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This paper is concerned with the problem of delay-dependent stability analysis for discrete-
time systems with interval-like time-varying delays. The problem is solved by applying a novel
Lyapunov functional, and an improved delay-dependent stability criterion is obtained in terms of
a linear matrix inequality.

1. Introduction

Recently, the problem of delay-dependent stability analysis for time-delay systems has
received considerable attention, and lots of significant results have been reported; see, for
example, Chen et al. [1], He et al. [2], Lin et al. [3], Park [4], and Xu and Lam [5], and
the references therein. Among these references, we note that the delay-dependent stability
problem for discrete-time systems with interval-like time-varying delays (i.e., the delay d(k)
satisfies 0 < dm ≤ d(k) ≤ dM) has been studied by Fridman and Shaked [6], Gao and Chen [7],
Gao et al. [8], and Jiang et al. [9], where some LMI-based stability criteria have been presented
by constructing appropriate Lyapunov functionals and introducing free-weighting matrices.
It should be pointed out that the Lyapunov functionals considered in these references are
more restrictive due to the ignorance of the term

∑j=−hm−1
j=−hM

∑i=k−1
i=k+j [x(i + 1) − x(i)]TR[x(i+ 1)−

x(i)].Moreover, the term
∑i=k−1

i=k−hm
x(i)TQ2x(i) is also ignored in Gao and Chen [7] and Gao et

al. [8]. The ignorance of these terms may lead to considerable conservativeness.
On the other hand, in the study of stabilization for the discrete-time linear systems,

traditional idea of the control schemes is to construct a control signal according to the current
system state [10]. However, as pointed out by Xiong and Lam [11], in practice there is often
a system that itself is not time-delayed but time-delayed may exist in a channel from system
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to controller. A typical example for the existence of such delays is the measurement and the
network transmission of signals. In this case, a time-delayed controller is naturally taken into
account. It is worth noting that the closed-loop system resulting from a delayed controller
is actually a time-delay system. Therefore, stability results of time-delay systems could be
applied to design time-delayed controller.

The present study, based on a new Lyapunov functional, an improved delay-
dependent stability criterion for discrete-time systems with time-varying delays is presented
in terms of LMIs. It is shown that the obtained result is less conservative than those by
Fridman and Shaked [6], Gao and Chen [7], Gao et al. [8], Jiang et al. [9], and Zhang et al.
[12].

2. Preliminaries

Fact 1. For any positive scalar ε and vectors x and y, the following inequality holds:

xTy + yTx ≤ εxTx + ε−1yTy. (2.1)

Let us denote Vδ = {x ∈ R
n : ‖x‖ < δ}.

Lemma 2.1 (see [13]). The zero solution of difference system is asymptotic stability if there exists a
positive definite function V (x(k)) : Rn → R

+ such that

∃β > 0 : ΔV (x(k)) = V (x(k + 1)) − V (x(k)) ≤ −β‖x(k)‖2, (2.2)

along the solution of the system. In the case the above condition holds for all x(k) ∈ Vδ, say one that
the zero solution is locally asymptotically stable.

Lemma 2.2 (see [13]). For any constant symmetric matrix M ∈ R
n×n, M = MT > 0, scalar

s ∈ Z
+/{0}, vector function W : [0, s] → R

n, one has

s
s−1∑

i=0

(
wT(i)Mw(i)

)
≥
(

s−1∑

i=0

w(i)

)T

M

(
s−1∑

i=0

w(i)

)

. (2.3)

3. Improved Stability Criterion

In this section, we give a novel delay-dependent stability condition for discrete-time systems
with interval-like time-varying delays. Now, consider the following system:

x(k + 1) = Ax(k) + Bx(k − h(k)), (3.1)

where x(k) ∈ R
n is the state vector, A and B are known constant matrices, and h(k) > 0 is

a time-varying delay satisfying 0 < hm ≤ h(k) ≤ hM, where hm and hM are positive integers
representing the lower and upper bounds of the delay. For (3.1), we have the following result.
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Theorem 3.1. Give integers hm > 0 and hM > 0. Then, the discrete time-delay system (3.1) is
asymptotically stable for any time delay h(k) satisfying hm ≤ h(k) ≤ hM, if there exist symmetric
positive definite matrices PGW satisfying the following matrix inequalities:

ψ =

⎛

⎜
⎜
⎝

(1, 1) 0 0

0 (2, 2) 0

0 0 (3, 3)

⎞

⎟
⎟
⎠ < 0, (3.2)

where (1, 1) = ATPA + εATPPA + h(k)G +W − P , and (2, 2) = BTPB + ε−1BTB + ε−11 BTB −W,
(3, 3) = −h(k)G.

Proof. Consider the Lyapunov function V (y(k)) = V1(y(k)) + V2(y(k)) + V3(y(k)), where

V1
(
y(k)

)
= xT (k)Px(k),

V2
(
y(k)

)
=

k−1∑

i=k−h(k)
(h(k) − k + i)xT (i)Gx(i),

V3
(
y(k)

)
=

k−1∑

i=k−h(k)
xT (i)Wx(i),

(3.3)

with PGW being symmetric positive definite solutions of (3.2) and y(k) = [x(k), x(k − h)].
Then difference of V (y(k)) along trajectory of solution of (3.1) is given by

ΔV
(
y(k)

)
= ΔV1

(
y(k)

)
+ ΔV2

(
y(k)

)
+ ΔV3

(
y(k)

)
, (3.4)

where

ΔV1
(
y(k)

)
= V1(x(k + 1)) − V1(x(k))

= [Ax(k) + Bx(k − h(k))]TP[Ax(k) + Bx(k − h(k))] − xT (k)Px(k)

= xT (k)
[
ATPA − P

]
x(k) + xT (k)ATPBx(k − h(k)) + xT (k − h(k))BTPAx(k)

+ xT (k − h(k))BTPBx(k − h(k)),

ΔV2
(
y(k)

)
= Δ

⎛

⎝
k−1∑

i=k−h(k)
(h(k) − k + i)xT (i)Gx(i)

⎞

⎠ = h(k)xT (k)Gx(k) −
k−1∑

i=k−h(k)
xT (i)Gx(i),

(3.5)

ΔV3
(
y(k)

)
= Δ

⎛

⎝
k−1∑

i=k−h(k)
xT (i)Wx(i)

⎞

⎠ = xT (k)Wx(k) − xT (k − h(k))Wx(k − h(k)), (3.6)

where Fact 1 is utilized in (3.6), respectively.
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Note that

xT (k)ATPBx(k − h(k)) + xT (k − h(k))BTPAx(k)

≤ εxT (k)ATPPAx(k) + ε−1xT (k − h(k))BTBx(k − h(k)),
(3.7)

and hence

ΔV1
(
y(k)

) ≤ xT (k)
[
ATPA + εATPPA − P

]
x(k)

+ xT (k − h(k))
[
BTPB + ε−1BTB

]
x(k − h(k)).

(3.8)

Then we have

ΔV
(
y(k)

) ≤ xT (k)
[
ATPA + εATPPA + h(k)G +W − P

]
x(k)

+ xT (k − h(k))
[
BTPB + ε−1BTB −W

]
x(k − h(k)) −

k−1∑

i=k−h(k)
xT (i)Gx(i).

(3.9)

Using Lemma 2.2, we obtain

k−1∑

i=k−h(k)
xT (i)Gx(i) ≥

⎛

⎝ 1
h(k)

k−1∑

i=k−h(k)
x(i)

⎞

⎠

T

(h(k)G)

⎛

⎝ 1
h(k)

k−1∑

i=k−h(k)
x(i)

⎞

⎠. (3.10)

From the above inequality it follows that

ΔV
(
y(k)

) ≤ xT (k)
[
ATPA + εATPPA + h(k)G +W − P

]
x(k)

+ xT (k − h(k))
[
BTPB + ε−1BTB −W

]
x(k − h(k))

−
⎛

⎝ 1
h(k)

k−1∑

i=k−h(k)
x(i)

⎞

⎠

T

(h(k)G)

⎛

⎝ 1
h(k)

k−1∑

i=k−h(k)
x(i)

⎞

⎠

=

⎛

⎜
⎝xT (k), xT (k − h(k)),

⎛

⎝ 1
h(k)

k−1∑

i=k−h(k)
x(i)

⎞

⎠

T
⎞

⎟
⎠

×

⎛

⎜
⎜
⎝

(1, 1) 0 0

0 (2, 2) 0

0 0 (3, 3)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x(k)

x(k − h(k))
⎛

⎝ 1
h(k)

k−1∑

i=k−h(k)
x(i)

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= yT (k)ψy(k),

(3.11)
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where (1, 1) = ATPA + εATPPA + h(k)G + W − P, and (2, 2) = BTPB + ε−1BTB − W , and
(3, 3) = −h(k)G, and

y(k) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x(k)

x(k − h(k))

⎛

⎝ 1
h(k)

k−1∑

i=k−h(k)
x(i)

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.12)

By condition (3.2), ΔV (y(k)) is negative definite; namely, there is a number β > 0 such that
ΔV (y(k)) ≤ −β‖y(k)‖2, and hence, the asymptotic stability of the system immediately follows
from Lemma 2.1. This completes the proof.

Remark 3.2. Theorem 3.1 gives a sufficient condition for stability criterion for discrete-time
systems (3.1). These conditions are described in terms of certain diagonal matrix inequalities,
which can be realized by using the linear matrix inequality algorithm proposed in [14]. But
Zhang et al. in [12] proved that these conditions are described in terms of certain symmetric
matrix inequalities, which can be realized by using the Schur complement lemma and linear
matrix inequality algorithm proposed in [14].

4. Conclusions

In this paper, an improved delay-dependent stability condition for discrete-time linear
systems with interval-like time-varying delays has been presented in terms of an LMI.
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