution becomes a solution of Einstein gravity, the content of the

model should also reduce to the Einstein gravity.

To explore these points better, note that the action of the four dimensional conformal

gravity may be decomposed as follows

S = − κ

32π

∫

d4x
√−g

(

RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2

)

= − κ

32π
GB4 −

κ

16π

∫

d4x
√−g

(

RµνR
µν − 1

3
R2

)

, (2.18)

where GB4 is the four dimensional Gauss-Bonnet action which is a total derivative and

does not contribute to the equations of motion. Note that since the Gauss-Bonnet term is

topological, the whole dynamics must be encoded in the second term. Therefore we will call

the second term as the “dynamical term”.5 It is illustrative to compute the contributions

of these two terms to the entanglement entropy, separately.

5Actually there are several ways to decompose the Weyl action into a Gauss-Bonnet term plus a dynam-

ical term. We note, however, that the decomposition (2.18) is special in a sense that the coefficients of the

Weyl action and the Gauss-Bonnet action are the same. In other words the coefficient of the Gauss-Bonnet

action is one up to the factor of κ

32π
. This is exactly the proper factor needed to regularize the four dimen-

sional Einstein gravity with the Gauss-Bonnet term [20] (see also [3, 4]). Therefore the above dynamical

terms is unique. As we will see, this leads to an interesting result concerning the connection between four

dimensional conformal and Einstein gravities.

– 7 –
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To proceed let us consider the following action.

Sdyn = − κ

16π

∫

d4x
√−g

(

RµνR
µν − 1

3
R2

)

. (2.19)

It is obvious that the black brane solution (1.4) is also a solution of the equations of motion

of the above action. Moreover, following [14] the holographic entanglement entropy of a

dual field theory whose gravitational description is given by the black brane solution of the

above action must be obtained from the following entropy functional

Sdyn
A =

κ

4

∫

d2ζ
√
h

[

− 2

3
R+

(

Rµνn
µ
i n

ν
i −

1

2
KiKi

)]

. (2.20)

For the entangling region (2.1) and its corresponding co-dimension two hypersurface in the

bulk, the above entropy functional reads

Sdyn
A =

κLy

8

∫

dr

[

6 (3b− rb′)−
(

1− 2bf ′2
) (

6b− r2b′′
)

3
√
br2
√

1 + bf ′2

−
(

(4b− rb′) f ′ + 4b2f ′3 − 2rbf ′′
)2

4
√
br2 (1 + bf ′2)5/2

]

. (2.21)

It is then straightforward to minimize the above entropy functional to read the correspond-

ing profile of the hypersurface in the bulk. In fact solving the obtained equation perturba-

tively for small a and m, we reach to the same profile as that in the equation (2.13). It is

then easy to compute the entanglement entropy for the equation (2.20) which at leading

order is

Sdyn
EE = κLy

[

1

ǫ
− a

6
− 2πΓ

(

3
4

)2

Γ
(

1
4

)2

1

ℓ
+

Γ
(

1
4

)2

64Γ
(

3
4

)2 mℓ2 + . . .

]

. (2.22)

Going through the same procedure for the Gauss-Bonnet term, one arrives at

SGB
EE = κLy

[

−1

ǫ
+

a

6
+ . . .

]

. (2.23)

It is then clear that taking both contributions into account the divergent term will drop

leading to a finite entanglement entropy in the equation (2.17). Besides, setting a = 0 where

the solution becomes a Schwarzschild black brane, the entanglement entropy evaluated just

by the dynamical part, Sdyn
EE , reduces to the entanglement entropy of a strip in the Einstein

gravity if one identifies κ as κ = L2

2G , where G is the four dimensional Newton constant.6

It is worth recalling that setting a = 0 corresponds to imposing the Neumann boundary

condition on the metric which in turns reduces the solution to that of Einstein gravity [3].7

6If we had considered another decomposition rather than (2.18) the result of the Gauss-Bonnet term

would have been changed by an overall factor. Therefore the finite terms of the entanglement entropy, for

an Einstein solution, do not depend on the decomposition. Of course in this case the whole entanglement

entropy obtained just from the dynamical part would not be the same as that in the Einstein gravity.
7To compare our normalization with that in [3] one has κ = 32πcW . See equation (3.6) of the paper [3].
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Actually we can show even more. Indeed the equation of motion obtained from the

minimization of the equation (2.21) can be solved exactly leading to the following closed

form for the profile of the hypersurface in the bulk

f ′(r) =
r2

√

b (r4t − r4)
, with b = 1−mr3. (2.24)

We recognize that this is exactly the same profile which minimizes the area,

SEin
A =

L2Ly

4G

∫

dr

√

1 + bf ′2

r2
√
b

, (2.25)

that is the entropy functional for the Einstein gravity. Evaluating the entropy functional

coming from the dynamical part and the area function on this profile leads to the follow-

ing expressions for the holographic entanglement entropy in the conformal and Einstein

gravities, respectively

Sdyn
EE = κLy

∫ rt

ǫ
dr

r2t

r2
√

b (r4t − r4)
, SEin

EE =
L2Ly

2G

∫ rt

ǫ
dr

r2t

r2
√

b (r4t − r4)
, (2.26)

which are the same upon the identification of κ = L2

2G .

Therefore it is fair to conclude that for an Einstein solution the holographic entan-

glement entropy evaluated by the dynamical part contains the same information as the

holographic entanglement entropy evaluated by the Einstein gravity where one has a sim-

ple proposal based on a minimal surface. This conclusion may be understood as follows. In

fact by calculating the entanglement entropy, we are actually measuring the entanglement

between different degrees of freedom located on a given region. Therefore only dynamical

modes would contribute. On the other hand for the four dimensional conformal gravity the

dynamics of the modes are governed by the dynamical part of the action. The topological

Gauss-Bonnet term plays just the role of a regulator which regularizes the results.8

In order to further explore this observation, in the following subsection we redo our

calculations for the case where the entangling region is a disk.

2.2 Disk entangling region

In this subsection we continue our studies on the holographic entanglement entropy of the

four dimensional conformal gravity for an entangling region in the shape of a disk. To

proceed we reparametrize the black brane metric as follows

ds2 =
L2

r2

(

−b dt2 +
dr2

b
+ dρ2 + ρ2dφ2

)

, b = 1− a

3
r +

√
amr2 −mr3. (2.27)

Consider a disk on the boundary theory with the radius of ℓ given by ρ ≤ ℓ, then the

corresponding co-dimension two hypersurface in the bulk may be parametrized by t =

0, ρ = f(r). Therefore the induced metric on the hypersurface is

ds2 =
L2

r2

[(

1

b
+ f ′2

)

dr2 + f2dφ2

]

. (2.28)

8We note that the role of the Gauss-Bonnet term as a regulator for AdS gravity action in four dimensions

was also discussed in [21].
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Moreover, two unit vectors normal to the hypersurface are also given by

Σ1 : t = 0 n1 =
L
√
b

r
(1, 0, 0, 0)

Σ2 : ρ− f(r) = 0 n2 =
L

r
√

1 + bf ′2
(0,−f ′, 1, 0). (2.29)

It is then easy to compute the extrinsic curvatures of the hypersurface associated to these

vectors. Actually the results are the same as what we have found for the strip in the

previous section, except that in the present case one has

B =
fL (r + bff ′)

r2
√

1 + bf ′2
. (2.30)

In this case the entropy functional, (1.8), reads

SA = −πκ

4

∫

dr

[

(

2 + fb′f ′ + 2bf ′2 + 2bff ′′
)2

4
√
bf (1 + bf ′2)5/2

+

(

2bf ′2 − 1
)

fb′′

3
√
b
√

1 + bf ′2

]

. (2.31)

The entropy functional associated to the dynamical part of the action can also be computed

leading to the following expression

Sdyn
A =

πκ

4

∫

dr

[

6(3b− rb′)− (1− 2bf ′2)(6b− r2b′′)

3
√
bf−1r2

√

1 + bf ′2

− [2(r + 2bff ′)(1 + bf ′2)− rf(b′f ′ + 2bf ′′)]2

4
√
bfr2 (1 + bf ′2)5/2

]

(2.32)

Now one needs to minimize the entropy functional to find a differential equation for the

profile f . Following our observation in the previous subsection, as long as Einstein solutions

are concerned one could only minimize the entropy functional associated to the dynamical

part of action to find the profile. Also the entropy can be obtained from this part. It

is, however, important to note that even for Einstein solutions the profile we find by

the minimization of the entropy functional associated to the dynamical part does not

necessarily minimize the whole entropy functional. This means that the part of entropy

functional which comes from the topological term, might have non-trivial effects on the

solution of the profile. Nevertheless as long as the finite parts of the entanglement entropy

are concerned both of them lead to the same results for Einstein solutions. In what follows

we will consider the entropy functional of whole system where the effects of both Gauss-

Bonnet and dynamical parts are taken into account.

Since in the present case the entropy functional depends on f , one does not have a

conservation law and therefore the equation of motion has to be solved directly. Of course

in general it is difficult to solve the resultant equation of motion. We note, however, that

when the background is an AdS solution where b = 1, the corresponding equation of motion

admits an exact solution as follows

f(r) =
√

r2t − r2, (2.33)
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which is exactly the same as that in the Einstein gravity. For the black brane solution, fol-

lowing our previous example, with proper boundary conditions one can find a perturbative

expansion for the profile for small a and m as follows

f(r) =
√

r2t − r2

[

1 +m
2r5t − r3

(

r2t + r2
)

8
(

r2t − r2
) −

√
ma
(

(r + rt)
(

r2 + 2r2t
)

− r3t tanh
−1 r

rt

)

6 (r + rt)

+a
r2 + rrt + 4r2t
12 (r + rt)

]

+O(m2, a2,ma), (2.34)

so that

ℓ = rt

[

1 +
m

4
r3t −

√
ma

3
r2t +

a

3
rt

]

+O(m2, a2,ma), (2.35)

which can be used to find the turning point as a function of the radius of the entangling

region, ℓ. It easy to see that in the present case at leading order one just need to set rt = ℓ.

On the other hand form the entropy functional (2.31) one gets

SEE =
πκ

8
mr3t +O(m, a,

√
ma), (2.36)

so that

SEE =
πκ

8
mℓ3 +O(m, a,

√
ma), (2.37)

which is finite, as expected. It is worth nothing that if one sets m = 0 and a = 0 where the

solution reduces to pure AdS geometry, the finite part of the entanglement entropy vanishes.

It is unlike the entanglement entropy for a disk in Einstein gravity where the finite part

is a universal constant [22]. To explore this point better, it is illustrative to compute

the contributions of the dynamical part and the Gauss-Bonnet term to the entanglement

entropy separately. Indeed for the dynamical part one finds

Sdyn
EE = πκ

[

ℓ

ǫ
− 1 +

mℓ3

8
− 5aℓ

12
+

√
amℓ2

6
+ · · ·

]

, (2.38)

while the Gauss-Bonnet contribution to the entanglement entropy is

SGB
EE = πκ

[

−ℓ

ǫ
+ 1 +

5a2ℓ

12
−

√
maℓ2

6
+ · · ·

]

. (2.39)

As one observes both dynamical part and Gauss-Bonnet term contribute to the universal

part but with opposite signs. Therefore the universal part drops when both contributions

are taken into account.

It is also clear that when one sets a = 0 where the solution is a four dimensional

Schwarzschild black brane of the Einstein gravity, the contribution of the dynamical part

is exactly the same as the entanglement entropy obtained from minimal surface in the

Einstein gravity if one identifies κ = L2

2G . The Gauss-Bonnet term plays the role of a

regulator and its contribution removes the divergent term.
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3 Entanglement entropy for wave solution

In this section in order to further explore the connection between holographic entanglement

entropy in the four dimensional conformal gravity and that in the Einstein gravity we will

study entanglement entropy for a field theory whose gravitational description is given by

the four dimensional conformal gravity on an AdS plane wave. It is another non-trivial

example where the important role of the dynamical part of the action may be also seen.

As we have already mentioned, the equations of motion of the conformal gravity admit

an AdS plane wave solution as follows

ds2 =
L2

r2

[

dr2 − 2dx+dx− + k(r) dx2+ + dy2
]

, k(r) = c0 + c1r + c2r
2 + c3r

3. (3.1)

The constant c0 can be set to zero by a shift. When c1 and c2 are non-zero this is only

a solution of conformal gravity. Since in what follows we are interested in the Einstein

solution, we set c1 = c2 = 0, so that k = mr3.

Let us consider a strip in the dual theory whose width is extended along y direction.

More precisely one has

(x−, x+) = (−z, z),
ℓ

2
≤ y ≤ ℓ

2
, t = fixed. (3.2)

Then the co-dimension two hypersurface in the bulk may be given by y = f(r). Therefore

two unit vectors normal to the hypersurface are

Σ1 : x+ + x− = 0 n1 =
L

r
√
2 + k

(0, 1, 1, 0)

Σ2 : y − f(r) = 0 n2 =
L

r
√

1 + f ′2
(−f ′, 0, 0, 1). (3.3)

The induced metric on the co-dimension two hypersurface in the bulk becomes

ds2 =
L2

r2

[

(1 + f ′2)dr2 + (2 + k)dz2
]

. (3.4)

Entanglement entropy for a field theory whose dual is the Einstein gravity on the above

wave solution has been studied in [23]. In this case, being Einstein gravity, one only needs

to consider the area of the hypersurface

SEin
A =

L2L+

4
√
2G

∫

dr

√

(2 + k)(1 + f ′2)

r2
. (3.5)

It is easy then to minimize this area to find the profile of the hypersurface in the bulk

which is

f ′(r) =
cr2√

2 + k − c2r4
. (3.6)

where c =
√

2 + k(rt)/r
2
t , with rt being the turning point, is a constant of motion. Plugging

the profile in the area, one can read the entanglement entropy

SEin
EE =

L2L+

2
√
2G

∫ rt

ǫ
dr

(2 + k)

r2
√
2 + k − c2r4

. (3.7)
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Now let us consider the case of conformal gravity. Following our results in the previous

section for an Einstein solution the physical information is encoded in entropy functional

associated to the dynamical part of the action (2.20). For our entangling region the entropy

functional associated to the dynamical part reads

Sdyn
A =

κL+

8
√
2

∫

dr

[

√

1 + f ′2(8 + 4k − 2rk′ + r2k′′)

r2
√
2 + k

− [f ′(1 + f ′2)(−8− 4k + rk′) + 2r(2 + k)f ′′]2

4r2(2 + k)3/2(1 + f ′2)5/2

]

. (3.8)

The profile of the hypersurface is obtained by minimizing this entropy functional. Although

the equation of motion is lengthy, one can easily verify that the profile (3.6) is still a

solution of the corresponding equation. Therefore entanglement entropy can be calculated

by plugging the profile (3.6) into the above entropy functional. Doing so, one arrives at

Sdyn
EE =

κL+√
2

∫ rt

ǫ

(2 + k)

r2
√
2 + k − c2r4

, (3.9)

which is exactly the same as that in the equation (3.7) with a proper identification of κ

as we have done in the previous section. Therefore, taking the results of [3] into account

it is natural to consider the Gauss-Bonnet term as just a regulator which removes the

divergency of the resultant entanglement entropy. Of course in order to explore the role of

Gauss-Bonnet term it is important to minimize the whole entropy functional when both

the dynamical part and Gauss-Bonnet term are taken into account.

For the entangling region we are considering in this section, the entropy func-

tional (1.8) reads9

SA = −κL+

8
√
2

∫

dr

[

k′2(−4 + f ′2)

4(2 + k)
3

2

√

1 + f ′2
(3.10)

+
(2 + k)f ′′2 − k′f ′(1 + f ′2)f ′′ + (1− f ′2)(1 + f ′2)2k′′

√
2 + k(1 + f ′2)

5

2

]

.

It is then straightforward to minimize this entropy functional to get a differential equation

for the profile f which indeed leads to the same profile as (3.6). Therefore it is straight-

forward to redo our computations for the whole entropy functional to explore the role of

Gauss-Bonnet term.

By performing an integration from the equation (3.6) one may find the width of the

strip as a function of the turning point. Indeed for small m at leading order one finds

f ′(r) =
r2

√

r4t − r4

[

1 +
mr4t (r

3 − r3t )

4(r4 − r4t )

]

+ · · · , (3.11)

9There was a sign mistake in the equation (3.10) in the first version of the paper. This was due to

our Mathematica code. Indeed this equation which contains both the contributions of the dynamical and

the Gauss-Bonnet parts to the entropy functional can be found with different methods. Actually we have

checked this equation with different ways which eventually leads to find our mistake in our Mathematica

code. We would like to thank the referee for pointing out our mistake and suggesting a way to check our

computations.
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which can be integrated to get

ℓ

2
=

√
πΓ
(

3
4

)

Γ
(

1
4

) rt +
mr4t
16

(

π − 2
√
πΓ
(

3
4

)

Γ
(

1
4

)

)

+ · · · . (3.12)

This can be inverted to find the turning point as a function of the width of strip as follows

rt =
Γ
(

1
4

)

2
√
πΓ
(

3
4

)ℓ+
Γ
(

1
4

)4 (−√
πΓ
(

1
4

)

+ 2Γ
(

3
4

))

256π2Γ
(

3
4

)5 mℓ4 + · · · . (3.13)

It is then easy to compute the contributions of the dynamical part and the Gauss-Bonnet

term to the entanglement entropy which are

SGB
EE = −κL+

1

ǫ
+ · · · ,

Sdyn.
EE = κL+

[

1

ǫ
− 2πΓ

(

3
4

)2

Γ
(

1
4

)2

1

ℓ
+

Γ
(

1
4

)2

64Γ
(

3
4

)2 mℓ2

]

+ · · · , (3.14)

that have the expected forms. Namely the Gauss-Bonnet term plays the role of a regulator

and the dynamical part reduces to that of Einstein gravity.

4 Discussions

In this paper we have studied entanglement entropy of a quantum field theory whose grav-

itational description is provided by a four dimensional conformal gravity. Since conformal

gravities, typically, contain higher derivative terms, the simple holographic description of

the entanglement entropy based on the minimal area is not applicable. Therefore in order

to compute the entanglement entropy we have used the prescription introduced in [14].

By making use of this method we have computed holographic entanglement entropy for

a conformal gravity in four dimensions where we have found that the resultant entanglement

entropy, unlike the known examples in the literature, is finite and has no UV divergences.

The finiteness of the entanglement entropy may be understood from the fact that the Weyl

action in four dimensions is equal to regularized on shell action of the Einstein gravity

when all (classical) counter-terms in the bulk are taken into account. Therefore, using the

holographic renormalization, the UV divergences of the dual field theory which in turns

correspond to the infinite volume limit in the bulk must be absent. Note that the finiteness

of the entanglement entropy occurs both for Einstein and non-Einstein solutions. Of course,

this is the case due to the fact that the finiteness is related to the regularization of the

volume in the bulk and moreover, since both solutions have the same asymptotic form, the

volume regularization is the same for both of them.

Another interesting observation we have made is as follows. Actually when one com-

putes the holographic entanglement entropy for an Einstein solution of the conformal

gravity the obtained entanglement entropy is exactly the same as the finite part of the

entanglement entropy in the Einstein gravity. This might also be understood from the fact

that the four dimensional conformal gravity with certain boundary condition, has the same

physical content as that of the Einstein gravity in four dimensions.
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To explore this point better we note that the action of the four dimensional conformal

gravity can be decomposed into two parts. The first part is just the four dimensional Gauss-

Bonnet term which is topological and dose not contribute to the equations of motion. The

other part which we have called it “dynamical part” governs the dynamics of the system. As

long as the equations of motion and their solutions are concerned the dynamical part plays

the main role. Whereas, if we would like to compute the thermal entropy or the energy

of the solution the contribution of the Gauss-Bonnet term is essential as well. Indeed in

order to get the first law of the black hole thermodynamics it is important to consider the

contribution of the Gauss-Bonnet term too.

On the other hand, in this paper by explicit examples, we have shown that for an

Einstein solution the contribution of the dynamical part of the action to the entanglement

entropy is exactly the same as that in the Einstein gravity where the entanglement entropy

is computed by minimizing the area of a co-dimension two hypersurface in the bulk. It

is quite a non-trivial result, taking into account that in conformal gravity the entropy

functional is not the area and indeed has rather a complicated expression. Note also that

the obtained profile of the hypersurface in the bulk minimizes both the area and the entropy

functional corresponding to the dynamical part of the conformal gravity. Although we have

shown this connection for certain entangling regions, it is natural to conjecture that this

is, indeed, the case for an arbitrary entangling region.

Moreover, as we have already mentioned the entanglement entropy obtained from total

action where the contribution of the Gauss-Bonnet is also taken into account is finite. This

fact together with the above observation indicates that the Gauss-Bonnet term plays the

role of a regulator which makes the theory finite. It is then natural to imagine that the

field theory dual to the four dimensional conformal gravity, whatever it is, is finite.

It is important to note that the above conclusion makes sense for those theories whose

gravitational descriptions are provided by conformal gravity on asymptotically locally AdS

solutions where the results of [4] is applied. Indeed, if one drops the assumption of being

“asymptotically hyperbolic” for the metric the results of [4] fails to hold and therefore

there is no relation between Weyl action and regularized four dimensional on shell Einstein

action. Therefore the corresponding entanglement entropy is not finite. One can verify

this statement with an explicit example.

Actually the conformal gravity in four dimensions has the following z = 4 Lifshitz

black hole solution [10]

ds2 =
L2

r2

[

− b

r6
dt2 +

dr2

b
+

2
∑

i=1

dx2i

]

, b = 1 + c1r
2 +

c21
3
r4 + c2r

6, (4.1)

which is not asymptotically AdS solution. It is then easy to compute the holographic

entanglement entropy for this solution. Indeed setting b = 1 (for simplicity) the entropy

functional (1.8) for the strip (2.1) reads

SA =
κLy

8

∫

dr

[

8− 8f ′4(3 + 2f ′2)− r2f ′′2

r2(1 + f ′2)5/2

]

, (4.2)
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which leads to the following UV divergent term in the entanglement entropy

SEE = κLy
1

ǫ
+ · · · . (4.3)

One observes that, even though, the Gauss-Bonnet term is also taken into account the

result is not UV finite. More precisely doing the same for dynamical and Gauss-Bonnet

parts one finds

Sdyn
EE =

3κLy

2

1

ǫ
+ · · · SGB

EE = −κLy

2

1

ǫ
+ · · · . (4.4)

As a side comment, note that from our computations one may calculate the variation

of entanglement entropy when the system changes from a ground state to an excited state.

Besides, since in all cases we have considered that the metric is asymptotically AdS, it is

possible to compute the expectation value of the energy momentum tensor of the dual field

theory using holographic renormalization. Therefore it is possible to verify whether the

resultant variation of energy and entanglement entropy satisfy the first law of the entan-

glement thermodynamics [19, 24–26]. Actually one finds that for an Einstein solution, the

variation of the entanglement entropy and energy satisfy the first law of the entanglement

thermodynamics with the same entanglement temperature as that in the Einstein grav-

ity. Indeed, unlike the first law of black hole thermodynamics, the Gauss-bonnet term has

no contribution.

We note, however, that for non-Einstein solutions (for example when a 6= 0) the Gauss-

Bonnet term does contribute. For example if one looks at the expression of Sdyn
EE for the

sphere, (2.38) and try to read the first law from this paper, due to
√
ma-term one finds an

extra term in the first law of the entanglement thermodynamics proportional to
√
a. On

the other hand if one reads the first law from the total entanglement entropy due to the

contribution of the Gauss-Bonnet the extra term drops from the equation, leading to the

same relation as that of the Einstein gravity.
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