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Abstract Monotonic (isotonic) regression is a powerful tool used for solving a wide
range of important applied problems. One of its features, which poses a limitation
on its use in some areas, is that it produces a piecewise constant fitted response. For
smoothing the fitted response, we introduce a regularization term in the monotonic
regression, formulated as a least distance problem with monotonicity constraints. The
resulting smoothed monotonic regression is a convex quadratic optimization problem.
We focus on the case, where the set of observations is completely (linearly) ordered.
Our smoothed pool-adjacent-violators algorithm is designed for solving the regular-
ized problem. It belongs to the class of dual active-set algorithms. We prove that it
converges to the optimal solution in a finite number of iterations that does not exceed
the problem size. One of its advantages is that the active set is progressively enlarging
by including one or, typically, more constraints per iteration. This resulted in solving
large-scale test problems in a few iterations, whereas the size of that problems was
prohibitively too large for the conventional quadratic optimization solvers. Although
the complexity of our algorithm grows quadratically with the problem size, we found
its running time to grow almost linearly in our computational experiments.
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1 Introduction

The monotonic regression (MR) is aimed at learning monotonic dependence from a
given data set [1,2]. The enormous amount of publications related to the MR, as well
as a growing variety of its application areas, testifies to its exceptional importance.
Examples are found in such areas as operations research [3], genetics [4], environmen-
tal science [5], meteorology [6], psychology [7], and many others. One can find very
large-scale MR problems, e.g., in machine learning [8–10] and computer simulations
[11].

TheMR deals with an ordered data set of observations. In this paper, we restrict our
consideration to the case in which the observations are completely (linearly) ordered.
Given a data set, the MR consists in finding fitted values which must be as close as
possible, in the least square sense, to the corresponding observed values. The fitted
values are also required to satisfy monotonicity constraints such that the value of each
component of the vector of fitted values must be less than or equal to next one.

Since the constraints of the least-squares formulation of the MR problem are of a
very special type, the MR algorithms exploit this feature. The most efficient of these
is a so-called pool-adjacent-violators (PAV) algorithm [12–14]. It can be viewed as a
dual active-set algorithm [15,16]. The efficiency and popularity of the PAV algorithm
is explained mainly by its linear computational complexity.

In applications, it is sometimes required to construct a monotone fitted response
function. Such a function, if based on solving the MR problem, is typically composed
of segments of constant function values with a sharp increase between the segments.
This peculiarity constrains the use of the MR in some areas. For smoothing the fit-
ted response, we introduce a regularization term in the MR problem. The resulting
smoothed monotonic regression (SMR) problem is a convex quadratic optimization
problem. In the present paper and the accompanying one [17], we propose a smoothed
pool-adjacent-violators (SPAV) algorithm for efficiently solving the SMR problem.

In the accompanying paper [17], we present a statistical analysis of the SMR
problem. In particular, it is shown how to properly choose the values of the penalty
parameters bymaking use of Bayesianmodeling and a cross-validation technique. The
numerical results in that paper reveal that the solution to the SMR problem provides a
better predictive power in comparison with the commonly used alternative approaches
of a similar computational complexity intended for monotonic smoothing and predic-
tion. It is also shown in [17] that the computational complexity of the SPAV algorithm
grows quadratically with the problem size, under the assumption that it converges to
the optimal solution in number of iterations which does not exceed the problem size.
No convergence analysis is conducted in [17].

The present paper is focused on presenting details of this optimization algorithm
viewed as a dual active-set algorithm and showing that it converges in a number of
iterations that does not exceed the problem size. Its key feature is that the active set is
always expanding by making active, typically, more than one constraint per iteration.
The version of the SPAValgorithm introduced here ismore general than in [17] because
it is not restricted to starting from only an empty active set.

The paper is organized as follows. The next section is devoted to formulating and
discussing the SMR problem. In Sect. 3, a subproblem determined by the set of active
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constraints is considered, and the aforementioned version of the SPAV algorithm is
introduced. It is also shown that, when the penalty parameter equals zero, the SPAV is
reduced to the algorithm of linear complexity developed in [18], where the primal-dual
active-set (PDAS) algorithm [19] was tailored to solving the MR problem. Section4
is devoted to studying some properties of the SPAV algorithm. We show, in particular,
that the Lagrangemultipliers do not decrease at each iteration,which allows us to prove
a finite-step convergence of the algorithm. In Sect. 5, results of numerical experiments
are presented. They illustrate how the desired smoothing is performed by the SPAV
algorithm. In our experiments, its running time was found to grow almost linearly
with the problem size rather than quadratically as suggested by theworst-case analysis.
Finally, we close with concluding remarks in Sect. 6 where, in particular, we discuss an
extension of the SMRproblem from a complete to partially ordered set of observations.

2 Problem Formulation

The applications of monotonic regression are often related to monotonic data fitting,
where it is assumed that there exists an unknown monotonic response function χ(t) of
an explanatory variable t . In this paper, we focus on the univariate case and suppose
that χ(t) is monotonically increasing, i.e.,

χ(t ′) < χ(t ′′), ∀t ′ < t ′′.

For a linearly ordered sequence of observed values of the explanatory variable t1 <

t2 < · · · < tn , the corresponding sequence of observed response values

ai = χ(ti ) + εi , i = 1, 2, . . . , n, (1)

is supposed to be available, where εi is an observation error. Because of the errors,
the expected monotonicity ai ≤ ai+1 may be violated for some indexes i . The MR
problem is aimed at restoring the perturbed monotonicity by finding a least-change
correction to the observed values. It can be stated formally as a quadratic optimization
problem in the following way:

min
x∈Rn

n∑

i=1

wi (xi − ai )
2, s.t. x1 ≤ x2 ≤ · · · ≤ xn, (2)

where w ∈ R
n++ is a vector of weights.

Let x∗ be the solution to the MR problem. The active constraints suggest that the
components of x∗ are partitioned into blocks of consecutive components of equal
values. Let x(t) be a monotonic function which satisfies the interpolation condition:

x(ti ) = x∗
i , ∀i ∈ [1, n].

Here and later, the set of indexes {i, i + 1, . . . , j − 1, j} is denoted by [i, j] and
referred to as a segment of indexes. Because of the block structure of x∗, the shape of
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x(t) resembles a step function, suggesting that it may have sharp changes on certain
intervals of t , where the response function χ(t) does not increase so rapidly. This fea-
ture of the MR problem is often criticized, and it motivates the necessity of smoothing
the MR solution.

Consider the following regularized monotonic regression problem:

min
x∈Rn

n∑

i=1

wi (xi − ai )
2 +

n−1∑

i=1

μi (xi − xi+1)
2, s.t. xi ≤ xi+1, ∀i ∈ [1, n − 1], (3)

where μ ∈ R
n−1+ is a vector of penalty parameters. The penalty term in (3) is aimed

at smoothing functions which interpolate the solution to this problem. This explains
why we refer to (3) as the smoothed monotonic regression (SMR) problem. Note that
since (3) is a quadratic optimization problem with a strictly convex objective function,
its solution exists and is unique. When μ = 0, problem (3) is obviously reduced to
(2).

To illustrate the smoothing property of the SMR problem, consider

μi = μ

(ti+1 − ti )2
. (4)

For this choice of μi , the corresponding penalty term

μ

n−1∑

i=1

(
xi+1 − xi
ti+1 − ti

)2

involves a finite-difference approximation of the first derivative.

3 Smoothed Pool-Adjacent-Violators Algorithm

We shall refer to xi ≤ xi+1 in the SMR as constraint i ∈ [1, n − 1]. Each iteration
of our algorithm is related to choosing an active set S ⊆ [1, n − 1] and solving the
corresponding subproblem

min
x∈Rn

n∑

i=1

wi (xi − ai )
2 +

n−1∑

i=1

μi (xi − xi+1)
2, s.t. xi = xi+1, ∀i ∈ S. (5)

We denote its unique optimal solution by x(S). For presenting an efficient way of
solving this subproblem, we consider the optimality conditions. They will also be
used in the next section for studying the convergence properties of the algorithm.

The active set S suggests that there exist sets of consecutive indices of the form
[�, r ] ⊆ [1, n] such that [�, r −1] ⊆ S, �−1 /∈ S and r /∈ S. We call these sets blocks.
Note that a block may be a singleton when � = r . Then the total number of blocks,
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denoted here by m, is equal to n−|S|. The block partitioning (segmentation) of [1, n]
induced by S can be represented as

[1, n] = [�1, r1], [�2, r2], . . . , [�m, rm],

where �1 = 1, rm = n and ri + 1 = �i+1 for all i ∈ [1,m − 1].
Each block i is characterized by its common value

yi = x�i = x�i+1 = · · · = xri ,

its common weight

w′
i = w�i + w�i+1 + · · · + wri

and its weighted average observed value

a′
i = 1

w′
i

ri∑

j=�i

w j a j .

Denoting μ′
i = μri , we can write the subproblem (5) in the notation introduced

above as

min
y∈Rm

c +
m∑

j=1

w′
j (y j − a′

j )
2 +

m−1∑

j=1

μ′
j (y j − y j+1)

2, (6)

where the scalar c does not depend on y. The optimality conditions for (6) are given
by the system of linear equations

w′
1(y1 − a′

1) + μ′
1(y1 − y2) = 0,

· · ·
w′

j (y j − a′
j ) + μ′

j−1(y j − y j−1) + μ′
j (y j − y j+1) = 0,

· · ·
w′
m(ym − a′

m) + μ′
m−1(ym − ym−1) = 0.

(7)

Its solution, denoted by y(S), is unique because the objective function in (6) is strictly
convex.

The algorithm starts with any active set such that S ⊆ S∗. The simplest of the valid
choices is S = ∅. At each iteration, it solves the tridiagonal system of linear equations
(7), and then it extends the set S by additionally making active the constraints in
(3) for which the strict monotonicity yi (S) < yi+1(S) is violated. This, like in the
PAV algorithm, assumes merging the corresponding adjacent blocks, which explains
why we call our algorithm SPAV (smoothed pool-adjacent-violators). The merging
is associated with updating the coefficients that define the linear system (7). The
corresponding number of arithmetic operations is proportional to the number of new
active constraints. In contrast to the conventional active-set algorithms, SPAV may
enlarge the active set with more than one element at once. It operates with the block
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common values yi , whereas the values of xi are computed only at its terminal stage.
The outlined algorithm can be formally expressed as follows.

Algorithm 1. SPAV
input a ∈ R

n , w ∈ R
n++, μ ∈ R

n−1+ , S ⊆ S∗
compute a′, w′ and μ′
find y(S) that solves (7)
while y(S) is not strictly monotone do

set S ← S ∪ {ri : yi (S) ≥ yi+1(S)}
update a′, w′ and μ′
find y(S) that solves (7)

end while
return x(S)

It is shown in [17] that the computational complexity of the SPAV algorithm is
O(n2). This estimate is based on the following two observations. First, the active set
S is extended in the while loop by including, at least, one index, which means that the
number of the while loop iterations does not exceed n− 1. Second, the computational
complexity of solving the tridiagonal linear system (7) is O(n). The cost of updating
a′,w′, andμ′ is a small multiple of the number of blocks merged at the same iteration,
which means that the total sum of operations, associated with updating these vectors,
over all iterations is O(n).

As it will follow from the results of the next section, the active set S produced by
the SPAV is such that, at each iteration, the inclusion S ⊆ S∗ is maintained, and after
the final iteration it turns out that S = S∗. The algorithm can start from any set S ⊆ S∗,
even though some of the Lagrange multipliers in (5) may be negative. This enables the
algorithm to be warm-started by providing a good initial point. If there is no guarantee
that S ⊆ S∗ holds for the initial S, then the recursive calculation of the Lagrange
multipliers, as described in the next section, allows for attaining the desired inclusion
S ⊆ S∗ by splitting certain blocks. The negative Lagrange multipliers indicate how
to split the blocks, namely, by making inactive the corresponding monotonicity con-
straints. Given S, if all the Lagrange multipliers are nonnegative, then this guarantees
that S ⊆ S∗.

Note that, when μi = 0 for all i ∈ [1, n−1], the SMR reduces to the MR problem.
This permits us to apply the SPAV algorithm to solving the latter problem. In this case,
the complexity of the algorithm that we shall refer to as SPAV0 reduces to O(n), which
is the same as for the PAV algorithm. This follows from the fact that (7) becomes a
diagonal linear system whose solution is y j = a′

j for all j ∈ [1,m], and that the
merging of blocks changes only those components of y that correspond to the new
blocks. The MR version of the SPAV algorithm can be formally expressed for the
initial S = ∅ as follows.

Algorithm 2. SPAV0
input a ∈ R

n , w ∈ R
n++

set S ← ∅, a′ ← a and w′ ← w

set y(S) ← a′
while y(S) is not strictly monotone do
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set S ← S ∪ {ri : yi (S) ≥ yi+1(S)}
update a′ and w′
set y(S) ← a′

end while
return x(S)

It should be mentioned that the iterates generated by SPAV0 are not the same as
those generated by the PAV algorithm, but they are identical with those generated by
the PDAS-type algorithm proposed in [18] when it is also initialized with S = ∅.

4 Convergence of Smoothed Pool-Adjacent-Violators Algorithm

Note that the SMR is a strictly convex optimization problem, because the objective
function in (3) is strictly convex and the constraints are linear. It has a unique optimal
solution determined by theKarush–Kuhn–Tucker (KKT) conditions [20]. For deriving
these conditions, we use the Lagrangian function

L(x, λ) =
n∑

i=1

wi (xi − ai )
2 +

n−1∑

i=1

μi (xi − xi+1)
2 +

n−1∑

i=1

λi (xi − xi+1). (8)

The condition ∇x L(x, λ) = 0 is written as

2w1(x1 − a1) + 2μ1(x1 − x2) + λ1 = 0,
2wi (xi − ai ) + 2μi−1(xi − xi−1) + 2μi (xi − xi+1) + λi − λi−1 = 0,

∀i ∈ [1, n − 1],
2wn(xn − an) + 2μn−1(xn − xn−1) − λn−1 = 0.

(9)

The rest of the KKT conditions has the form

xi ≤ xi+1, ∀i ∈ [1, n − 1], (10)

λi ≥ 0, ∀i ∈ [1, n − 1], (11)

λi (xi − xi+1) = 0, ∀i ∈ [1, n − 1]. (12)

Consider now the subproblem (5). Not only is its solution x(S) unique, but the
optimal Lagrange multipliers are also unique because the gradients of the constraints
in (5) are linearly independent.

The Lagrangian function for (5),

LS(x, λ) =
n∑

i=1

wi (xi − ai )
2 +

n−1∑

i=1

μi (xi − xi+1)
2 +

∑

i∈S
λi (xi − xi+1),

is obtained from (8) by setting

λi = 0, ∀i ∈ [1, n − 1]\S. (13)
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Let λ(S) be the vector in R
n−1 whose components λi (S), i ∈ S, are the optimal

Lagrange multipliers for (5), with the remainder being defined by (13). This property
of the LS(x, λ) will later be used to prove the optimality of the solution produced by
the SPAV algorithm.

The condition (9) establishes a dependence of the Lagrange multipliers on x , and
hence, on the common block values y. We will study now monotonic properties of
this dependence. Given an active set S, consider any of the corresponding blocks, say,
block i . Let the block be non-singleton, i.e., �i < ri . If the left neighbor of the block
exists, i.e., i > 1, then by (13), we have λ�i−1 = 0. For its right neighbor, if i < m then
we similarly have λri = 0. As it will be shown below, the part of the linear equations
(9):

∇xk L(x, λ) = 0, (14)

where k = �i , . . . , ri − 1, uniquely determines a dependence of each λ j ,
j ∈ [�i , ri − 1], on yi , and if i > 1 then also on the value of yi − yi−1. We denote
this function by λ j (yi , yi − yi−1), assuming for i = 1 that λ j does not change with
y1 − y0, as if μ0 = 0. For k = �i + 1, . . . , ri , the system of linear equations (14)
uniquely determines a dependence of each λ j , j ∈ [�i , ri − 1], on yi , and if i < n
then also on the value of yi − yi+1. Like above, this dependence is conventionally
denoted by λ j (yi , yi − yi+1), assuming that λ j does not change with ym − ym+1. A
monotonic dependence of the Lagrange multipliers as a function of the block common
values is presented by the following result. It will later be used for showing that, at
every iteration of the SPAV algorithm, each component of the vector λ(S) does not
decrease.

Lemma 4.1 Let a non-singleton block i be defined by an active set S. Then, for any
j ∈ [�i , ri−1], the functionsλ j (yi , yi−yi−1) andλ j (yi , yi−yi+1) are uniquely deter-
mined by the corresponding parts of (9). Furthermore, λ j (yi , yi − yi−1) decreases
with yi , and it does not increase with yi − yi−1. Finally, λ j (yi , yi − yi+1) is an
increasing and non-decreasing function of yi and yi − yi+1, respectively.

Proof For simplicity, we drop the index i in �i and ri . For k = �, . . . , r −1, the linear
system (14) recursively defines the Lagrange multipliers as

λ� = −2w�(yi − a�) − 2μ�−1(yi − yi−1),

λ j = λ j−1 − 2w j (yi − a j ), j = � + 1, � + 2, . . . , r − 1,

where the term −2μ�−1(yi − yi−1) it to be omitted when i = 1. This recursion
indicates that each λ j (yi , yi − yi−1), � ≤ j < r , decreases with yi , and it does not
increase with yi − yi−1, because w > 0 and μ ≥ 0. The reverse recursion

λr−1 = 2wr (yi − ar ) + 2μr (yi − yi+1),

λ j−1 = λ j + 2w j (yi − a j ), j = r − 1, r − 2, . . . , � + 1,

derived from the linear system that corresponds to k = � + 1, . . . , r in (14), proves
the last statement of the lemma. This completes the proof. �
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For an arbitrary index k ∈ [1,m − 1], consider the problem obtained from (6) by
excluding from the objective function the terms

w′
k(yk − a′

k)
2 + w′

k+1(yk+1 − a′
k+1)

2 + μ′
k(yk − yk+1)

2

and viewing yk and yk+1 as parameters. The resulting problem is decoupled into the
following two subproblems:

min
y1,...,yk−1

k−1∑

j=1

[
w′

j (y j − a′
j )
2 + μ′

j (y j − y j+1)
2
]

(15)

and

min
yk+2,...,ym

m∑

j=k+2

[
w′

j (y j − a′
j )
2 + μ′

j−1(y j − y j−1)
2
]
. (16)

We denote the unique solutions to these subproblems by

y1(yk), . . . , yk−1(yk) and yk+2(yk+1), . . . , ym(yk+1), (17)

respectively. In the next result, their monotonic dependence on yk and yk+1 is studied.

Lemma 4.2 The components (17) of the optimal solutions to subproblems (15) and
(16) are linearly non-decreasing functions of yk and yk+1, respectively. Moreover, the
differences

y j+1(yk) − y j (yk), j = 1, . . . , k − 1,

and

y j (yk+1) − y j+1(yk+1), j = k + 1, . . . ,m − 1,

are also non-decreasing functions of yk and yk+1, respectively.

Proof The optimality conditions for (15) are represented by the first k − 1 equations
in (7). Since the left-hand side of this system of equations is a linear functional of
y1, . . . , yk , its solution y1(yk), . . . , yk−1(yk) linearly depends on yk . The linearity of
yk+2(yk+1), . . . , ym(yk+1) is obtained in a similar way.

The first k − 1 equations in (7) can be represented as

Mȳ(yk) = ykμ
′
k−1ek−1, (18)
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where ȳ(yk) = (y1(yk), . . . , yk−1(yk))T , ek−1 = (0, . . . , 0, 1)T and

M = diag(w′
1, . . . , w

′
k−1)

+

⎡

⎢⎢⎢⎢⎢⎣

μ′
1 −μ′

1−μ′
1 (μ′

1 + μ′
2) −μ′

2
. . .

. . .
. . .

−μ′
k−3 (μ′

k−3 + μ′
k−2) −μ′

k−2−μ′
k−2 (μ′

k−2 + μ′
k−1)

⎤

⎥⎥⎥⎥⎥⎦
.

It can be easily seen that the tridiagonal matrix M ∈ R
(k−1)×(k−1) is positive definite.

Indeed, for any nonzero vector v ∈ R
k−1, we have

vT Mv =
k−1∑

j=1

w′
jv

2
j +

k−2∑

j=1

μ′
j (v j − v j+1)

2 + μ′
k−1v

2
k−1 > 0,

because w′ ∈ R
m++ and μ′ ∈ R

m−1+ . Thus, M is a real symmetric positive defi-
nite matrix with non-positive off-diagonal entries. Then it is a Stieltjes matrix whose
property is that all entries of its inverse are nonnegative [21], which implies that
M−1ek−1 ≥ 0. Hence, each component of the solution ȳ(yk) to the linear system (18)
is a non-decreasing function of yk .

Note that, if there exists an index k′ < k such that μ′
k′ = 0, then

y1(yk), . . . , yk′(yk) do not change with yk . Consequently, y j+1(yk)− y j (yk) are non-
decreasing functions of yk for all j < k′. The same refers to the function yk′+1(yk) −
yk′(yk) because, as it was shown above, yk′+1(yk) does not decreasewith yk . Ifμ′

k−1 >

0, that is k′ �= k − 1, then we need to show that the same refers also to all j ∈
[k′ + 1, k − 1], where

k′ = min
0≤i<k−1

{i : μ′
j > 0, ∀ j ∈ [i + 1, k − 1]}.

Here either k′ = 0, or μ′
k′ = 0. In order not to separately consider k′ = 0 as a special

case, we introduce artificial μ′
0 = 0 and constant-valued function y0(yk). This does

not change the relations established by (7). The equations of this linear system that
correspond to j ∈ [k′ + 1, k − 1] can be represented in the form of the following
recursive relation

μ′
j (y j+1(yk) − y j (yk)) = w′

j (y j (yk) − a′
j ) + μ′

j−1(y j (yk) − y j−1(yk)),

where μ′
j > 0. Then, since yk′+1(yk) − yk′(yk) is a non-decreasing function of yk , it

can be easily shown by induction in j = k′ + 1, . . . , k − 1 that y j+1(yk) − y j (yk)
does not decrease with yk .

The dependence on yk+1 established by the lastm−k−1 equations in (7) is studied
in an analogous way. Like above, we represent them as

Mȳ(yk+1) = yk+1μ
′
ke1,
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where ȳ(yk+1) = (y1(yk+2), . . . , ym(yk+1))
T , e1 = (1, 0, . . . , 0)T , and although

here M is not the same as in (18), it is also a Stieltjes matrix of a similar structure.
This allows us to prove that each component of ȳ(yk+1) is a non-decreasing function
of yk+1. Then, to prove that the functions y j−1(yk+1)− y j (yk+1) decrease with yk+1,
we use a reverse induction in decreasing order of j based on the backward recursion:

μ′
j−1(y j−1(yk+1) − y j (yk+1)) = w′

j (y j (yk+1) − a′
j ) + μ′

j (y j (yk+1) − y j+1(yk+1)).

This concludes the proof. �
Let y∗ be the optimal solution to problem (6). Suppose that the monotonicity is

violated for some of its components. Let k ∈ [1,m − 1] be such that the inequality

y∗
k > y∗

k+1 (19)

holds. Consider a strictly convex quadratic optimization problem, which have only
one constraint yk ≤ yk+1 and the same objective function as in (6). Let y∗∗ stand for
the optimal solution to this constrained problem. Clearly, y∗∗

k = y∗∗
k+1.

After skipping the constant c in (6), the constrained problem can be written as

min
yk≤yk+1

w′
k(yk −a′

k)
2 +w′

k+1(yk+1 −a′
k+1)

2 +μ′
k(yk − yk+1)

2 +ϕ1(yk)+ϕ2(yk+1),

(20)
where

ϕ1(yk) =
k−1∑

j=1

[
w′

j (y j (yk) − a′
j )
2 + μ′

j (y j (yk) − y j+1(yk))
2
]

and

ϕ2(yk+1) =
m∑

j=k+2

[
w′

j (y j (yk+1) − a′
j )
2 + μ′

j−1(y j (yk+1) − y j−1(yk+1))
2
]

are optimal objective function values in problems (15) and (16), respectively. The next
result presents a relation between y∗ and y∗∗.

Lemma 4.3 Let inequality (19) hold. Then

y∗
k > y∗∗

k = y∗∗
k+1 > y∗

k+1. (21)

Proof The equality y∗∗
k = y∗∗

k+1 is a straightforward implication from the strict con-
vexity of the objective function in problem (20).

By Lemma 4.2, the functions (17) are linear, which means that ϕ1(yk) and ϕ2(yk+1)

are convex quadratic functions. Then problem (20) can be reduced to the two-
dimensional problem

min
yk≤yk+1

w′′
k (yk − a′′

k )
2 + w′′

k+1(yk+1 − a′′
k+1)

2 + μ′
k(yk − yk+1)

2, (22)
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where we skip the terms that do not depend on yk or yk+1. Here, as it can be easily ver-
ified, the multipliersw′′

k andw′′
k+1 are strictly positive. From the optimality conditions

for this problem, we obtain

w′′
k (yk − a′′

k ) + μ′
k(yk − yk+1) + λ/2 = 0,

w′′
k+1(yk+1 − a′′

k+1) − μ′
k(yk − yk+1) − λ/2 = 0,

(23)

where λ ≥ 0 is a Lagrange multiplier. Taking into account that y∗∗
k = y∗∗

k+1, we denote
this value by ȳ. Note that y∗

k and y∗
k+1 solve the unconstrained version of problem

(22), and they correspond in (23) to the case of λ = 0. Then simple manipulations
with (23) yield the relation

αy∗
k + (1 − α)y∗

k+1 = ȳ,

where

α = w′′
k /(w

′′
k + w′′

k+1).

Since α ∈]0, 1[, this implies (21) and completes our proof. �
In the next result, we study some important properties of merging two adjacent

blocks, say blocks k and k + 1. If S is a current active set, then the merging assumes
making active the constraint xrk ≤ xrk+1 in addition to the active constraints deter-
mined by S.

Lemma 4.4 Let S be an active set such that there exists a block index k ≤ m − 1 for
which yk(S) ≥ yk+1(S). Then

λ(S′) ≥ λ(S), (24)

where S′ = S ∪ {rk}. Moreover,

xi (S) ≥ xi+1(S) ⇒ xi (S
′) ≥ xi+1(S

′). (25)

Proof The statement of this lemma trivially holds when yk(S) = yk+1(S) because the
corresponding merging does not change any block common value.

Consider the case when yk(S) > yk+1(S). The vector of new block common values
y(S′) is obtained from problem (20). Then Lemma 4.3 yields

yk(S) > yk(S
′) > yk+1(S).

These inequalities together with Lemma 4.2 imply

xi (S
′) ≤ xi (S), ∀i ∈ [1, rk], (26)

xi (S
′) ≥ xi (S), ∀i ∈ [rk + 1, n], (27)

x j+1(S
′) − xi (S

′) ≤ x j+1(S) − xi (S), ∀i ∈ [1, n − 1], i �= rk . (28)
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Statement (25) follows directly from (28). By Lemma 4.1, we conclude from (26)–(28)
that

λi (S
′) ≥ λi (S), ∀i ∈ [1, n − 1], i �= rk .

Recalling that xrk (S) ≥ xrk+1(S), and that x(S′) solves the problem obtained from
(5) by adding the constraint xrk = xrk+1, we get λrk (S

′) ≥ 0. Then the inequality

λrk (S
′) ≥ λrk (S)

holds because λrk (S) = 0, so the proof is complete.

The statement (25) says, in particular, that a monotonicity constraint, if violated,
remains violated after making active another violated monotonicity constraint. This
property will allow us to justify the potentially massive enlargement of the active set
at each iteration of the SPAV algorithm, when more than one violated constraint may
be simultaneously turned into active.

We are now in a position to prove a finite-step convergence of the algorithm.

Theorem 4.1 For any initial S ⊆ S∗, the SPAV algorithm converges to the optimal
solution of the SMR problem in, at most, n − 1 − |S| iterations. Moreover, after the
final iteration, S = S∗.

Proof At each iteration of the algorithm, the active set S is extended by adding at least
one index of the set [1, n−1], which is not contained in S. The SPAV terminates when
y(S) becomes monotone. This happens when either
|S| < n − 1 or S = [1, n − 1]. In the latter case, m = 1 and, therefore, there is no
violation of the monotonicity. Hence, the number of iterations is less than n − |S|,
where |S| is the number of constraints in the initial active set.

We need now to prove that the algorithm returns the optimal solution to problem
(3). To this end, we will, first, show that

λ(S) ≥ 0 ⇒ λ(S ∪ ΔS) ≥ 0, (29)

where

ΔS = {ri : yi (S) ≥ yi+1(S)}.

Clearly, the result of merging the set of blocks determined by ΔS is equivalent to the
result of successivelymerging the same blocks one by one. ByLemma 4.4, as the result
of making active any next monotonicity constraint rk ∈ ΔS, the Lagrange multipliers
do not decrease and the statement (25) remains true for any i ∈ ΔS. Consequently,
we obtain the inequality

λ(S ∪ ΔS) ≥ λ(S), (30)

which proves (29).
Consider, first, the casewhen the initial active set is empty,whichmeans that initially

λ(S) = 0. Consequently, from inequality (30), we get λ(S) ≥ 0 for the terminal active

123



942 J Optim Theory Appl (2017) 172:929–949

set S. Moreover, the x(S) returned by the algorithm is feasible in the SMR problem.
Since the block common values y(S) satisfy equation (7), the corresponding x(S) and
λ(S) satisfy equation (9). Thus, all the KKT conditions (9)–(12) for problem (3) hold,
which means for the initial S = ∅ that the x(S) returned by the SPAV algorithm solves
the SMR problem. Consequently, after the final iteration, we have S = S∗.

Consider now a more general case of the initial active set such that S ⊆ S∗. Note
that problem (3) is equivalent to

min
x∈Rn

n∑

i=1

wi (xi − ai )
2 +

n−1∑

i=1

μi (xi − xi+1)
2,

s.t. xi ≤ xi+1, ∀i ∈ [1, n − 1]\S, xi = xi+1, ∀i ∈ S.

This problem can be rewritten in terms of m = n − |S| initial block common values
as

min
y∈Rm

m∑

i=1

w′
i (yi −a′

i )
2+

m−1∑

i=1

μ′
i (yi −yi+1)

2, s.t. yi ≤ yi+1, ∀i ∈ [1,m−1], (31)

where the vectors a′, w′ and μ′ are defined by the initial S. It is clearly an SMR
problem. As it was shown above, if the SPAV algorithm starts with empty set of active
constraints, it solves this problem, and consequently problem (3). It can be easily
seen that the initial vector y, produced in this case by the SPAV, is the same as the
y(S) produced by the SPAV for the initial S ⊆ S∗. Hence, the subsequent values of y
generated by the SPAV algorithm for problems (31) and (3) are identical. This finally
proves that the SPAV algorithm returns the optimal solution to problem (3) for any
initial S ⊆ S∗. �

It follows from the proof ofTheorem4.1 that ifλ(S) ≥ 0, then S ⊆ S∗. The converse
of this statement is not true in general. This is shown by the following counterexample.

Example 4.1 Consider the three-dimensional problem, in which

a = (0, 30,−45)T , w = (0.5, 0.5, 0.5)T , and μ = (0.5, 0.5)T .

For the optimal solution, we have

S∗ = {1, 2}, x(S∗) = (−5,−5,−5)T , and λ(S∗) = (5, 40)T .

In the case of S = {1}, the system of linear equations (7) gives y1 = 3 and y2 = −21.
Substituting x(S) = (3, 3,−21)T and λ2(S) = 0 into (9), we finally obtain λ1(S) =
−3. Thus, in this example, one of the components of λ(S) is negative, whereas S ⊂ S∗.

�
As it was shown above, the SPAV algorithm generates at each iteration an active

set S such that x(S) and λ(S) satisfy conditions (9), (11), and (12) of all the KKT
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conditions, but not (10). Since it aims at attaining primal feasibility while maintaining
dual feasibility and complementary slackness, the SPAVcan be viewed as a dual active-
set algorithm, even though the Lagrange multipliers are not calculated. According to
(30), the sequence of the generated active sets is such that the corresponding sequence
λ(S) is non-decreasing. Note that the same property is inherit in the primal-dual active-
set (PDAS) algorithms developed in [19] and also in the version of the PDAS tailored
in [18] for solving the MR problem.

5 Numerical Experiments

In our experiments, the data sets were generated by formula (1). The following two
response functions were used:

χ1(t) = t, and χ3(t) = t3. (32)

Our choice of functions was motivated by the intention to study the case of a linear
function, χ1(t), and the case of a nonlinear function, χ3(t), which combines slow
and rapid changes. For these two cases, the observed values of explanatory variables
ti were uniformly distributed on the intervals [0, 1] and [−2, 2], respectively. In the
both cases, the observation error εi was normally distributed with zero mean and
standard deviation 0.3. The penalty parametersμi in the SMRproblemwere calculated
by formula (4), where the value of μ was produced, for each data instance, by the
cross-validation-based technique specially designed in [17] for the SMR problem. All
components of the vector of weights w were ones.

The algorithms discussed in this section were implemented in R, version 3.2.3.
For solving the tridiagonal system of linear equations (7), function Solve.tridiag of
package limSolvewas used. Function solve.QP of package quadprogwas used as
an alternative solver for the SMR problems to compare it with our SPAV algorithm.
The numerical experiments were performed on a Windows PC with 16 GB RAM and
Intel Xeon processor (3.30 GHz).

Figure1 illustrates the ability of the SMR problem to smooth the solution to theMR
problem. The valuesμ = 0.022 andμ = 0.024 were produced by the cross validation
[17] for the two data sets, each of the size n = 100, that were generated for χ1(t) and
χ3(t), respectively. The interpolation of the fitted values was performed by making
use of a prediction model proposed in [17]. In what follows, we report results only
for the linear response function, because the results for χ3(t) were very similar. The
value μ = 0.02 was used.

The SMR serves not only for smoothing, but it also breaks blocks of the MR solu-
tion. Figure2 shows how the number of blocks (averaged over all instances generated
for each n) grows with μ starting from μ = 0. Recall that the MR problem is a special
case of the SMR problem, which corresponds to the zero value ofμ. We observed also
that the block breaks caused by increasing μ are accompanied by an evident tendency
of the number of SPAV iterations to decrease (as in Fig. 2). This indicates a relationship
between these two phenomena, although it cannot be viewed as a direct relationship.
Indeed, we observed that those values ofμ, for which the number of blocks or the num-
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Fig. 1 MR (dotted red) and SMR (dashed blue) solutions for the data sets of the size n = 100 generated
for χ1(t) (solid black, left) and χ3(t) (solid black, right)
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Fig. 2 Left number of blocks as a portion of n versusμ for n = 100 (solid red) and n = 1000 (dashed blue).
Right the number of SPAV iterations versus μ for one typical instance of those generated for n = 1000

ber of iterations was sporadically breaking the aforementioned monotonic tendencies,
did not always coincide.

We compared the running time of the SPAV algorithm and function solve.QP by
studying the growth of each individual time with n. To minimize the impact of error
in estimating the CPU time, 100 data instances were generated for each n as described
above, and then the mean CPU time was calculated for each solver. The sequence of n
was 100, 200, . . . , 2000 followed by 3000, 4000, . . . , 20,000. The solve.QP failed
to solve a fairly large number of the generated problems for numerical reasons related
to the too small values of the denominator in (4). For instance, for n = 100, 500,
and 7000, it solved 95, 52, and 18 of 100 problems, respectively. It failed in all runs
for n ≥ 8000. The average CPU time (in seconds) of solving the generated SMR
problems is plotted in Fig. 3, where the average time of the solve.QP is calculated
excluding the failures. It shows that the too rapid increase in the running time of the
conventional quadratic optimization algorithm does not allow it to solve large-scale
SMR problems, whereas the SPAV scales pretty well with the increasing data size.
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Fig. 3 CPU time of the SPAV
algorithm (dashed blue) and
solve.QP (solid red) versus n
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Fig. 4 CPU time of the SPAV
algorithm versus n in the natural
logarithmic scale
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Figure4 represents for the SPAV the same relation as in Fig. 3, but in the logarithmic
scale and for n = 100 · 2i , where i = 0, 1, 2, . . . , 14. The linear least square estimate
of the slope of this graph suggests that the running time of the SPAV grows in our
experiments in proportion to n1.06, which is much slower compared to the growth in
proportion to n2 that follows from the worst-case analysis. For the response function
χ3(t), the fitted slope was 0.995, which is indicative, to within the experimental error,
of an almost linear growth.

In the worst case, the number of SPAV iterations equals n, while the observed
number of iterations was far less than n. Moreover, the size of the linear tridiagonal
system (7) to be solved at each iteration decreases in the process of solving SMR
problem. It is essential that the most significant drop of its size usually occurs after the
first iteration. All this explains why the SPAV algorithm is so fast in practice. To study
how the number of iterations changes with n, we generated 10 data instances for each
n and then calculated the mean number of iterations. Figure5 shows that just a few
iterations were typically required for the SPAV algorithm to solve the generated SMR
problems. Observe that this number remains very small even for very large values of
n. The maximal number of iterations over all 500 data instances was five, in which
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Fig. 5 Number of SPAV iterations (left) and the same divided by n (right) versus n

case n was 25,000. One can also see in Fig. 5 that the ratio of the actual number of
SPAV iterations to the worst-case number tends to zero as n increases.

The same set of numerical experiments, as discussed above, was conducted for a
distribution of errors εi other than normal, and also for deterministic test of problems.

The alternative to normal was the double exponential distribution of errors with
mean 0 and scale parameter 0.1. Because it has long tails, the observed response may
have several outliers. This was the main reason for choosing this alternative.

Our deterministic test problems were related to those kinds of cases often occurring
in practice, in which not all of the important predictors are taken into account in
studying monotonicity. For simulations, we used the deterministic response function

f (t, ξ) = χ(t) + c sin(ξ), (33)

where the linear and cubic functions (32) were chosen for χ(t), and the calibrating
parameter c was equal to 0.1 and 1.0, respectively. For any fixed value of the disre-
garded predictor ξ , the function f (t, ξ) increases monotonically with t . Monotonicity
may be violated when ξ is not fixed. For generating the response values ai = f (ti , ξi ),
i = 1, . . . , n, we used the following oblique grid nodes:

ti = tmin + (i − 1) tmax−tmin
n−1 ,

ξi = i mod (n/10),

where the interval [tmin, tmax] is specified for χ1 and χ3 at the beginning of this section.
Figure6 refers to the case of our deterministic function, in which χ(t) = χ3(t). It
provides additional evidence of the ability of the SMR problem to smooth the solution
to the MR problem.

The main features of the smoothing property of the SMR problem and the behavior
of the SPAV algorithm that were demonstrated for the double exponential distribution
and the deterministic function were the same as for the normal distribution. In partic-
ular, the running time of the SPAV algorithm grew almost linearly. For example, in
the case of χ(t) = χ1(t), the estimated slopes of the graphs like in Fig. 4 were 0.9678
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Fig. 6 Response values (black
dots), MR (dotted red), and
SMR (dashed blue) solutions for
the data set of the size n = 200
generated for the deterministic
function (33), where
χ(t) = χ3(t) (solid black)
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and 0.9764 for the double exponential distribution and the deterministic function,
respectively.

6 Conclusions

The SMR problem was designed for smoothing the solution to the MR problem, and it
was statistically motivated in [17]. Here and in [17], we developed a fast dual active-
set algorithm for solving the SMR. In the present paper, its finite-step convergence to
the optimal solution has been proved. Our computational experiments have verified
several important advantages of the SPAV algorithm, in particular its scalability, which
allows for regarding it as a practical algorithm for solving large-scale SMR problems.
The efficiency of our algorithm originates from its ability to enlarge the active set by
adding a large portion of constraints at once. Another advantage is that it admits a
warm-starting.

Here and in [17], we focused on the SMR problem associated with a complete
(linear) order of observations. Problem (3) admits a natural extension to the case of
partial order. Indeed, let a partial order of n observations be defined by a set of pairs
E ⊂ [1, n] × [1, n]. Then the corresponding SMR problem can be formulated as
follows:

min
x∈Rn

n∑

i=1

wi (xi − ai )
2 +

∑

(i, j)∈E
μi j (xi − x j )

2, s.t. xi ≤ x j , ∀(i, j) ∈ E . (34)

From the computational point of view, this quadratic optimization problem is much
more complicated than (3). In evidence of this, it is suffice to compare their simplified
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versions corresponding to μ = 0. As it was mentioned earlier, the MR problem (2)
can be solved in O(n) arithmetic operations. However, the non-regularized version of
(34) is much more computationally demanding, because the best known complexity
of algorithms able to solve (34) for μ = 0 is O(n2|E | + n3 log n) [3,22–24]. Even its
approximate solution requires O(n2) operations [25–28]. Therefore, the development
of efficient exact and approximate algorithms for solving problem (34) should be
viewed as a challenging task for the future research.

We plan to begin our follow-up research from considering problem (34) for partial
orders of two special types, namely star- and tree-structured. The two partial orders
are of our interest because, as it was shown in [29], problem (34) can be solved for
μ = 0 in O(n) and O(n log n) arithmetic operations, respectively.
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