
Theory Comput Syst (2013) 53:263–299
DOI 10.1007/s00224-012-9393-4

Vertex Cover Kernelization Revisited
Upper and Lower Bounds for a Refined Parameter

Bart M.P. Jansen · Hans L. Bodlaender

Published online: 8 March 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract An important result in the study of polynomial-time preprocessing shows
that there is an algorithm which given an instance (G, k) of VERTEX COVER outputs
an equivalent instance (G′, k′) in polynomial time with the guarantee that G′ has at
most 2k′ vertices (and thus O((k′)2) edges) with k′ ≤ k. Using the terminology of pa-
rameterized complexity we say that k-VERTEX COVER has a kernel with 2k vertices.
There is complexity-theoretic evidence that both 2k vertices and �(k2) edges are
optimal for the kernel size. In this paper we consider the VERTEX COVER problem
with a different parameter, the size FVS(G) of a minimum feedback vertex set for G.
This refined parameter is structurally smaller than the parameter k associated to the
vertex covering number VC(G) since FVS(G) ≤ VC(G) and the difference can be ar-
bitrarily large. We give a kernel for VERTEX COVER with a number of vertices that
is cubic in FVS(G): an instance (G,X,k) of VERTEX COVER, where X is a feedback
vertex set for G, can be transformed in polynomial time into an equivalent instance
(G′,X′, k′) such that |V (G′)| ≤ 2k and |V (G′)| ∈ O(|X′|3). A similar result holds
when the feedback vertex set X is not given along with the input. In sharp contrast
we show that the WEIGHTED VERTEX COVER problem does not have a polynomial
kernel when parameterized by the cardinality of a given vertex cover of the graph
unless NP ⊆ coNP/poly and the polynomial hierarchy collapses to the third level.

Keywords Kernelization · Vertex cover · Structural parameterization

A preliminary version of this work appeared in the proceedings of the 28th International Symposium
on Theoretical Aspects of Computer Science (STACS 2011).
This work was supported by the Netherlands Organization for Scientific Research (NWO), project
“KERNELS: Combinatorial Analysis of Data Reduction”.

B.M.P. Jansen (�) · H.L. Bodlaender
Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB, Utrecht, The Netherlands
e-mail: bart@cs.uu.nl

H.L. Bodlaender
e-mail: hansb@cs.uu.nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81739203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bart@cs.uu.nl
mailto:hansb@cs.uu.nl

264 Theory Comput Syst (2013) 53:263–299

1 Introduction

A vertex cover of an undirected graph G is a subset of the vertices that contains
at least one endpoint of every edge. An instance of the VERTEX COVER problem
consists of a graph G and integer k, and asks whether G has a vertex cover of size at
most k. VERTEX COVER is one of the six classic NP-complete problems discussed
by Garey and Johnson in their famous work on intractability [26, GT1], and has
played an important role in the development of parameterized algorithms [18, 19,
36]. A parameterized problem is a language L ⊆ �∗ × N, and such a problem is
(strongly uniform) fixed parameter tractable (FPT) if there is an algorithm to decide
membership of an instance (x, k) in f (k)|x|c time for some computable function f

and constant c. Since VERTEX COVER is such an elegant problem with a simple
structure, it has proven to be an ideal testbed for new techniques in the context of
parameterized complexity. The problem is also highly relevant from a practical point
of view because of its role in bioinformatics [1] and other problem areas.

In this work we suggest a “refined parameterization” for the VERTEX COVER

problem using the feedback vertex number FVS(G) as the parameter, i.e., the size
of a smallest vertex set whose deletion turns G into a forest. We give a polynomial
kernel for the unweighted version of VERTEX COVER under this parameterization,
and also supply a conditional superpolynomial lower bound on the kernel size for
the variant of VERTEX COVER where each vertex has a non-negative integral weight.
But before we state our results we shall first survey the current state of the art for the
parameterized analysis of VERTEX COVER.

There has been an impressive series of ever-faster parameterized algorithms to
solve k-VERTEX COVER,1 which led to the current-best algorithm by Chen et al. that
can decide whether a graph G has a vertex cover of size k in O(1.2738k + kn) time
and polynomial space [9, 10, 20, 38]. Mishra et al. [34] studied the role of König dele-
tion sets (vertex sets whose removal ensure that the size of a maximum matching in
the remaining graph equals the vertex cover number of that graph) for the complexity
of the VERTEX COVER problem, and showed that VERTEX COVER parameterized
above the size of a maximum matching is fixed-parameter tractable by exhibiting a
connection to ALMOST 2-SAT [40]. Gutin et al. [29] studied the parameterized com-
plexity of various VERTEX COVER-parameterizations above and below tight bounds
which relate to the maximum degree of the graph and the matching size, obtaining
FPT algorithms and hardness results. Raman et al. [39] gave improved algorithms
for VERTEX COVER parameterized above the size of a maximum matching: their al-
gorithm decides in O∗(9�) time whether a graph has a vertex cover of size m + �,
where m is the size of a maximum matching.

The VERTEX COVER problem has also played an important role in the develop-
ment of problem kernelization [28]. Kernelization is a concept that enables the for-
mal mathematical analysis of data reduction through the framework of parameterized
complexity. A kernelization algorithm (or kernel) is a polynomial-time procedure that
reduces an instance (x, k) of a parameterized decision problem to an equivalent in-
stance (x′, k′) such that |x′|, k′ ≤ f (k) for some computable function f , which is the
size of the kernel. We also use the term kernel to refer to the reduced instance (x′, k′).

1We use k-VERTEX COVER to denote the parameterization by the target size k.

Theory Comput Syst (2013) 53:263–299 265

The k-VERTEX COVER problem admits a kernel with 2k vertices and O(k2)

edges, which can be obtained through crown reduction [2, 11, 12] or by applying a
linear-programming theorem due to Nemhauser and Trotter [9, 35]. These kerneliza-
tion algorithms have been a subject of repeated study and experimentation [1, 7, 16].
Very recently Soleimanfallah and Yeo [42] showed that for every constant c there
exists a kernel with 2k − c vertices. This is mostly of theoretical interest however,
since the running time of the kernelization algorithm is exponential in c.

There is some complexity-theoretic evidence that the size bounds for the ker-
nel cannot be improved. Since all reduction rules found to date are approximation-
preserving [36], it appears that a kernel with (2 − ε)k vertices for any ε > 0 would
yield a polynomial-time approximation algorithm for VERTEX COVER with a perfor-
mance ratio 2−ε which would disprove the Unique Games Conjecture [32]. A break-
through result by Dell and Van Melkebeek [15] shows that there is no polynomial ker-
nel which can be encoded into O(k2−ε) bits for any ε > 0 unless NP ⊆ coNP/poly
and the polynomial hierarchy collapses to the third level [44], which is reason to
believe that the current bound of O(k2) edges is tight up to ko(1) factors.

This overview might suggest that there is little left to explore concerning kernel-
ization for vertex cover, but this is far from true. The mentioned kernelization results
use the requested size k of the vertex cover as the parameter. But there is no rea-
son why we should not consider structurally smaller parameters, to see if we can
preprocess instances of VERTEX COVER such that their final size is bounded poly-
nomially by such a smaller parameter, rather than by a function of the requested set
size k. We study kernelization for the VERTEX COVER problem using the feedback
vertex number FVS(G) as the parameter. Since every vertex cover is also a feedback
vertex set we find that FVS(G) ≤ VC(G) which shows that the feedback vertex num-
ber of a graph is a structurally smaller parameter than the vertex covering number:
there are trees with arbitrarily large values of VC(G) for which FVS(G) = 0. Observe
that for difficult instances of VERTEX COVER we have k ∈ �(VC(G)) since the use
of the 2-approximation algorithm immediately solves instances where k > 2 VC(G)

or k < VC(G)/2. Therefore we call our parameter “refined” since it is structurally
smaller than the standard parameter for the VERTEX COVER problem. Observe that
the parameterization by FVS(G) is not relevant for the setting of fixed-parameter al-
gorithms, since it is dominated by various smaller parameters such as treewidth and
the size of an odd cycle transversal, with respect to which VERTEX COVER is still
fixed-parameter tractable (see Sect. 5).

Our Results Our contribution is twofold: we present a polynomial kernel, and a
kernel lower bound for a structural parameterization of a weighted variant.

Upper Bounds Let us formally define the problem under consideration.

FVS-VERTEX COVER

Instance: A simple undirected graph G, a feedback vertex set X ⊆ V (G) such
that G − X is a forest, an integer k ≥ 0.
Parameter: The size |X| of the feedback vertex set.
Question: Does G have a vertex cover of size at most k?

266 Theory Comput Syst (2013) 53:263–299

We prove that FVS-VERTEX COVER has a kernel in which the number of vertices is
bounded by min(2k,2|X|+ 28|X|2 + 56|X|3), which can be computed in O(

√
nm+

n5/3) time. The kernel size is at least as small as the current-best VERTEX COVER

kernel, but for graphs with small feedback vertex sets our bound can be expected to
be significantly smaller.

We also consider the problem FVS-INDEPENDENT SET which is similarly defined:
the difference is that we now ask whether G has an independent set of the requested
size, instead of a vertex cover. Throughout this work k will always represent the total
size of the set we are looking for; depending on the context this is either a vertex cover
or an independent set. An instance (G,X,k) of FVS-VERTEX COVER is equivalent
to an instance (G,X, |V (G)| − k) of FVS-INDEPENDENT SET which has the same
parameter value and therefore the two problems are equivalent from a parameterized
complexity and kernelization standpoint.

Lower Bounds We also consider the weighted version of VERTEX COVER, where
each vertex is assigned a positive integral weight value and we ask for the existence
of a vertex cover of total weight at most k. In the preliminary version of this work
that appeared at STACS 2011 we proved that FVS-WEIGHTED VERTEX COVER,
where the parameter measures the cardinality of a given feedback vertex set, does not
admit a polynomial kernel unless NP ⊆ coNP/poly. In this final version we present
a stronger result: under the same assumption the weighted problem does not even
admit a polynomial kernel parameterized by the cardinality of a given vertex cover.
Our lower bound therefore applies to the following problem:

VC-WEIGHTED VERTEX COVER

Instance: A simple undirected graph G, a weight function w : V (G) → N
+,

a vertex cover X ⊆ V (G), an integer k ≥ 0.
Parameter: The cardinality |X| of the vertex cover.
Question: Is there a vertex cover C of G such that

∑
v∈C w(v) ≤ k?

This lower bound parameterized by the cardinality of a given vertex cover is rather
surprising, since Chlebík and Chlebíková used a modified form of crown reductions
to prove that WEIGHTED VERTEX COVER parameterized by the target weight k ad-
mits a linear-vertex kernel [11]. In our construction for the lower bound we use only
two different vertex weights: the value one, and a larger but polynomially-bounded
value. Hence the comparative difficulty of the weighted problem does not stem from
a tricky encoding of weights, but rather because the presence of weights allow us to
encode complicated behavior (the OR of a series of inputs of VERTEX COVER) into
a graph which has a relatively simple structure (a small vertex cover). Section 5 con-
tains a further discussion of kernelization for weighted problems. Observe that VC-
WEIGHTED VERTEX COVER lies in FPT because the parameter is an upper bound
on the treewidth of the input graph.

Related Work The idea of studying parameterized problems using alternative pa-
rameters is not new (see, e.g., [36]), but was recently advocated by Fellows et al. [22,
23, 37] in the call to investigate the complexity ecology of parameters. They posed
that inputs to computational problems are rarely arbitrary or random because these

Theory Comput Syst (2013) 53:263–299 267

inputs are created by processes which are themselves computationally bounded. This
suggests that inputs might inherit structure from the processes which create them,
possibly in unknown or unforeseen ways, and that we should therefore consider the
complexity of problems not only when parameterized by their own solution value,
but also by structural properties of the input, and in general by the optimum solution
value to any other optimization problem on the instance. The main idea behind this
program is therefore to determine how different parameters affect the parameterized
complexity of a problem. Some recent results in this direction include FPT algo-
rithms for graph layout problems parameterized by the vertex cover number of the
graph [24] and an algorithm to decide isomorphism on graphs of bounded feedback
vertex number [33]. There are a handful of applications of this idea to give polynomial
kernels using alternative parameters. Fellows et al. [21, 23] show that the problems
INDEPENDENT SET, DOMINATING SET and HAMILTONIAN CIRCUIT admit linear-
vertex kernels on graphs G when parameterized by the maximum number of leaves
in any spanning tree of G. A superset of the current authors [6] obtained a polyno-
mial kernel for TREEWIDTH parameterized by FVS(G). Uhlmann and Weller [43]
gave a polynomial kernel for TWO-LAYER PLANARIZATION parameterized by the
feedback edge set number, which is a refined structural parameter for that problem
since it is smaller than the natural parameter.

Organization We give some graph-theoretic preliminaries in Sect. 2. Section 3 con-
tains the main content of this paper, and develops a cubic-vertex kernel for FVS-
VERTEX COVER. In Sect. 4 we prove the lower bound for the weighted version of
the problem.

2 Preliminaries

In this work we only consider undirected, finite, simple graphs. For a graph G let
V (G) be the vertex set and E(G) the edge set. We denote the independence number
of G (i.e., the size of a maximum independent set) by α(G), the vertex covering
number by VC(G) and the feedback vertex number by FVS(G). We will abbreviate
maximum independent set as MIS, and feedback vertex set as FVS. For v ∈ V (G) we
denote the open and closed neighborhoods of v by NG(v) and NG[v], respectively.
For a set S ⊆ V (G) we have NG(S) := ⋃

v∈S NG(v)\S, and NG[S] := ⋃
v∈S NG[v].

The degree of a vertex v in graph G is denoted by degG(v). We write G′ ⊆ G if G′
is a subgraph of G. For X ⊆ V (G) we denote by G[X] the subgraph of G that is
induced by the vertices in X. The graph G[V (G) \ X] obtained from G by deleting
the vertices in X and their incident edges is denoted by G − X.

A matching in a graph G is a set of edges M ⊆ E(G) such that no two distinct
edges in M are incident on a common vertex. A matching is perfect if every vertex
of the graph is incident on exactly one edge in the matching.

A vertex of degree one is called a leaf. If v is a vertex in a tree and v is not a leaf,
then it is an internal node of the tree. The leaf set of a graph G is the set of degree-
1 vertices, denoted by LEAVES(G) := {v ∈ V (G) | degG(v) = 1}. P2 is the graph
consisting of a path on two vertices. We use [n] as a shorthand for {1,2, . . . , n}.

268 Theory Comput Syst (2013) 53:263–299

König’s Theorem [41, Theorem 16.2] For every bipartite graph G, the size of a
minimum vertex cover equals the number of edges in a maximum matching.

Observation 1 Let F be a forest with a perfect matching M ⊆ E(F). The following
hold:

(i) |V (F)| = 2|M| and VC(F) = α(F) = |M|, since F is bipartite.
(ii) Every vertex of F is adjacent to at most one leaf.

(iii) If v is a leaf of F , then v has a unique neighbor u ∈ V (F) and {u,v} ∈ M .

Observation 2 If G′ is a vertex-induced subgraph of graph G then α(G) ≥ α(G′).

Observation 3 If v is a leaf in G then there is a MIS for G that contains v.

3 Cubic Kernel for FVS-Vertex Cover

In this section we develop a cubic kernel for FVS-VERTEX COVER. For the ease of
presentation, we first develop a kernel for FVS-INDEPENDENT SET. Using the corre-
spondence between the two problems mentioned in the introduction, this kernel for
FVS-INDEPENDENT SET will immediately yield a kernel for FVS-VERTEX COVER.

From now on we therefore focus on FVS-INDEPENDENT SET. We first show that
a single application of the Nemhauser-Trotter decomposition theorem [35], used for
kernelization of the vertex cover problem by Chen et al. [9], allows us to restrict our
attention to instances of FVS-VERTEX COVER where the forest G − X has a perfect
matching. This will greatly simplify the analysis of the kernel size as compared to the
extended abstract of this work [30] where we worked with arbitrary forests G − X.
In Sect. 3.1 we will then introduce a set of reduction rules and prove they are cor-
rect. Afterwards we will analyze the structure of the resulting reduced instances, in
Sect. 3.2. This analysis will focus on conflict structures. An important ingredient in
the kernel size bound will be a purely graph-theoretic extremal argument, which is
developed in Sect. 3.3, and which will show that many conflict structures exist in
reduced instances. As the last step we discuss the running time of a possible imple-
mentation of the reduction rules, and tie all ingredients together into a kernelization
algorithm in Sect. 3.4.

So let us start by showing how to reduce to instances where the forest G − X has
a perfect matching. For this purpose we re-state the Nemhauser-Trotter theorem here
in terms of independent sets.

Proposition 1 [9, Proposition 2.1] There is an O(
√

nm)-time algorithm that, given
a graph G with n vertices and m edges, constructs disjoint subsets C0,V0 ⊆ V (G)

such that:

1. if I is a maximum independent set in G[V0] then I ∪ J is a maximum independent
set in G, with J := V (G) \ (C0 ∪ V0), and

2. α(G[V0]) ≤ |V0|/2.

Theory Comput Syst (2013) 53:263–299 269

We will exploit the decomposition guaranteed by this proposition to show that
after identifying a set of vertices which can be in any maximum independent set
of G, there is a small (in terms of |X|) set I ⊆ V (G) \ X that we can add to X, such
that the forest G − (X ∪ I) has a perfect matching.

Lemma 1 Let (G,X,k) be an instance of FVS-INDEPENDENT SET. In O(
√

nm)

time one can compute an equivalent instance (G′,X′, k′) such that:

1. G′ − X′ has a perfect matching,
2. |X′| ≤ 2|X|, and
3. k′ ≤ k.

Proof Given an instance (G,X,k) of FVS-INDEPENDENT SET, use the algorithm
of Proposition 1 to compute the two sets C0,V0 ⊆ V (G). Now set G′ := G[V0],
let X̂ := X ∩ V0, and k′ := k − (|V (G)| − |V0| − |C0|). The proposition ensures that
the instances (G,X,k) and (G′, X̂, k′) are equivalent, and it is easy to see that G′ − X̂

is a forest since it is a subgraph of G−X. The last property of the proposition ensures
that α(G′) ≤ |V (G′)|/2.

Now, we compute a maximum matching M of the forest G′ − X̂, which can be
done in O(

√
nm) time using the Hopcroft-Karp algorithm. Note that |V (G′ − X̂)| =

2|M| + |I | where I is the set of vertices not covered by the matching. As G′ − X̂ is
a forest, and hence bipartite, a minimum vertex cover for G′ − X̂ has size |M| (by
König’s Theorem) and maximum independent sets have size |V (G′ − X̂)| − |M| =
|M| + |I |. Comparing α(G′ − X̂) = |M| + |I | with the upper bound of α(G′ − X̂) ≤
α(G′) ≤ 1

2 |V (G′)| we get the following:

α(G′ − X̂) ≤ |V (G′)|/2

|M| + |I | ≤ (|X̂| + 2|M| + |I |)/2

|I | ≤ |X̂|.

Thus, letting X′ := X̂ ∪ I , we know that G′ − X′ is a forest, and that it has
a perfect matching (namely M). Clearly |X′| ≤ 2|X̂| ≤ 2|X|. We return the in-
stance (G′,X′, k′). �

The fact that the forest G − X of an instance of FVS-INDEPENDENT SET has a
perfect matching is so useful that it warrants its own name.

Definition 1 An instance (G,X,k) of FVS-INDEPENDENT SET is called clean if the
forest G − X has a perfect matching.

We will apply Lemma 1 once at the start of our kernelization, and work on the
resulting clean instance of the problem. The reduction rules we apply to shrink the
instance further maintain the fact that the forest has a perfect matching.

270 Theory Comput Syst (2013) 53:263–299

3.1 Reduction Rules for Clean Instances

Consider a clean instance (G,X,k) of FVS-INDEPENDENT SET, which asks whether
a graph G with the FVS X has an independent set of size k. Throughout this sec-
tion F := G − X denotes the forest obtained by deleting the vertices in X, and recall
that G − X has a perfect matching by the assumption that the instance is clean. To
formulate our reduction rules we use the following notion.

Definition 2 (Chunks) Let (G,X,k) be an instance of FVS-INDEPENDENT SET.
Define X := {

Y ⊆ X
∣
∣ Y is independent in G and 0 < |Y | ≤ 2

}
as the collection of

chunks of X.

The chunks X corresponding to an instance are size-≤ 2 subsets of the feedback
vertex set X, which could be part of an independent set in G. Our first two reduction
rules get rid of chunks when we can effectively determine that there is a MIS which
does not contain them. We get rid of a chunk by either deleting it (when it is a sin-
gle vertex) or by adding an edge (if a chunk consists of two non-adjacent vertices).
Observe that after adding the edge {u,v} for u,v ∈ X the pair {u,v} is no longer
independent, and therefore no longer counts as a chunk.

We rely on the fact that when given an independent subset X′ ⊆ X of the feed-
back vertices, we can efficiently compute a largest independent set I in G which
satisfies I ∩ X = X′: since such a set intersects X exactly in X′, and since it can-
not use any neighbors of X′ the maximum size is |X′| + α(F − NG(X′)) and this
is polynomial-time computable since F − NG(X′) is a forest. The following notion
allows us to assess which chunks might occur in a MIS of G.

Definition 3 The number of conflicts CONFF ′(X′) induced by a subset X′ ⊆ X on a
subforest F ′ ⊆ F ⊆ G is defined as CONFF ′(X′) := α(F ′) − α(F ′ − NG(X′)).

This term CONFF ′(X′) can be interpreted as follows. Choosing vertices from X′
in an independent set will prevent all their neighbors in the subforest F ′ from being
part of the same independent set; hence if we fix some choice of vertices in X′, then
the number of vertices from F ′ we can add to this set (while maintaining indepen-
dence) might be smaller than the independence number of F ′. The term CONFF ′(X′)
measures the difference between the two: informally it is the price we pay in the for-
est F ′ for choosing the vertices X′ in the independent set (see Fig. 1). We can now
state the first two reduction rules.

Reduction Rule 1 If there is a vertex v ∈ X such that CONFF ({v}) ≥ |X|, then
delete v from the graph G and from the set X.

Reduction Rule 2 If there are distinct vertices u,v ∈ X with {u,v} �∈ E(G) for which
CONFF ({u,v}) ≥ |X|, then add the edge {u,v} to G.

Since these two rules only affect the graph induced by X, they do not change the
fact that forest F has a perfect matching. Correctness of the rules can be established
from the following lemma.

Theory Comput Syst (2013) 53:263–299 271

Fig. 1 Illustration of the first three definitions. A clean instance (G,X,k) is shown in three differ-
ent states, with X visualized in the bottom container and the forest F := G − X visualized in the
top container. The perfect matching in F is indicated by thick edges. The chunks in this instance
are X = {{u}, {v}, {w}, {u,w}}. (a) MIS in F showing that α(F) = 3. (b) The drawn independent set does
not contain any neighbors of u and contains 3 = α(F) vertices from F ; hence α(F −NG(u)) = α(F) = 3,
implying that CONFF ({u}) = 0. (c) Choosing vertices {u,w} in an independent set prevents us from adding
three vertices from F to the independent set; we can add only two, without violating independence. The
difference (3 − 2 = 1) is the number of conflicts induced by the pair: CONFF ({u,w}) = 1

Lemma 2 If X′ ⊆ X is a subset of feedback vertices such that CONFF (X′) ≥ |X|
then there is a MIS for G that does not contain all vertices of X′.

Proof Assume that I ⊆ V (G) is an independent set containing all vertices of X′. We
will prove that there is an independent set I ′ which is disjoint from X′ with |I ′| ≥ |I |.
Since CONFF (X′) ≥ |X| it follows by definition that α(F) − α(F − NG(X′)) ≥ |X|;
since I cannot contain any neighbors of vertices in X′ we know that |I ∩ V (F)| ≤
α(F −NG(X′)), and since V (G) = X∪V (F) we have |I | ≤ |X|+α(F −NG(X′)) ≤
α(F). Hence the maximum independent set for F , which does not contain any ver-
tices of X′, is at least as large as I ; this proves that for every independent set con-
taining X′ there is another independent set which is at least as large and avoids the
vertices of X′. Therefore there is a MIS for G avoiding at least one vertex of X′. �

The next rule is used to remove trees from the forest F when the tree does not
interact with any of the chunks in X.

Reduction Rule 3 If F contains a connected component T (which is a tree) such
that for all chunks Y ∈ X it holds that CONFT (Y) = 0, then delete T from graph G

and decrease k by α(T).

Since the rule deletes an entire tree from the forest F , it ensures that the remainder
of the forest will have a perfect matching. To prove the correctness of Rule 3 we need
the following lemma.

Lemma 3 Let T be a connected component of F and let XI ⊆ X be an indepen-
dent set in G. If CONFT (XI) > 0 then there is a set X′ ⊆ XI with |X′| ≤ 2 such
that CONFT (X′) > 0.

Proof Assume the conditions stated in the lemma hold. Recall that throughout this
section we work on a clean instance, so let M be a perfect matching on T which exists
since the forest F has a perfect matching. We will try to construct a MIS I for T that
does not use any vertices in NG(XI); this must then also be a MIS for T −NG(XI) of

272 Theory Comput Syst (2013) 53:263–299

the same size. By the assumption that CONFT (XI) > 0 any independent set in T must
use at least one vertex in NG(XI) in order to be maximum, hence our construction
procedure must fail somewhere; the place where it fails will provide us with a set X′
as required by the statement of the lemma.

Construction of a MIS It is easy to see that a MIS of a tree with a perfect matching
contains exactly one vertex from each matching edge. We now start building our
independent set I for T that avoids vertices in NG(XI). To ensure I becomes a MIS
for T , we need to add one endpoint of each edge in the matching M . If there is
a vertex v in T such that NT (v) = {u} and NG(v) ∩ XI = ∅, then the edge {v,u}
must be in the matching M (since M is a perfect matching and there are no other
edges incident on v). Because we must choose one of {u,v} in a MIS for T , and by
Observation 3 choosing a degree-1 vertex will never conflict with choices that are
made later on, we can add v to our independent set I while respecting the invariant
that no vertex in I is adjacent in G to a vertex in XI . Since we have then chosen one
endpoint of the matching edge {u,v} in I , we can delete u,v and their incident edges
to obtain a smaller graph T ′ (which again contains a perfect submatching of M) in
which we continue the process. As long as there is a vertex with degree one in T ′ that
has no neighbors in XI then we take it into I , delete it and its neighbor, and continue.
If this process ends with an empty graph, then by our starting observation the set I

must be a MIS for T , and since it does not use any vertices adjacent to XI it must
also be a MIS for T − NG(XI); but this proves that α(T) = α(T − NG(XI)) which
means CONFT (XI) = 0, which is a contradiction to the assumption at the start of the
proof. So the process must end with a non-empty graph T ′ ⊆ T such that vertices with
degree one in T ′ are adjacent in G to a vertex in XI and for which the matching M

restricted to T ′ is a perfect matching on T ′. We use this subgraph T ′ to obtain a set X′
as desired.

Using the Subgraph to Prove the Claim Consider a vertex v0 in T ′ such that
degT ′(v0) = 1, and construct a path P = (v0, v1, . . . , v2p+1) by following edges of T ′
that are alternatingly in and out of the matching M , until arriving at a degree-1 ver-
tex whose only neighbor was already visited. Since T ′ is acyclic, M restricted to T ′
is a perfect matching on T ′ and we start the process at a vertex of degree one, it
is easy to verify that there is such a path P (there can be many; any arbitrary such
path will suffice), that P contains an even number of vertices, that the first and last
vertex on P have degree-1 in T ′ and that the edges {v2i , v2i+1} must be in M for all
0 ≤ i ≤ p. Since we assumed that all degree-1 vertices in T ′ are adjacent in G to XI ,
there exist vertices x1, x2 ∈ X such that v0 ∈ NG(x1) and v2p+1 ∈ NG(x2). We now
claim that X′ := {x1, x2} satisfies the requirements of the statement of the lemma,
i.e., that CONFT ({x1, x2}) > 0. This fact is witnessed by considering the path P in
the original tree T . Any MIS for T which avoids NG({x1, x2}) must use one end-
point of the matched edge {v0, v1}, and since the choice of v0 is blocked because v0
is a neighbor to x1, it must use v1. But path P shows that v1 is adjacent in T to v2,
and hence we cannot choose v2 in the independent set. But since {v2, v3} is again
a matched edge, we must use one of its endpoints; hence we must use v3. Repeat-
ing this argument shows that we must use vertex v2p+1 in a MIS for T if we can-
not use v0; but the use of v2p+1 is also not possible if we exclude NG({x1, x2}).

Theory Comput Syst (2013) 53:263–299 273

Hence we cannot make a MIS for T without using vertices in NG({x1, x2}) which
proves that α(T) > α(T − NG({x1, x2})). By the definition of conflicts this proves
that CONFT (X′) > 0 for X′ = {x1, x2}, which concludes the proof. �

Using this lemma we can prove the correctness of Rule 3. We remark that using a
more involved argument based on a decomposition theorem describing independent
sets in forests by Zito [45], it is possible to show that Lemma 3 holds even if F is
a forest that does not admit a perfect matching. This argument can be found in an
earlier version of this work [30, Lemma 4].

Lemma 4 Rule 3 is correct: if T is a connected component in F such that for all
chunks Y ∈ X it holds that CONFT (X′) = 0, then α(G) = α(G − T) + α(T).

Proof Assume the conditions in the statement of the lemma hold. It is trivial to
see that α(G) ≤ α(G − T) + α(T). To establish the lemma we only need to prove
that α(G) ≥ α(G − T) + α(T), which we will do by showing that any indepen-
dent set IG−T in G − T can be transformed to an independent set of size at least
|IG−T | + α(T) in G. So consider such an independent set IG−T , and let XI :=
IG−T ∩ X be the set of vertices which belong to both IG−T and the feedback ver-
tex set X. Suppose that α(T) > α(T − NG(XI)). Then by Lemma 3 there is a sub-
set Y ⊆ XI with |Y | ≤ 2 such that CONFT (Y) > 0. Since XI is an independent set,
such a subset Y would also be independent, and hence would be a chunk in X . But
by the preconditions to this lemma such a chunk Y does not exist and therefore we
have α(T) = α(T − NG(XI)).

Now we show how to transform IG−T into an independent set for G of the re-
quested size. Let IT be a MIS in T − NG(XI), which has size α(T − NG(XI)) =
α(T). It is easy to verify that IG−T ∪ IT is an independent set in G because vertices
of T are only adjacent to vertices of G − T which are contained in X. Hence the set
IG−T ∪ IT is independent in G and it has size |IG−T | + α(T). Since this argument
applies to any independent set IG−T in graph G − T it holds in particular for a MIS
in G − T , which proves that α(G) ≥ α(G − T) + α(T). �

We introduce the concept of blockability for the statement of the last reduction
rules.

Definition 4 The pair x, y ∈ V (G)\X is X-blockable if there is a chunk Y ∈ X such
that {x, y} ⊆ NG(Y).

This can be interpreted as follows: any independent set in G containing the
chunk Y cannot contain x nor y, so using the chunk Y in an independent set blocks
both vertices of the pair x, y from being in the same independent set. It follows di-
rectly from the definition that if x, y is not X-blockable, then for any combination
of u ∈ NG(x) ∩ X and v ∈ NG(y) ∩ X we have u �= v and {u,v} ∈ E(G)—otherwise
the singleton {u} would block x and y, or the pair {u,v} would be independent and
would block x, y.

See Fig. 2 for an illustration of the final two reduction rules, which are meant to
reduce the sizes of the trees in the forest F . Whereas Rule 3 deletes a tree T from the

274 Theory Comput Syst (2013) 53:263–299

Fig. 2 Illustrations of two reduction rules. The original structure is shown on the left, and the image on
the right shows the structure after the reduction. Feedback vertices X are drawn in the bottom container,
whereas the forest G − X is visualized in the top container

forest F when we can derive that for every independent set in G − T we can obtain
an independent set in G which is α(T) vertices larger, these last reduction rules act
locally within one tree, but according to the same principle. Instead of working on an
entire connected component of F , they reduce subtrees T ′ ⊆ F in situations where
we can derive that every independent set in X can be augmented with α(T ′) vertices
from T ′. In Rule 4 we reduce the subtree on vertices {u,v} which has independence
number one, and in Rule 5 we reduce the subtree on vertices {u,v, t,w} with in-
dependence number two. Connections between the vertices adjacent to the reduced
subtree are made to enforce that removal of the subtree does not affect the types of
interactions between the neighboring vertices. We will see later in the analysis of the
kernel size that these last two rules are needed to relate the size of the forest in a
remaining instance, to the number of chunks in the instance and thereby to the size
of the feedback vertex set.

Reduction Rule 4 If there are distinct vertices u,v ∈ V (G) \ X which are adjacent
in G and are not X-blockable such that degF (u),degF (v) ≤ 2 then reduce the graph
as follows:

– Delete vertices u,v with their incident edges and decrease k by one.
– If u has a neighbor t in F which is not v, make it adjacent to NG(v) ∩ X.
– If v has a neighbor w in F which is not u, make it adjacent to NG(u) ∩ X.
– If the vertices t,w exist then they are unique; add the edge {t,w} to the graph.

It is not hard to see that this rule does not change the fact that F has a perfect
matching: if the edge {u,v} was contained in the perfect matching, then the matching
restricted to the remaining vertices is a perfect matching for the remaining graph.
If {u,v} was not contained in the perfect matching then u was matched to t and v

was matched to w; we obtain a perfect matching for the reduced graph by matching t

to w, using the edge that is added to the graph by the reduction rule.

Lemma 5 Let (G,X,k) with F := G−X be an instance to which Rule 4 is applica-
ble at vertices u,v, and let (G′,X, k−1) be the instance resulting from the reduction.
Then it holds that α(G) ≥ k ⇔ α(G′) ≥ k − 1.

Theory Comput Syst (2013) 53:263–299 275

Proof Assume the conditions in the statement of the lemma hold. We prove the two
directions separately.

(⇒) Let IG be an independent set for graph G of size at least k. We show how to
obtain an independent set IG′ for graph G′ of size at least |IG| − 1 ≥ k − 1. Observe
that no independent set in G can contain both {u,v} since they are adjacent. If IG

does not contain any of the vertices {u,v} then we show how to obtain I ′
G which is

at least as large and does contain one of {u,v}; so assume IG avoids u and v. Since
the pair u,v is not X-blockable by the preconditions for the reduction rule, we know
that there is at least one vertex among u,v for which no neighbor in X is chosen
in IG. Assume without loss of generality (by symmetry) that this holds for u, such
that NG(u) ∩ X ∩ IG = ∅. Since v is not in IG by assumption, the only neighbor of u

that can be in IG is its neighbor t in F unequal to v (if such a t exists; see Fig. 2).
If no such t exists then I ′

G := IG ∪ {u} is a bigger independent set in G; otherwise
I ′
G := (IG \ {t}) ∪ {u} is an equally large independent set. So using this replacement

argument and symmetry, we may assume that IG is an independent set of size at
least k for G that contains u but not v.

We now claim that IG′ := IG \ {u} is an independent set of size ≥ k − 1 in G′.
Since it is easy to see that IG′ has the desired size, it remains to show that it is an
independent set in G′. To establish this we need to show that the transformation to G′
does not add any edges between vertices of IG′ . This is ensured because all edges that
are added by the transformation have at least one endpoint which is a neighbor of u:
all added edges are either incident on w or a vertex in NG(u) ∩ X. Hence for each
added edge one endpoint z is adjacent to u, and since we assumed u ∈ IG this implies
that z cannot be in IG′ since IG′ is a subset of the independent set IG in G and having
adjacent vertices u and z in IG would violate independence. Therefore IG′ is indeed
an independent set of the required size in G′.

(⇐) Let IG′ be an independent set for graph G′ of size at least k − 1. We show
how to obtain an independent set IG for graph G of size at least |IG′ | + 1 ≥ k. The
structure of IG′ determines how to augment to a larger independent set IG. From the
structure of the reverse transformation of G′ to G it follows that IG′ is an independent
set in G; hence for each case we will only show that the new vertex we add to the
set will not violate independence in graph G. We now do a case analysis based on
whether or not the neighbors t of u and w of v are present.

– If vertex t exists and t ∈ IG′ , then define IG := IG′ ∪ {v}. To prove IG is an
independent set in G we show that NG(v) ∩ IG′ = ∅ by consecutively proving
that {u,w} ∩ IG′ = ∅ and NG(v) ∩ X ∩ IG′ = ∅, which together suffice to estab-
lish our claim because NG(v) = {u,w} ∪ (NG(v) ∩ X) (for as far as t exists).
Since u �∈ V (G′) we trivially have u �∈ IG′ , and because the edge {t,w} is added
when forming G′ and t ∈ IG′ by the case distinction we have w �∈ IG′ . To see
that NG(v) ∩ X ∩ IG′ = ∅ observe that NG(v) ∩ X ⊆ NG′(t) by the construction
of G′, and since t ∈ IG′ and IG′ is independent in G′ this proves the claim and the
correctness of this case.

– If vertex w exists and w ∈ IG′ , then define IG := IG′ ∪ {u}. The correctness argu-
ment is symmetric to that of the previous case.

– In the remaining case we know that {t,w}∩IG′ = ∅. There must be some z ∈ {u,v}
such that NG(z) ∩ X ∩ IG′ = ∅; because if there is no such z then by combining

276 Theory Comput Syst (2013) 53:263–299

one vertex from NG(u) ∩ X ∩ IG′ and one from NG(v) ∩ X ∩ IG′ gives a pair
which proves that {u,v} is X-blockable in G, contradicting the precondition to the
reduction rule. We now assign IG := IG′ ∪ {z}. Since NG(z)∩F ⊆ {t, u, v,w} and
these vertices either do not exist in G′ or are not in IG′ by the case distinction, we
know {t, u, v,w} ∩ IG′ = ∅. Since NG(z) ∩ X ∩ IG′ = ∅ by our choice of z this
proves that the addition of z to the independent set does not violate independence,
because NG(z) ⊆ (NG(z) ∩ X) ∪ {t, u, v,w}.

Since the case distinction is exhaustive this establishes the claim in this direction,
which concludes the proof. �

Reduction Rule 5 If there are distinct vertices t, u, v,w in V (G) \ X which sat-
isfy degF (u) = degF (v) = 3, NF (t) = {u}, NF (w) = {v} and {u,v} ∈ E(G) such
that none of the pairs {u, t}, {v,w}, {t,w} are X-blockable, then reduce as follows.
Let {p} = NF (u) \ {t, v} and let {q} = NF (v) \ {w,u}.
– Delete {t, u, v,w} and their incident edges from G and decrease k by two.
– Make p adjacent to all vertices of NG(t) ∩ X.
– Make q adjacent to all vertices of NG(w) ∩ X.

Once again it is not difficult to see that the rule preserves the fact that F has a
perfect matching: since t and w have degree one in F , they must be matched to u

and v in a perfect matching; hence the rule effectively deletes the endpoints of two
matching edges from the graph.

Lemma 6 Let (G,X,k) with F := G − X be an instance to which Rule 5 is appli-
cable at vertices t, u, v,w, and let (G′,X, k − 2) be the instance resulting from the
reduction. Then it holds that α(G) ≥ k ⇔ α(G′) ≥ k − 2.

Proof Assume the conditions in the statement of the lemma hold. We prove the two
directions separately.

(⇒) Let IG be an independent set for graph G of size at least k. We show how
to obtain an independent set IG′ for graph G′ of size at least |IG| − 2 ≥ k − 2. We
first show that without loss of generality we may assume that for one of the pairs
{t,w}, {t, v}, {u,w} both vertices of the pair belong to IG. To see this, suppose that IG

avoids at least one vertex in each pair. We then obtain an alternative independent
set I ′

G which is at least as large, and contains both vertices of at least one pair.

– If IG ∩ X ∩ NG(t) = ∅ and IG ∩ X ∩ NG(w) = ∅ then define I ′
G := (IG \

{u,v, t,w}) ∪ {t,w} which is easily seen to be an independent set. Since no in-
dependent set can contain three or more vertices from {u,v, t,w} (because of the
edges {u, t} and {v,w}) we now have |I ′

G| ≥ |IG|.
– If IG ∩ X ∩ NG(t) �= ∅ then we must have IG ∩ X ∩ NG(w) = ∅; for if both

sets are non-empty, then taking one vertex from IG ∩ X ∩ NG(t) and one ver-
tex from IG ∩ X ∩ NG(w) yields a pair which shows that {t,w} is X-blockable,
which contradicts the preconditions to Rule 5. Using the same argument we
must have that IG ∩ X ∩ NG(u) = ∅, otherwise {t, u} is X-blockable. Set I ′

G :=

Theory Comput Syst (2013) 53:263–299 277

(IG \ {p,u, t, v,w}) ∪ {u,w}. The neighborhood conditions show that no neigh-
bors of u,w in X are contained in IG (and hence in IG′), and because we explicitly
delete any neighbors that u,w might have in F when forming I ′

G we see that I ′
G

is also an independent set in G. If IG ∩ X ∩ NG(t) �= ∅ as specified by the pre-
condition for this case, then we cannot have t ∈ IG because then IG would not be
independent. The edges {p,u} and {v,w} in G show that of the set {p,u, v,w} at
most two vertices are in an independent set; hence in this situation IG contains at
most two vertices from {p,u, t, v,w} and therefore we have |I ′

G| ≥ |IG|.
– If IG ∩ X ∩ NG(w) �= ∅ then we must have that IG ∩ X ∩ NG(t) = IG ∩ X ∩

NG(v) = ∅, and we set I ′
G := (IG \ {q,u, t, v,w}) ∪ {t, v}. The correctness argu-

ment is symmetric to that of the previous case.

The argument above shows that we may assume without loss of generality that for one
of the pairs {t,w}, {t, v}, {u,w} the independent set IG contains both vertices of the
pair. Using this assumption we show how to obtain an independent IG′ with |IG′ | ≥
|IG| − 2.

– If t,w ∈ IG then define IG′ := IG \ {t,w}. Since t,w ∈ IG implies that u,v �∈ IG

we know that all vertices in IG′ still exist in G′. It remains to show that they form
an independent set there. Because the reduction to G′ only adds edges incident
on p and q , it suffices to show that for all edges incident on p or q which are
added by the reduction there is at least one endpoint not in IG′ . The transformation
from G to G′ adds edges from NG(t) ∩ X to p, and edges from NG(w) ∩ X to q .
But since t,w ∈ IG we know that the independent set IG contains no vertices
of NG(t) ∩ X or NG(w) ∩ X, and hence the defined set IG′ is an independent set
in G′.

– If t, v ∈ IG then define IG′ := IG \ {t, v}. All vertices in IG′ must exist in G′
since u,w cannot be in IG because their neighbors t, v are in IG. The edges we
add in the transformation to G′ do not violate independence: because t ∈ IG we
have NG(t) ∩ IG = ∅, and similarly because v ∈ IG we have NG(v) ∩ IG = ∅
which in particular means q �∈ IG. For all edges that we add, at least one endpoint
is not in IG and therefore not in IG′ ; this proves that IG′ is an independent set
in G′.

– If u,w ∈ IG then define IG′ := IG \ {u,w}. The proof of correctness is symmetric
to that for the previous case.

Since one of these cases must apply, the listing is exhaustive and it concludes the
proof of this direction of the equivalence.

(⇐) Let IG′ be an independent set for graph G′ of size at least k − 2. We show
how to obtain an independent set IG for graph G of size at least |IG′ | + 2 ≥ k. The
structure of IG′ determines how to augment to a larger independent set IG by adding
two vertices to IG′ . From the structure of the reverse transformation of G′ to G it
follows that IG′ is an independent set in G; hence for each case we will only show
that the new vertices we add to the set will not violate independence in graph G.

– If NG(t) ∩ X ∩ IG′ = ∅ and NG(w) ∩ X ∩ IG′ = ∅ then assign IG := IG′ ∪ {t,w}.
Since vertices t,w are clearly non-adjacent in G, and because the vertices in IG′
form an independent set in G (as the transformation to G does not add edges

278 Theory Comput Syst (2013) 53:263–299

between vertices in IG′) we now have that IG is an independent set in G of the
required size.

– If NG(t)∩X ∩ IG′ �= ∅ then we must have NG(w)∩X ∩ IG′ = ∅, otherwise taking
one vertex from NG(t)∩X ∩ IG′ and one from NG(w)∩X ∩ IG′ would give a pair
which shows that {t,w} is X-blockable in the original graph G, which contradicts
the preconditions for Rule 5. Similarly we must have NG(u) ∩ X ∩ IG′ = ∅ by the
assumption that {u, t} is not X-blockable in G. Since vertex p is adjacent in G′
to all vertices of NG(t) ∩ X, we know that by independence of IG′ if NG(t) ∩
X ∩ IG′ �= ∅ then p �∈ IG′ . We now set IG := IG′ ∪ {u,w} which must form an
independent set in G because the established conditions show that none of the
vertices of NG({u,w}) can be in IG′ . It is easy to see that |IG| ≥ k in this case.

– If NG(w)∩X∩IG′ �= ∅ then we must have NG(t)∩X∩IG′ = NG(v)∩X∩IG′ = ∅
by the non-blockability of {w, t} and {w,v}. We assign IG := IG′ ∪ {t, v}. The
correctness proof is symmetric to that of the previous case.

Since the case distinction is exhaustive this establishes the claim in this direction,
which concludes the proof. �

3.2 Structure of Reduced Instances

When no reduction rules can be applied to an instance, we call it reduced. The main
purpose of this section is to prove that in reduced clean instances, the number of
vertices in the forest F is at most cubic in the size of the feedback vertex set. We
sketch the main idea behind this analysis.

The analysis is based on the idea of identifying conflict structures in the for-
est G − X. Informally, one may think of a conflict structure S as a subgraph of the
forest F which bears witness to the fact that there is a chunk Y ∈ X such that an
independent set in G which contains Y , contains less vertices from S than an opti-
mal independent set in F . Hence this conflict structure shows that by choosing Y to
be a part of an independent set, we pay for it inside the conflict structure S. Since
we trigger a reduction rule once there is a chunk Y ∈ X which induces at least |X|
conflicts (i.e., for which we have to pay at least |X|), there cannot be too many con-
flict structures in a reduced instance. The following notion is important to make these
statements precise.

Definition 5 Define the number of active conflicts induced on the forest F by the
chunks X as ACTIVEF (X) := ∑

Y∈X CONFF (Y).

So the number of active conflicts is simply the number of conflicts induced on F

summed over all chunks of the instance. For reduced instances, this value is cubic
in |X|.
Observation 4 Let (G,X,k) be a reduced instance. By Rule 1 every v ∈ X satis-
fies CONFF ({v}) < |X|, and by Rule 2 every pair of distinct non-adjacent vertices
{u,v} ⊆ X satisfies CONFF ({u,v}) < |X|. Hence ACTIVEF (X) ≤ |X|2 + (|X|

2

)|X|.
The global argument to bound the kernel size is therefore to show that in a re-

duced instance with forest F , the number of conflict structures that can be found is

Theory Comput Syst (2013) 53:263–299 279

linear in the size of the forest. Since the total number of conflicts that are induced by
chunks X (the number of active conflicts) is bounded by O(|X|3), this will prove that
the number of vertices in F is O(|X|3).

The proof of the kernel size bound is organized as follows. In the remainder of this
section we will formally define conflict structures, and prove that the number of active
conflicts induced on the forest F grows linearly with the number of conflict structures
contained in F . We give an extremal graph-theoretic result showing that any forest
with a perfect matching contains linearly many conflict structures, in Sect. 3.3. As
the final step we will combine these results with Observation 4 to give the kernel size
bound in Sect. 3.4.

Definition 6 (Conflict Structures) Let F be a forest with a perfect matching M .

– A conflict structure of type A in F is a pair of distinct vertices {v1, v2} such
that {v1, v2} ∈ M and degF (v1),degF (v2) ≤ 2.

– A conflict structure of type B in F is a path on four vertices (v1, v2, v3, v4) such
that v1 and v4 are leaves of F , and degF (v2) = degF (v3) = 3.

Observe that in a conflict structure of type B , the edges {v1, v2} and {v3, v4} must
be contained in the perfect matching M by Observation 1. Although conflict struc-
tures can be defined for arbitrary forests with a perfect matching, we are of course
interested in the forests that occur in a reduced clean instance of FVS-INDEPENDENT

SET. To capture the interaction between chunks of such an instance and conflict struc-
tures in the forest, we need the following definition.

Definition 7 (Hitting conflict structures) Let (G,X,k) be a clean instance of FVS-
INDEPENDENT SET, and consider the forest F := G−X with a perfect matching M .
Let Y ∈ X be a chunk.

– Y ∈ X hits a conflict structure {v1, v2} of type A in F if {v1, v2} ⊆ NG(Y).
– Y ∈ X hits a conflict structure (v1, v2, v3, v4) of type B in F if one of the following

holds:
– {v1, v2} ⊆ NG(Y), or
– {v3, v4} ⊆ NG(Y), or
– {v1, v4} ⊆ NG(Y).

The importance of Reduction Rules 4 and 5 now becomes clear.

Observation 5 If (G,X,k) is a reduced clean instance of FVS-INDEPENDENT SET

and S is a conflict structure in a tree T of the forest F := G−X, then S is hit by some
chunk of X : if a structure of type A is not hit this triggers Rule 4, and if a structure
of type B is not hit this triggers Rule 5.

The fact that each conflict structure is hit by at least one chunk in a reduced in-
stance, allows us to relate the number of vertex-disjoint conflict structures to the
number of active conflicts that must be induced by the chunks.

280 Theory Comput Syst (2013) 53:263–299

Lemma 7 Let (G,X,k) be a reduced clean instance of FVS-INDEPENDENT SET

with forest F := G − X such that M is a perfect matching in F , and let S be a set of
vertex-disjoint conflict structures in F . Then ACTIVEF (X) ≥ |S|.

Proof Assume the conditions in the statement of the lemma hold. Consider some
chunk Y ∈ X , and let SY be the structures in S which are hit by Y according to
Definition 7. We will first show that CONFF (Y) ≥ |SY |, and later we will show how
this implies the lemma.

So consider an arbitrary chunk Y ∈ X and the corresponding SY . To prove
that CONFF (Y) ≥ |SY | we prove that there is an induced subgraph F ′ ⊆ F with F −
NG(Y) ⊆ F ′ ⊆ F such that α(F) − α(F ′) ≥ |SY |. Since α(F) − NG(Y) ≤ α(F ′) by
Observation 2, this will show that CONFF (Y) ≥ |SY |. To reason about the difference
between the independence number of F and of the graph F ′ that we construct, we
will ensure that F ′ has a perfect matching M ′ and compare the size of M ′ to M ,
since we know by Observation 1 that α(F ′) = |M ′| and α(F) = |M| when M ′,M are
perfect matchings for forests F ′,F respectively. Let us first show how to obtain F ′
and M ′ for a single arbitrary conflict structure S ∈ SY :

1. If S = {v1, v2} is a conflict structure of type A, then {v1, v2} ⊆ NG(Y) by Defini-
tion 7 since Y hits S, and edge {v1, v2} is contained in M by Definition 6. Now
obtain F ′ from F by deleting the vertices v1 and v2, and obtain M ′ from M by
deleting the edge {v1, v2}.

2. If S = (v1, v2, v3, v4) is a conflict structure of type B , then the edges {v1, v2}
and {v3, v4} are contained in M by Observation 1. By Definition 7, using the fact
that Y hits S, one of the following applies:

– If {v1, v2} ∈ NG(Y) then delete vertices v1, v2 from F and delete the edge be-
tween them from M .

– If {v3, v4} ∈ NG(Y) then delete vertices v3, v4 from F and delete the edge be-
tween them from M .

– If {v1, v4} ∈ NG(Y) then delete vertices v1, v4 from F , delete the edges {v1, v2}
and {v3, v4} from M and replace them by the edge {v2, v3}.

Let F ′ be the resulting graph, and M ′ the resulting matching.

Observe that in all cases the graph F ′ is a vertex-induced subgraph of F , and has M ′
as a perfect matching. Since the perfect matching M ′ contains one fewer edge than M ,
we have α(F ′) = α(F) − 1 by Observation 1. Now it is not difficult to see that rather
than doing the above step for just a single conflict structure in SY , we can repeat this
step for every conflict structure in the set. Since the conflict structures are vertex-
disjoint, the changes we make for one operation do not affect the applicability of
above-described operation for other conflict structures. Performing the update step for
each conflict structure in SY results in a vertex-induced subgraph F ′ ⊆ F with perfect
matching M ′ such that |M| − |M ′| = |SY |, which shows that CONFF (Y) ≥ |SY | as
argued before.

We have shown that for every chunk Y ∈ X it holds that CONFF (Y) ≥ |SY |,
where SY is the set of conflict structures hit by Y . The lemma now follows from

Theory Comput Syst (2013) 53:263–299 281

the definition of active conflicts as the sum of the conflict values over all chunks, us-
ing that all conflict structures in S are hit by at least one chunk (Observation 5). This
concludes the proof. �

The previous lemma shows that if F has many conflict structures, then the number
of active conflicts must be large, and therefore the size of the feedback vertex set
must be large. The extremal argument of the next section makes it possible to turn
this relation into a kernel size bound.

3.3 Packing Conflict Structures

In this section we present an extremal result which shows that trees with a perfect
matching contain linearly many conflict structures.

Theorem 1 Let T be a tree with a perfect matching. There is a set S of mutually
vertex-disjoint conflict structures in T with |S| ≥ |V (T)|/14.

Proof If T is the tree on two vertices then the statement follows trivially, since T

contains exactly one conflict structure of type A (see Definition 6). In the remainder
we therefore assume that T �= K2 which implies that T has at least four vertices: the
number of vertices must be even, since T has a perfect matching. We use a proof
by construction which finds a set of conflict structures. The procedure grows a sub-
tree T ′ ⊆ T and set S incrementally, and during each augmentation step of the tree
we enforce an incremental inequality which shows that the number of vertices of T

which are contained in T ′, is proportional to the number of conflict structures found
so far in the subtree T ′. This proof strategy is inspired by the method of “amortized
analysis by keeping track of dead leaves” which is used in extremal graph theory [27].

So the proof revolves around a subtree T ′ ⊆ T that is grown by successively
adding vertices to it. We use the following characteristics of the subgraph T ′ in the
analysis. The vertices LEAVES(T ′) \ LEAVES(T) are the open branches of T ′. The
open branches are essentially the vertices on the boundary of the subgraph T ′, where
we will eventually “grow” the subtree T ′ to make it larger, until it encompasses all
of T . Observe that when we have grown the tree T ′ until it equals T , then the num-
ber of open branches is 0 by definition. We use the letter O to denote the number
of open branches of the current state of the subtree T ′. While growing the subtree
we construct a set S of vertex-disjoint conflict structures. We use C as an abbrevia-
tion for |S|. It turns out that certain vertices of the tree T play a special role in the
amortized analysis that is implicit in the proof. We call these vertices spikes.

Definition 8 A spike in tree T is a vertex v such that degT (v) = 3 and there is exactly
one leaf of T adjacent to v. A vertex v ∈ V (T) is a live spike with respect to the
current subtree T ′ if v is a spike in T and an open branch of T ′.

When an open branch vertex is a spike, this will allow us to find more conflict
structures later on in the process, so that we may balance an increase in the number
of vertices of the subtree T ′ against an increase in the number of live spikes. Overall,

282 Theory Comput Syst (2013) 53:263–299

this means that we may justify an increase in the number of vertices which are con-
tained in T ′ by increasing (a) the number of open branches, (b) the number of conflict
structures which have been found, or (c) the number of live spikes. The number of
live spikes in the subtree T ′ is denoted by S, and the total number of vertices of T ′
is denoted by N . The balancing process is captured by the following incremental
inequality which we will satisfy while growing the subtree T ′:

8�O + 14�C + �S ≥ �N. (1)

The � values in the incremental inequality refer to the changes in the values
of O,C,S and N caused by augmenting the tree T ′: if T ′ has 5 open branches at
a given moment, and we perform an augmentation after which it has 4 open branches
then �O = −1 for that step. We define the augmentations to the tree T ′ by adding
vertices to it; it will be understood implicitly that the subtree T ′ we are considering
is the subtree of T induced by all the vertices which were added at some point in the
process.

We will show that the subtree T ′ and the set S can be initialized and grown such
that each augmentation satisfies this incremental inequality, until all vertices of T

have been added to T ′ and the two graphs coincide. At that stage we will have N =
|V (T)|, O = 0 and S = 0, for if T ′ = T then T ′ contains exactly |V (T)| vertices, and
the set LEAVES(T ′) \ LEAVES(T) is empty. By summing the incremental inequality
over all augmentation steps we then find that the final state of the tree T ′ satisfies
8O + 14C + S ≥ N which implies C ≥ N/14 = |V (T)|/14 since O = S = 0 for
this final state. Since C measures the number of conflict structures in the set S we
construct, this shows that the process finds a set of at least |V (T)|/14 mutually vertex-
disjoint conflict structures. Hence to establish the theorem all that remains is to give
the initialization and augmentation operations for the subtree T ′. Figure 3 illustrates
the construction process.

We say that a vertex u ∈ NT (v) \ V (T ′) is a neighbor of u outside T ′, and a
vertex u ∈ NT (v) ∩ V (T ′) is a neighbor inside T ′. The operations that augment the
subtree T ′ will maintain the following invariants:

(i) For all conflict structures S ∈ S it holds that V (S) ⊆ V (T ′) \ (LEAVES(T ′) \
LEAVES(T)), i.e., the vertices we use in conflict structures are contained in T ′
and are not open branches of T ′.

(ii) All vertices of T ′ which have a neighbor outside T ′ are leaves of T ′, implying
that when |V (T ′)| ≥ 2 all vertices of T ′ which have a neighbor outside T ′ are
open branches of T ′.

The first part of the invariant will ensure that the conflict structures we find are
mutually vertex-disjoint. The second part of the invariant is important because it im-
plies that if T ′ has no open branch vertices, then T ′ coincides with T . It is trivial to
see that the invariants are initially satisfied for an empty tree T ′ and empty set of con-
flict structures S . We will now describe the augmentation operations. Whenever we
talk about the neighbors of a vertex v in this description, we mean v’s neighbors in
the graph T unless explicitly stated otherwise. Similarly, when we talk about a vertex
being a leaf then we mean a leaf of the tree T , rather than T ′.

Theory Comput Syst (2013) 53:263–299 283

Fig. 3 Illustrations of some augmentation operations. Edges in the perfect matching of T are drawn with
thick lines. Vertices in V (T ′)∩V (T) are visualized as shaded circles with thick borders. Unshaded vertices
belong to V (T)\V (T ′). Each state of the subtree T ′ is labeled with the vector (�O,�C,�S,�N) of the
operation that yielded the state. (a) Tree T to which the theorem is applied. Vertices {c, e,h, o} are spikes
of T . (b) Result of applying Operation 1 with v = a. Vertices d and e become open branches of T ′ , and
since e is a spike, it becomes a live spike. (c) Applied Operation 4 to tree extending path (d, b), finding
the conflict structure {d, b} of type A. Vertex d is lost as an open branch. (d) Applied Operation 3 to
tree extending path (e,h), finding the conflict structure (f, e,h, i) of type B . Since spike e is no longer
an open branch after the operation, the number of live spikes decreases. The number of open branches
does not change, as k becomes an open branch to replace e. (e) Applied Operation 5 to the singleton
path (k). (f) Applied Operation 4 to the path (j, g), adding a conflict structure {j, g} of type A. (g) Applied
Operation 2 to vertex m, causing o to become a live spike. (h) Applied Operation 4 to the path (o,n, l).
Vertex o is lost as an open branch and as a live spike vertex, which is compensated by finding the conflict
structure {n, l} of type A. (i) The conflict structures found by the process

Initialization The first operation we describe shows how to initialize the subtree T ′.
Recall from the beginning of the proof that we could assume |V (T)| ≥ 4.

Operation 1 Let v be a leaf of T and let u be its neighbor in the tree. Initialize T ′
as the tree on vertex set NT [u].

Claim 1 Operation 1 satisfies the incremental inequality and maintains the invari-
ants.

Proof For an empty tree we obviously have O = S = C = N = 0. Let us now con-
sider how these values are affected by the tree initialization. Since T is connected and
has at least four vertices, u has at least one neighbor other than v. We claim that all
vertices NT (u)\{v} are open branches of T ′ after the initialization. By Observation 1
vertex v is the only leaf adjacent to u, and since T is a tree, the subtree induced by
vertex set NT [u] has the vertices NT (u) as leaves. Therefore the vertices NT (u) \ {v}
are contained in LEAVES(T ′)\LEAVES(T) and are open branches of T ′ by definition,
so �O = |NT (u)−1|. The number of vertices added to the tree by the initialization is
exactly �N = |NT [u]|. The number of live spikes cannot decrease by this operation
(since it started at zero, and cannot become negative); hence �S ≥ 0. Since we do

284 Theory Comput Syst (2013) 53:263–299

not add any conflict structures to S we find �C = 0. It is easy to see that this combi-
nation of values satisfies the incremental inequality since |NT (u) − 1| ≥ 1. Since we
do not add conflict structures, invariant (3.3) is trivially maintained. Invariant (3.3) is
maintained by adding all neighbors of u to the tree simultaneously. �

Observe that the initialization ensures that tree T ′ has at least three vertices, which
will be used later on.

Augmentation We will now describe the operations which are used to augment the
tree once it is initialized. For each augmentation we prove that it satisfies the in-
cremental inequality. After describing the remaining four operations, we prove that
whenever the tree T ′ does not yet encompass all of T , then some augmentation is
applicable. When describing the augmentation steps of the subtree T ′ we will use T ′

a

to refer to the status of the tree before the augmentation, and T ′
b to refer to its status

after the augmentation. When the intended meaning is clear from the context we will
just write T ′.

Operation 2 If |V (T ′)| ≥ 3 and there is a vertex v0 ∈ V (T ′) with degT (v0) = 2 such
that NT (v) \ V (T ′) contains a spike vertex v1, then add v1 to T ′.

Claim 2 Operation 2 satisfies the incremental inequality and maintains the invari-
ants.

Proof The number of vertices in T ′ increases by exactly one. Since degT (v0) = 2,
the vertex v0 is not a spike. Therefore the number of live spikes increases by one
through this operation (�S = 1) since the spike v1 becomes an open branch by this
augmentation: v1 will be a leaf of T ′, yet is not a leaf of T since degT (v1) = 3 by
definition of a spike. The number of vertices increases by one (�N = 1). The number
of open branches does not change: vertex v0 is lost as an open branch, but instead v1
becomes an open branch (�O = 0). Since the number of conflict structures does
not change (�C = 0) it is now trivial to see that these values satisfy the inequality.
Since we do not add conflict structures we maintain invariant (3.3). Invariant (3.3) is
maintained because prior to the augmentation, vertex v1 is the only neighbor of v0
which is not yet contained in T ′ which follows from the fact that v0 must have a
parent in the tree T ′ because |V (T ′)| ≥ 3, and the degree of v0 is only two. So the
augmentation effectively adds all vertices NT [v0] to T ′. �

The remaining augmentation operations grow the subtree by extending it over a
path.

Definition 9 A tree extending path is a path P = (v0, v1, . . . , vq) in T such
that V (P) ∩ V (T ′) = {v0} and v0 is an open branch vertex of T ′.

Operation 3 If |V (T ′)| ≥ 3 and there is a tree extending path P = (v0, v1) such
that v0 and v1 are adjacent to leaves l0, l1 of T respectively with l0, l1 �∈ V (T ′)
and degT (v0) = degT (v1) = 3, then add the vertices NT [V (P)] to the tree T ′, and
add the conflict structure of type B containing (l0, v0, v1, l1) to S .

Theory Comput Syst (2013) 53:263–299 285

Claim 3 Operation 3 satisfies the incremental inequality and maintains the invari-
ants. The added conflict structure is disjoint from previously found structures.

Proof Before the operation, vertex v0 is already contained in T ′ and has a unique
neighbor p inside T ′ since v0 is a leaf of the tree T ′ which has at least two vertices.
Observe that p cannot be a leaf of T ′, since v0 is a leaf of T ′ and |V (T ′)| ≥ 3. Hence
the neighbors of v0 in T are exactly {p, l0, v0}. Similarly, the neighbors of v1 in T

are exactly {q, l1, v0} for a vertex q �∈ V (T ′) which is not a leaf of T . Therefore
the vertices which are added to T ′ by this operation, and which were not contained
in T ′ already, are exactly {l0, l1, v1, q} which shows that �N = 4. Now consider
the effect of the augmentation on the number of live spike vertices. Vertex v0 is a
live spike in T ′ before the augmentation: it is an open branch vertex by definition
of a tree extending path, and the degree and leaf requirements of Definition 8 are
met. Vertex v0 becomes an internal vertex of T ′ by adding its neighbors to the tree,
and therefore it will no longer be a live spike after the augmentation. But no other
live spikes can be lost by the augmentation, hence �S ≥ −1. Since we add a conflict
structure in this operation, �C = 1. Let us finally consider the effect of this operation
on the number of open branches. Clearly vertex v0 is no longer an open branch after
the augmentation, and it was one before the augmentation. Vertices l0 and l1 are
leaves of T and therefore do not become open branch vertices. But the vertex q cannot
be a leaf of T by Observation 1, and it will be a leaf of T ′ after the augmentation.
Hence the loss of v0 as an open branch is compensated by q becoming an open
branch, and �O = 0. It is trivial to see that this combination of values satisfies the
incremental inequality.

Invariant (3.3) is maintained by adding the closed neighborhood of a path to the
tree T ′, ensuring that afterwards no vertex on the path P can have neighbors out-
side T ′. Adding NT [V (P)] to T ′ ensures that after the augmentation, none of the
vertices of (l0, v0, v1, l1) can be open branches of T ′ while all those vertices are con-
tained in T ′, which shows how invariant (3.3) is maintained. By the same invariant,
none of the vertices {l0, v0, v1, l1} are contained in conflict structures in S prior to
the augmentation, since the involved vertices are not in T ′ or open branches of T ′.
Hence the structure we add does not intersect any other structures in the set. �

Operation 4 If |V (T ′)| ≥ 3 and there is a tree extending path P = (v0, . . . , vq)

for q ≤ 2 such that degT (vq−1),degT (vq) ≤ 2, and the edge between vq−1 and vq

is contained in the perfect matching in T , then add the vertices NT [V (P)] to the
tree T ′, and add the conflict structure {vq−1, vq} to S .

Claim 4 Operation 4 satisfies the incremental inequality and maintains the invari-
ants. The added conflict structure is disjoint from previously found structures.

Proof Let p be the unique neighbor of v0 in T ′
a , the subtree before the augmentation.

Let Li for i ∈ {0, . . . , q} be defined as Li := (NT (vi) ∩ LEAVES(T)) \ (V (T ′
a) ∪

{v0, . . . , vq}). By Observation 1 it follows that |Li | ≤ 1 for all i. Define Si for i ∈
{0, . . . , q} as Si := NT (vi)\ (V (T ′

a)∪ LEAVES(T)∪{v0, . . . , vq}). Refer to Fig. 4 for
an illustration of these vertex sets, but note that the illustration does not show a path

286 Theory Comput Syst (2013) 53:263–299

Fig. 4 Illustrations of the vertex sets which are involved in the proofs of Claims 4 and 5. On the left
is a tree T with a perfect matching (visualized by thick edges), with a subtree T ′ indicated by shaded
vertices. Vertex v0 is an open branch vertex for this state of the subtree. When considering the tree ex-
tending path P = (v0, v1, v2) the corresponding vertex sets Si and Li that are defined in Claim 4 are as
follows. L0 = {e}, L1 = ∅, L2 = {m}. S0 = {b, d}, S1 = {h}, S2 = {j, l}. The state of T ′ after adding the
vertices NT [V (P)] to the tree is shown on the right. Observe that all vertices

⋃2
i=0 Si have become open

branches by the augmentation, and that the vertices
⋃2

i=0 Li are not open branches after augmentation

to which Operation 4 is applicable, as the illustration will also be used for the next
operation.

It follows from these definitions that the vertices added to T ′ by the augmen-
tation, which were not already in T ′, are exactly {v1, . . . , vq} ∪ ⋃q

i=0(Li ∪ Si)

and that the sets involved in this expression are all vertex-disjoint. Hence �N =
q + ∑q

i=0(|Li | + |Si |). We have �S ≥ −1 since the only vertex which might be a
live spike before the augmentation, but no longer after the augmentation, is v0. The
number of open branches is affected as follows: we lose the vertex v0 as an open
branch, but the vertices in

⋃q

i=0 Si turn into open branches after the augmentation
so �O ≥ |⋃q

i=0 Si | − 1. Since we add one conflict structure in this operation, we
have �C = 1.

8�O + 14�C + �S ≥ 8

(
q∑

i=0

|Si | − 1

)

+ 14 − 1 By bounds given above.

≥ 8
q∑

i=0

|Si | + 5 Simplifying.

≥
q∑

i=0

|Si | +
q∑

i=0

|Li | + q Since
q∑

i=0

|Li | ≤ 3 and q ≤ 2.

= �N.

Invariant (3.3) is maintained for the same reason as before, whereas (3.3) is main-
tained because we add the vertices involved in the conflict structure, and all their
neighbors, to T ′. Using this invariant it follows that the conflict structure we add
must be disjoint from structures added to S earlier, since prior to the augmentation
the vertices vq−1 and vq were (a) not part of T ′, or (b) open branches of T ′. �

Operation 5 If |V (T ′)| ≥ 3 and there is a tree extending path P = (v0, . . . , vq)

for q ≤ 2 such that (a) degT (vq) ≥ 4 or (b) degT (vq) = 3 and vq is not adjacent
to a leaf of T , then add the vertices NT [V (P)] to the tree T ′.

Theory Comput Syst (2013) 53:263–299 287

Claim 5 Operation 5 satisfies the incremental inequality.

Proof Let vertex p, sets Li and Si for i ∈ {0,1,2} be defined as in the proof of
Claim 4. By exactly the same reasoning as in that claim, the same bounds for �N ,
�O and �S hold for this augmentation and

∑q

i=0 |Li | ≤ 3. Since we do not add
conflict structures in this operation we obviously have �C = 0. Now observe that
the precondition to the augmentation ensures that |Sq | ≥ 2. We will use this with the
bound �O ≥ |⋃q

i=0 Si | − 1 that was derived in Claim 4:

8�O + 14�C + �S ≥ 8

(
q∑

i=0

|Si | − 1

)

+ 14 · 0 − 1 By bounds given above.

≥ 7
q∑

i=0

|Si | +
q∑

i=0

|Si | − 9 Rewriting.

≥
q∑

i=0

|Si | + 5 Since |Sq | ≥ 2.

≥
q∑

i=0

|Si | +
q∑

i=0

|Li | + q Since
q∑

i=0

|Li | ≤ 3 and q ≤ 2.

= �N.

The invariants are maintained for the same reason as for the previous operation. �

This concludes the description of the augmentation operations. For the remainder
of the proof, it suffices to show that the given set of augmentation operations can
grow any subtree T ′ ⊆ T which is initialized by Operation 1 until it encompasses
all of T , while respecting the incremental inequality. Since T ′ contains at least three
vertices after its initialization, invariant (3.3) shows that if T ′ �= T then there is some
open branch of T ′, i.e., there is a vertex v ∈ LEAVES(T ′) \ LEAVES(T). The fact
that an initialized tree T ′ has at least three vertices also implies that an open branch
vertex v has exactly one neighbor u inside T ′, and that this vertex u cannot be a leaf
of T : v is a leaf of T ′ by definition, and if u is a leaf of T then it is also a leaf of
the subgraph T ′ ⊆ T , so the leaves u and v of T ′ would be adjacent; but then T ′
has only two vertices in total. Using this information about open branch vertices, we
now show that for every open branch vertex v there is some applicable augmentation
operation near this vertex using a case distinction on the local structure around v.

1. If (a) degT (v0) ≥ 4 or (b) degT (v0) = 3 and v0 is not adjacent to a leaf of T ,
then Operation 5 is applicable to the tree extending path (v0).

2. If degT (v0) = 3 and v0 is adjacent to a leaf of T , then consider some neighbor v1 ∈
NT (v0) \ V (T ′) which is not a leaf of T . Since v0 has exactly one neighbor in T ′
and is adjacent to exactly one leaf of T (by Observation 1), such a vertex exists.
Now consider the maximal path P = (v0, v1, . . . , vq) obtained by starting with the
edge {v0, v1} and following vertices which have degree two in T , until arriving
at the first vertex vq which has degT (vq) �= 2. If degT (v1) �= 2 then this simply

288 Theory Comput Syst (2013) 53:263–299

results in P = (v0, v1). Observe that by this definition, vertices v1, . . . , vq are not
contained in T ′.
(a) If (a) degT (v1) ≥ 4 or (b) degT (v1) = 3 and v1 is not adjacent to a leaf of T ,

we find that Operation 5 is applicable to the tree extending path (v0, v1).
(b) If v1 has degree three, then by the previous case it is adjacent to a leaf in T .

Operation 3 is applicable to the tree extending path (v0, v1). Observe that the
leaf of T adjacent to v0 cannot be contained in T ′, as per the discussion above.

(c) Since v1 has degree at least two in T by our choice of v1 as not being a
leaf of T , in the remaining situations we have degT (v1) = 2 and therefore
there exists some v2 on the path P we defined earlier. Now observe that T

having a perfect matching implies that v2 cannot be adjacent to a leaf of T :
by definition of this case, v0 is adjacent to a leaf of T . If v2 is also adjacent to
a leaf, a perfect matching must match v0 and v2 to their adjacent leaves. But
then vertex v1 with neighbors v0 and v2 cannot be matched. Hence v2 is not
adjacent to a leaf.

i. If v2 has degree at most two in T , then Operation 4 is applicable to the tree
extending path (v0, v1, v2). The edge {v1, v2} is contained in the perfect
matching of T : vertex v0 can only be matched to its adjacent leaf, and
since v1 has degree two the only remaining edge incident on it which can
be in a matching is indeed {v1, v2}.

ii. If v2 has degree at least three in T , then since we derived earlier that v2
is not adjacent to a leaf we find that Operation 5 is applicable to the tree
extending path (v0, v1, v2).

3. If degT (v0) = 2, let v1 be the unique neighbor of v0 not contained in T ′ which
exists by definition of an open branch vertex. Consider the maximal path P =
(v0, v1, . . . , vq) obtained by starting with the edge {v0, v1} and following degree-
2 vertices until arriving at the first vertex vq which has degree unequal to two
in T .
(a) If (a) degT (v1) ≥ 4 or (b) degT (v1) = 3 and v1 is not adjacent to a leaf,

then Operation 5 is applicable to the tree extending path (v0, v1).
(b) If degT (v1) = 3 and v1 is adjacent to a leaf, then v1 is a spike vertex which

shows that Operation 2 is applicable.
(c) If degT (v1) = 1 then Operation 4 is applicable to the extending path (v0, v1).
(d) In the remainder we therefore have degT (v1) = 2, which implies by the defi-

nition of the path P we are considering that there is a vertex v2.
i. If degT (v2) ≤ 2 then we claim Operation 4 is applicable. Since the de-

gree of v1 in T is two, either the edge {v0, v1} or {v1, v2} is contained in
the perfect matching, which shows that the mentioned operation can be
applied to the path (v0, v1) or (v0, v1, v2) depending on which case holds.

ii. In the remainder we therefore have degT (v2) ≥ 3. If v2 is adjacent to a
leaf, then v2 must be matched to this leaf in the perfect matching which
shows that v1 is matched to v0: hence Operation 4 is applicable to (v0, v1).

iii. If v2 is not adjacent to a leaf, then since its degree is at least three we find
that Operation 5 is applicable to the tree extending path (v0, v1, v2).

Observe that this case distinction is exhaustive: no open branch vertex can have de-
gree one in T , by definition. Because the case distinction is exhaustive we have shown

Theory Comput Syst (2013) 53:263–299 289

that whenever T ′ is not yet equal to T we can augment the tree T ′ while respecting
the incremental inequality. By the argument given above this proves that the resulting
set of conflict structures S satisfies |S| ≥ |V (T)|/14, which concludes the proof of
Theorem 1. �

We remark that by using a more detailed case analysis, one could prove better
bounds for the number of conflict structures that can be found in a tree with a perfect
matching. An improvement in the bound immediately leads to a better provable upper
bound on the kernel size. But since such an improvement does not actually decrease
the size of reduced instances (it only affects what we can prove about the sizes of
such instances — it does not affect what any of the reduction rules do), and would
not change the cubic dependency of the kernel size on the parameter, we have chosen
not to pursue this bound further in the interest of space and readability.

3.4 The Kernelization Algorithm

Using the packing argument from the previous section, we can finally prove an upper
bound on the size of reduced instances.

Lemma 8 Let (G,X,k) be a reduced clean instance of FVS-INDEPENDENT SET

with forest F := G − X. Then |V (G)| ≤ |X| + 14|X|(|X| + (|X|
2

)
).

Proof Consider such a reduced instance. By definition of the instance being clean,
the forest F has a perfect matching. By applying Theorem 1 to each tree in the for-
est F , we find obtain a set S of vertex-disjoint conflict structures in F with |S| ≥
|V (F)|/14. By Lemma 7 this shows that ACTIVEF (X) ≥ |V (F)|/14. On the other
hand, Observation 4 gives the bound ACTIVEF (X) ≤ |X|2 + (|X|

2

)|X|. We therefore

find that |V (F)| ≤ 14(|X|2 + (|X|
2

)|X|). Since |V (G)| = |X| + |V (F)| we conclude

that |V (G)| ≤ |X| + 14|X|(|X| + (|X|
2

)
). �

The previous lemma gives a size bound for reduced instances. Before proving the
existence of a kernel using this bound, let us consider how much time is needed to
compute a reduced instance.

Lemma 9 Given a clean instance (G,X,k) of FVS-INDEPENDENT SET on n ver-
tices we can exhaustively apply Reduction Rules 1–5 in O(|X|2 · n) time to output an
equivalent reduced instance (G′,X′, k′).

Proof The crucial idea is to apply the reduction rules in a suitable order, to prevent
re-triggering reduction rules which were already applied before. This will ensure that
we need only a single pass over the instance to exhaustively reduce it, which improves
the running time.

Start by computing for each chunk Y ∈ X the value CONFF (Y). Since we can
precompute the value α(F) once in linear-time, for each choice of Y we can com-
pute CONFF (Y) in O(|V (F)|) time by marking which vertices of F are adjacent to Y ,
finding a MIS among the vertices of F which are not marked, and comparing its size

290 Theory Comput Syst (2013) 53:263–299

to the precomputed value. Now bucket-sort the chunks based on the number of con-
flicts they induce; since the number of conflicts is at most |V (F)| we can bucket-sort
in |V (F)|+ |X | time. Then consider the chunks in decreasing value of the number of
conflicts they induce and apply Rules 1 and twoVertexDeletion where possible, using
the current size of the feedback vertex set when testing for applicability. Observe that
an application of Rule 1 might decrease the size of the feedback vertex set X, which
could cause a rule to become applicable for other chunks where it was not applicable
before. By treating chunks in order of decreasing conflict value and testing for appli-
cability of a rule when handling a chunk, we ensure that reduction rules do not be-
come applicable to chunks we have already considered — observe that the number of
conflicts induced by a chunk does not change when applying Rules 1 or 2 elsewhere,
except when deleting a vertex involved in some chunk (which can be handled easily).
Hence after doing one such pass over the instance in O(|X | · |V (F)|) ⊆ O(|X|2 · n)

time, we end up with an equivalent instance (G1,X1, k1) to which Rule 1 and Rule 2
do not apply.

As the next phase we will exhaustively apply Rule 4 and Rule 5. The crucial fact
we use here is that an application of one of these two rules does not change the
number of conflicts that is induced by any chunk Y ∈ X , which can be proven by
arguments similar to those used to argue the correctness of the two reduction rules.
Hence by applying Rules 4 and 5 we do not change the fact that the instance is re-
duced with respect to Rules 1 and 2. It is not hard to see that a forest F can contain
at most O(|V (F)|) structures which satisfy the degree constraints of Rules 4 and 5,
which follows from the fact that F is acyclic and the relevant substructures are sub-
graphs of constant degree. We may identify all these structures in O(|V (F)|) time
by using a suitable depth-first search; we omit the straight-forward details of such a
procedure. For each substructure to which Rule 4 might be applied (an edge whose
endpoints have degree at most two), or to which Rule 5 might be applied (four ver-
tices on a path with degrees one, three, three, and one), we can test whether a rule
is applicable in O(|X|2) time: the effort here lies in testing whether a pair of ver-
tices u,v from F is X-blockable. Using an adjacency-matrix for X we can test for
each vertex in NG(u) ∩ X whether it is adjacent to all vertices in NG(v) ∩ X; the
pair is X-blockable if and only if this is false. Once we determine that a rule is ap-
plicable, we modify the graph as needed. This involves modifying constant-degree
constant-size substructures in F , which have arbitrary adjacencies to X. Using an ap-
propriate data-structure such as an adjacency-list, we may perform these local modi-
fications in O(|X|) time. By applying Rule 4 we might trigger Rule 5, or vice versa.
Luckily, we can only trigger a rule which was not applicable before in the imme-
diate neighborhood of the previous structure which was reduced, and we can test
whether this happens in constant time. Since each reduction rule decreases the num-
ber of vertices in F , we apply the rules at most |V (F)| times. Each application can
be performed in O(|X|2) time. By using a suitable depth-first search we can iden-
tify all structures which satisfy the degree constraints of the two rules in O(|V (F)|)
time. In total we therefore find that from (G1,X1, k1) we may compute an equiv-
alent instance (G2,X2, k2) which is reduced with respect to Rules 1, 2, 4 and 5
in O(|X|2 · |V (F)|) time.

As the final step, the algorithm needs to apply Rule 3. It is trivial to verify that this
rule does not trigger any other reduction rules. We may apply this rule by computing

Theory Comput Syst (2013) 53:263–299 291

for each chunk Y ∈ X , for each remaining tree T in the forest, the number of conflicts
induced on T by Y in a manner similar as described before. Afterwards we delete
trees for which no chunks induce a conflict. This phase is easily implemented to run
in O(|X | · |V (F)|) time. We output the resulting instance (G3,X3, k3) of the problem,
which was found in O(|X|2 · n) time overall. �

Theorem 2 FVS-INDEPENDENT SET has a kernel with a cubic number of vertices:
there is an algorithm that transforms an instance (G,X,k) on n vertices and m edges
into an equivalent instance (G′,X′, k′) in O(

√
nm+n5/3) time such that |X′| ≤ 2|X|

and |V (G′)| ≤ 2|X| + 28|X|2 + 56|X|3.

Proof Given an input instance (G,X,k) of FVS-INDEPENDENT SET, we first ap-
ply Lemma 1 to obtain an equivalent clean instance (G1,X1, k1) with |X1| ≤ 2|X|
in O(

√
nm) time. To optimize the running time of the kernelization algorithm, we

do not further process the instance if n ≤ |X|3, but simply output (G1,X1, k1) as the
result of the procedure; this is suitably small since |V (G1)| ≤ |V (G)| ≤ |X|3 in this
case.

In the remainder we may therefore assume that n > |X|3, which implies |X1| ≤
2 · n1/3 as |X1| ≤ 2|X|. We invoke Lemma 9 to obtain an equivalent reduced in-
stance (G2,X2, k2) in O(|X1|2 · |V (G1)|) ⊆ O(n2/3 · n) time. Since the reduction
rules do not change the fact that the instance is clean, the reduced instance is also
clean. By Lemma 8 the size of the resulting graph G2 is bounded by |V (G2)| ≤
|X2| + 14|X2|(|X2| + (|X2|

2

)
). As the reduction rules do not increase the size of the

feedback vertex set, we have |X2| ≤ |X1| ≤ 2|X|. We therefore obtain |V (G2)| ≤
2|X|+ 28|X|2 + 56|X|3 by plugging in the bound on X2 and evaluating the binomial
expression. We output the instance (G2,X2, k2) as the result of the kernelization, or
a trivial YES-instance if k2 ≤ 0. By the correctness of the reduction rules, this in-
stance is equivalent to the input instance. The set X2 is a feedback vertex set for G2,
since X1 is a FVS for G1 and the reduction rules preserve this. Observe that the orig-
inal set X (or what is left of it in the final graph G2) might not constitute a FVS
for G2, as edges may have been added between vertices which were added to the
feedback vertex set in order to clean the instance. The running time of the procedure
is O(

√
nm + n5/3). �

Using the previous theorem we easily obtain a corollary about kernelization for
VERTEX COVER from its relationship to INDEPENDENT SET.

Corollary 1 FVS-VERTEX COVER has a kernel with min(2k,2|X| + 28|X|2 +
56|X|3) vertices which can be computed in O(

√
nm + n5/3) time.

Proof Given an instance (G,X,k) of FVS-VERTEX COVER we transform it into
an instance (G,X, |V (G)| − k) of FVS-INDEPENDENT SET, which is an equivalent
instance because the complement of an independent set is a vertex cover. We ap-
ply the kernelization algorithm from Theorem 2 to (G,X, |V (G)| − k) to compute
in O(

√
nm + n5/3) time an equivalent instance (G′,X′, |V (G′)| − k′). By adjusting

the target value we transform this back to an instance (G′,X′, k′) of FVS-VERTEX

292 Theory Comput Syst (2013) 53:263–299

COVER and use it as the output, which shows that |V (G′)| ≤ 2|X| + 28|X|2 +
56|X|3. Since the kernelization for FVS-INDEPENDENT SET starts by applying the
Nemhauser-Trotter decomposition which is known to yield a 2k-vertex kernel [9],
the number of vertices in the resulting graph G′ is also bounded by 2k, where k is the
size of the vertex cover that is asked for by the original input instance. �

We remark that the VERTEX COVER kernelization with respect to the parameter
FVS(G) can be combined with any existing VERTEX COVER kernel which reduces
the graph by only deleting vertices. Since all existing VERTEX COVER kernels (the
Buss rule [7], crown reductions [2, 11, 12] and the Nemhauser-Trotter reduction [9,
35]) are of this type, our reduction rules can be combined with all of these.

4 No Polynomial Kernel for VC-Weighted Vertex Cover

The goal of this section is to prove that vertex weights make it much harder to ker-
nelize an instance of the vertex cover problem. To prove a kernelization lower bound
for VC-WEIGHTED VERTEX COVER we use the recently introduced notion of cross-
composition [5] which builds on earlier work by Bodlaender et al. [4], and Fortnow
and Santhanam [25].

Definition 10 (Polynomial equivalence relation [5]) An equivalence relation R on
�∗ is called a polynomial equivalence relation if the following two conditions hold:

1. There is an algorithm that given two strings x, y ∈ �∗ decides whether x and y

belong to the same equivalence class in (|x| + |y|)O(1) time.
2. For any finite set S ⊆ �∗ the equivalence relation R partitions the elements of S

into at most (maxx∈S |x|)O(1) classes.

Definition 11 (Cross-composition [5]) Let L ⊆ �∗ be a set and let Q ⊆ �∗ ×N be a
parameterized problem. We say that L cross-composes into Q if there is a polynomial
equivalence relation R and an algorithm which, given t strings x1, x2, . . . , xt belong-
ing to the same equivalence class of R, computes an instance (x∗, k∗) ∈ �∗ × N in
time polynomial in

∑t
i=1 |xi | such that:

1. (x∗, k∗) ∈ Q ⇔ xi ∈ L for some 1 ≤ i ≤ t ,
2. k∗ is bounded by a polynomial in maxt

i=1 |xi | + log t .

Theorem 3 [5] If some set L ⊆ �∗ is NP-hard under Karp reductions and L cross-
composes into the parameterized problem Q then there is no polynomial kernel for Q

unless NP ⊆ coNP/poly.

The NP-hard set which we will use for the cross-composition is the following
restricted version of INDEPENDENT SET:

INDEPENDENT SET ON P2-SPLIT GRAPHS

Instance: A graph G, an independent set Y in G such that each component
of G − Y is isomorphic to P2, and an integer k.
Question: Does G have an independent set of size at least k?

Theory Comput Syst (2013) 53:263–299 293

The following proposition will enable us to establish the NP-completeness of INDE-
PENDENT SET ON P2-SPLIT GRAPHS. It is the reverse of the “folding rule” which
was used for vertex cover kernelization by Chen et al. [9, Lemma 2.3].

Proposition 2 Let G be a graph and let {u,v} ∈ E(G). Let G′ be the graph ob-
tained from G by removing the edge {u,v}, adding two new vertices p1,p2 and the
edges {u,p1}, {p1,p2}, {p2, v}. Then α(G′) = α(G) + 1.

Lemma 10 INDEPENDENT SET ON P2-SPLIT GRAPHS is NP-complete.

Proof Membership in NP is trivial; we prove hardness by a reduction from the un-
restricted INDEPENDENT SET problem [26, GT20]. Consider an instance (G, k) of
INDEPENDENT SET. Now obtain a graph G′ by replacing each edge {u,v} ∈ E(G)

by a path on two new vertices whose endpoints are adjacent to u and v, respectively.
If we let Y := V (G) be the set of original vertices in the graph G′ then using Propo-
sition 2 it is not hard to see that instance (G′, Y, k + |E(G)|) is equivalent to (G, k),
which concludes the proof. �

Similarly as for our positive result, it will be easier to reason about the negative
result if we phrase it in terms of INDEPENDENT SET instead of VERTEX COVER. We
therefore use the following problem as an intermediate step.

VC-WEIGHTED INDEPENDENT SET

Instance: A simple undirected graph G, a weight function w : V (G) → N
+,

a vertex cover X ⊆ V (G), an integer k ≥ 0.
Parameter: The cardinality |X| of the vertex cover.
Question: Is there an independent set C of G such that

∑
v∈C w(v) ≥ k?

We can prove a kernelization lower bound for this problem using cross-composition.

Theorem 4 VC-WEIGHTED INDEPENDENT SET does not admit a polynomial kernel
unless NP ⊆ coNP/poly.

Proof By Theorem 3 and Lemma 10 it is sufficient to prove that INDEPENDENT SET

ON P2-SPLIT GRAPHS cross-composes into VC-WEIGHTED INDEPENDENT SET.
We start by defining a suitable polynomial equivalence relationship R. Fix some
reasonable encoding of instances of INDEPENDENT SET ON P2-SPLIT GRAPHS into
strings on an alphabet �. Now let two strings x, y ∈ �∗ be equivalent under R if
(a) both strings do not encode a well-formed instance of INDEPENDENT SET ON P2-
SPLIT GRAPHS, or (b) the strings encode instances (G1, Y1, k1) and (G2, Y2, k2) such
that |V (G1)| = |V (G2)|,|Y1| = |Y2| and k1 = k2. It is not difficult to see that a set of
strings which encodes instances on at most n vertices each, is partitioned into O(n3)

equivalence classes. A reasonable encoding of input instances allows equivalence to
be tested in polynomial time, and hence R is a polynomial equivalence relationship
according to Definition 10.

We now give an algorithm that receives t instances of INDEPENDENT SET ON

P2-SPLIT GRAPHS which are equivalent under R, and constructs an instance of

294 Theory Comput Syst (2013) 53:263–299

VC-WEIGHTED INDEPENDENT SET with small parameter value that acts as the
OR of the inputs. If the input instances are not well-formed, then we simply out-
put a constant-sized NO-instance. Using the properties of R we may therefore as-
sume in the remainder that the input instances are (G1, Y1, k1), . . . , (Gt , Yt , kt) such
that |V (G1)| = · · · = |V (Gt)| = n, |Y1| = · · · = |Yt | = r and k1 = · · · = kt = k. We
may assume without loss of generality (by duplicating some instances if needed)
that t is a power of two. We construct an instance (G′,w′,X′, k′) of VC-WEIGHTED

INDEPENDENT SET as follows.
In each input graph Gi , the graph Gi − Yi contains n − r vertices and is a dis-

joint union of P2’s by the definition of INDEPENDENT SET ON P2-SPLIT GRAPHS.
Let q := (n− r)/2 be the number of P2’s in each graph Gi −Yi . For each i ∈ [t] label
the vertices of the P2’s in Gi − Yi by a1, b1, a2, b2, . . . , aq, bq such that {aj , bj } is
an edge in Gi − Yi for j ∈ [q]; this implies that the only edges of Gi − Yi are those
between the a- and b-vertices with the same number. Now construct the weighted
graph (G′,w′) as follows.

1. Initialize G′ as the disjoint union
⋃̇t

i=1Yi of the independent sets of the input
instances. Set the weight of all these vertices to one.

2. For j ∈ [q] add vertices a′
j , b

′
j of weight one and the edge {a′

j , b
′
j } to G′. Connect

these vertices to the other vertices as follows.

– For i ∈ [t], for each vertex v ∈ Yi and for each j ∈ [q] make v adjacent to a′
j

(resp. b′
j) if and only if v is adjacent in Gi to aj (resp. bj).

3. For j ∈ [log t] add vertices s0
j , s1

j to G′ of weight t (n + 1) each, and add the

edge {s0
j , s1

j }. Connect these to the remainder of the graph as follows.

– For i ∈ [t] and j ∈ [log t], let b(i, j) ∈ {0,1} be the value of the j -bit in the
binary expansion of number i. Make vertex s

b(i,j)
j adjacent to all vertices of Yi

that were added to G′ in the first step.

This concludes the construction of the weighted graph (G′,w′). Observe the im-
portant fact that for each i ∈ [t] the graph G′[Yi ∪ {a′

j , b
′
j | j ∈ [q]}] is isomorphic

to Gi since the vertices of Yi form an independent set in both graphs, the remaining
vertices form a disjoint union of P2’s in both graphs, and the connections between
the vertices of Yi and the P2’s are identical.

We set k′ := k + t (n + 1) log t . Define X′ := {a′
j , b

′
j | j ∈ [q]} ∪ {s0

j , s1
j | j ∈

[log t]}. Since the only vertices of G′ −X′ are the vertices corresponding to the sets Yi

of the input instances, and since we have not added any edges between these vertices,
it follows that G′ − X′ is an independent set and therefore X′ is a vertex cover of
size |X′| = 2q + 2 log t ≤ 2n + 2 log t . Since the size of an input instance on n ver-
tices is at least n bits in a reasonable encoding (under which INDEPENDENT SET

ON P2-SPLIT GRAPHS is NP-complete), it follows that |X′| is bounded by a polyno-
mial in the size of the largest input instance plus log t . We can therefore output the
instance (G′,w′,X′, k′) of VC-WEIGHTED INDEPENDENT SET, knowing that the
parameter value |X′| is suitably bounded. It remains to prove that this output instance
is YES if and only if one of the input instances is YES.

Theory Comput Syst (2013) 53:263–299 295

For the first direction, assume that (G′,w′,X′, k′) is YES and let C ⊆ V (G′) be
an independent set of total weight at least k′. Since {s0

j , s1
j } ∈ E(G′) for j ∈ [log t],

the independent set C contains at most one vertex of each pair s0
j , s1

j . Since the only
vertices which have weight unequal to one are the s-vertices of weight t (n + 1), and
since the number of vertices in G′ which are not s-vertices is at most t · n, it follows
that if C does not contain one vertex of each pair s0

j , s1
j (j ∈ [log t]) then the weight

of C is at most t (n + 1)(log t − 1) + t · n ≤ t (n + 1) log t − t < k′. Hence by the
assumption that C has weight at least k′ we know that C contains exactly one vertex
of each pair s0

j , s1
j . Consider the number i∗ whose j -th bit is 1 if s0

j is in C, and whose
j -th bit is 0 otherwise. For all instance numbers i �= i∗ the binary representation of i

disagrees with the binary representation of i∗ on at least one position j ∈ [log t],
which implies by the construction of G′ that all vertices of Yi in G′ are adjacent to
the vertex of s0

j , s1
j which is contained in C. Since C is an independent set, this shows

that C does not contain any vertices of Yi for all i �= i∗. Since the weight of C is at
least k + t (n + 1) log t and C contains exactly one vertex of each s-pair, this shows
that the vertices of Yi∗ ∪{a′

j , b
′
j | j ∈ [q]} must contribute at least k to the weight of C.

Since each vertex in this latter set has weight one, this shows that |C ∩ (Yi∗ ∪ {a′
j , b

′
j |

j ∈ [q]})| ≥ k. But by construction of G′ we know that G′[Yi∗ ∪ {a′
j , b

′
j | j ∈ [q]}]

is isomorphic to Gi∗ and therefore Gi∗ contains an independent set of size at least k,
proving that input instance (Gi∗ , Yi∗ , ki∗) is YES.

For the reverse direction, assume that (Gi∗ , Yi∗ , ki∗) is a YES-instance; we prove
that the constructed instance contains an independent set of weight k′. Since G′[Yi∗ ∪
{a′

j , b
′
j | j ∈ [q]}] is isomorphic to Gi∗ , this induced subgraph contains an indepen-

dent set C of cardinality k and hence of weight k. Now consider the binary expansion
of the number i∗. For j ∈ [log t] if the j -th bit of i∗ is 1, then vertex s0

j is not adjacent
to any of the vertices in C and hence can be added to C without violating indepen-
dence; if the bit is 0 then s1

j can be added. Since vertices sj for different values of j

are not adjacent to each other, we can add one vertex of each pair s0
j , s1

j to C in this
fashion for j ∈ [log t] to obtain an independent set of weight k + t (n+ 1) log t which
proves that the output instance is YES.

This concludes the proof that the constructed instance is equivalent to the OR of
the input instances. Since the construction can be carried out in polynomial time this
is a valid cross-composition, and by Theorem 3 this concludes the proof. �

Corollary 2 VC-WEIGHTED VERTEX COVER does not admit a polynomial kernel
unless NP ⊆ coNP/poly.

Proof Since an instance (G,w,X,k) of VC-WEIGHTED INDEPENDENT SET is
equivalent to an instance (G,w,X, (

∑
v∈V (G) w(v))−k) of VC-WEIGHTED VERTEX

COVER with the same parameter, the construction of Theorem 4 also shows that IN-
DEPENDENT SET ON P2-SPLIT GRAPHS cross-composes into VC-WEIGHTED VER-
TEX COVER which proves the claim. �

296 Theory Comput Syst (2013) 53:263–299

5 Conclusion

We have given a cubic kernel for the VERTEX COVER and INDEPENDENT SET prob-
lems using the parameter FVS(G). It would be very interesting to perform exper-
iments with our new reduction rules to see whether they offer significant benefits
over the existing VERTEX COVER kernel on real-world instances. This result is one
of the first examples of a polynomial kernel using a “refined” parameter which is
structurally smaller than the standard parameterization. The kernel we have presented
for FVS-VERTEX COVER contains O(|X|3) vertices. Since a graph G with feedback
vertex set X has at most

(|X|
2

) + |V (G) \ X| · |X| + |V (G) \ X| − 1 edges, a re-
duced instance can be encoded in O(|X|4 log |X|) bits using an adjacency-list since
an adjacency-list encoding of a graph takes O(log |V (G)| + |E(G)| log |V (G)|) bits.
The results of Dell and Van Melkebeek [15] imply that it is unlikely that there exists
a kernel which can be encoded in O(|X|2−ε) bits for any ε > 0. It might be possible
to improve the size of the kernel to a quadratic or even a linear number of vertices, by
employing new reduction rules. The current reduction rules can be seen as analogs of
the traditional “high degree” rule for the VERTEX COVER problem, and it would be
interesting to see whether it is possible to find analogs of crown reduction rules when
using FVS(G) as the parameter.

Although we have assumed throughout the paper that a feedback vertex set is sup-
plied with the input, we can drop this restriction by applying the known polynomial-
time 2-approximation algorithm for FVS [3]. Observe that the reduction algorithm
does not require that the supplied set X is a minimum feedback vertex set; the ker-
nelization algorithm works if X is any feedback vertex set, and the size of the output
instance depends on the size of the FVS that is supplied. Hence if we compute a
2-approximate FVS and use it in the kernelization algorithm, the bound on the num-
ber of vertices in the output instance is only a factor 8 worse than when running the
kernelization using a minimum FVS.

This paper has focused on the decision version of the VERTEX COVER problem,
but the data reduction rules given here can also be translated to the optimization
version to obtain the following result: given a graph G there is a polynomial-time
algorithm that computes a graph G′ and a non-negative integer c such that VC(G) =
VC(G′) + c with |V (G′)| ≤ 2 VC(G) and |V (G′)| ∈ O(FVS(G)3); and a vertex
cover S′ for G′ can be transformed back into a vertex cover of G of size |S′| + c

in polynomial time.

Weighted Problems In Sect. 4 we proved that the VC-WEIGHTED VERTEX COVER

problem does not admit a polynomial kernel unless NP ⊆ coNP/poly. Of course this
immediately implies a kernel lower bound for the weighted problem parameterized
by the size of a feedback vertex set. After the preliminary version of this paper ap-
peared (where we proved the lower bound for FVS-WEIGHTED VERTEX COVER),
we have found several other weighted problems parameterized by the cardinality
of a given vertex cover which are FPT but do not admit polynomial kernels unless
NP ⊆ coNP/poly, including WEIGHTED FEEDBACK VERTEX SET [5], WEIGHTED

TREEWIDTH [6] and WEIGHTED ODD CYCLE TRANSVERSAL [31]. It seems that
for problems parameterized by the size of a given vertex cover, the presence of vertex

Theory Comput Syst (2013) 53:263–299 297

weights forms an obstruction to the existence of polynomial kernels. This trend can
be compared to the observation that for vertex- or edge subset problems under the
natural parameterization, the presence of connectivity requirements often excludes a
polynomial kernelization. For example, well-known connectivity problems without
polynomial kernels include k-PATH [4], k-CONNECTED VERTEX COVER [17] and
k-CONNECTED FEEDBACK VERTEX SET [14] (assuming NP �⊆ coNP/poly). Un-
covering further properties of problems which are strongly correlated to the existence
of polynomial kernels seems like an interesting area of further research.

Other Parameterizations The approach of studying VERTEX COVER parameter-
ized by FVS(G) fits into the broad context of “parameterizing away from triviality”
[8, 36], since the parameter FVS(G) measures how many vertex-deletions are needed
to reduce G to a forest in which VERTEX COVER can be solved in polynomial time.
As there is a wide variety of restricted graph classes for which VERTEX COVER is
in P , this opens up a multitude of possibilities for non-standard parameterizations.
As observed by Cai [8], for every graph class G which is closed under vertex deletion
and for which the VERTEX COVER problem is in P , the VERTEX COVER problem
is in FPT when parameterized by the size of a set X such that G − X ∈ G , assuming
that X is given as part of the input. Such problems can be solved in O∗(2|X|) time by
enumerating all independent subsets X′ ⊆ X and computing α(G − X − NG(X′)),
which can be done in polynomial time since G−X−NG(X′) ∈ G . The independence
number of G is the maximum of |X′| + α(G − X − NG(X′)) over all independent
subsets X′. In the recent paper on cross-composition [5], a superset of the authors
showed that whenever G contains all cliques the resulting parameterized problem
does not have a polynomial kernel unless NP ⊆ coNP/poly. This implies that for
classes such as claw-free graphs, interval graphs and various other types of perfect
graphs, VERTEX COVER parameterized by the size of a given deletion set to the class
is in FPT, but does not admit a polynomial kernel unless NP ⊆ coNP/poly. Further
research may try to find more general graph classes G such that VERTEX COVER

admits a polynomial kernel parameterized by deletion distance to G . Since relevant
candidate classes cannot contain arbitrarily large cliques and must admit polynomial-
time algorithms for solving VERTEX COVER, bipartite graphs might be an interesting
subject for further study.

One might also consider the VERTEX COVER problem parameterized by the size
of a given set X such that TREEWIDTH(G − X) ≤ i. The classic VERTEX COVER

kernelizations can be interpreted as the case i = 0, whereas this paper supplies the
result for i = 1. It was recently proven that the positive results cannot extend fur-
ther in this direction: Cygan et al. [13] showed that the case i = 2 does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Acknowledgements We are grateful to the anonymous referees, whose suggestions significantly im-
proved the exposition of our results and decreased the running time of the kernelization procedure.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

298 Theory Comput Syst (2013) 53:263–299

References

1. Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H., Symons, C.T.:
Kernelization algorithms for the vertex cover problem: theory and experiments. In: Proc. 6th
ALENEX/ANALC, pp. 62–69 (2004)

2. Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown structures for vertex cover
kernelization. Theory Comput. Syst. 41(3), 411–430 (2007). doi:10.1007/s00224-007-1328-0

3. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set
problem. SIAM J. Discrete Math. 12(3), 289–297 (1999). doi:10.1137/S0895480196305124

4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial
kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009). doi:10.1016/j.jcss.2009.04.001

5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: a new technique for kernelization
lower bounds. In: Proc. 28th STACS, pp. 165–176 (2011). doi:10.4230/LIPIcs.STACS.2011.165

6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: a combinatorial analy-
sis through kernelization. In: Proc. 38th ICALP, pp. 437–448 (2011). doi:10.1007/978-3-642-22006-
7_37

7. Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM J. Comput. 22(3), 560–572 (1993).
doi:10.1137/0222038

8. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415–429 (2003).
doi:10.1016/S0166-218X(02)00242-1

9. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algo-
rithms 41(2), 280–301 (2001). doi:10.1006/jagm.2001.1186

10. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–
42), 3736–3756 (2010). doi:10.1016/j.tcs.2010.06.026

11. Chlebík, M., Chlebíková, J.: Crown reductions for the minimum weighted vertex cover problem.
Discrete Appl. Math. 156(3), 292–312 (2008). doi:10.1016/j.dam.2007.03.026

12. Chor, B., Fellows, M., Juedes, D.W.: Linear kernels in linear time, or how to save k colors in O(n2)

steps. In: Proc. 30th WG, pp. 257–269 (2004). doi:10.1007/978-3-540-30559-0_22
13. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the hardness of losing

width. In: Proc. 6th IPEC (2012) (To appear)
14. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Kernelization hardness of

connectivity problems in 2-degenerate graphs. In: Proc. 36th WG, pp. 147–158 (2010).
doi:10.1007/978-3-642-16926-7_15

15. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-
time hierarchy collapses. In: Proc. 42nd STOC, pp. 251–260 (2010). doi:10.1145/1806689.1806725

16. Díaz, J., Petit, J., Thilikos, D.M.: Kernels for the vertex cover problem on the preferred attachment
model. In: Proc. 5th WEA, pp. 231–240 (2006). doi:10.1007/11764298_21

17. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs. In: Proc. 36th
ICALP, pp. 378–389 (2009). doi:10.1007/978-3-642-02927-1_32

18. Downey, R., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer,
New York (1999)

19. Downey, R.G., Fellows, M.R., Langston, M.A. (eds.): Comput. J.: Special Issue on Parameterized
Complexity, 51 (2008)

20. Downey, R.G., Fellows, M.R., Stege, U.: Parameterized complexity: a framework for systematically
confronting computational intractability. In: DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pp. 49–99 (1997)

21. Estivill-Castro, V., Fellows, M., Langston, M., Rosamond, F.: FPT is P-time extremal structure I. In:
Proc. 1st ACiD, pp. 1–41 (2005)

22. Fellows, M.R.: Towards fully multivariate algorithmics: some new results and directions in parameter
ecology. In: Proc. 20th IWOCA, pp. 2–10 (2009). doi:10.1007/978-3-642-10217-2_2

23. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh, S.: The complexity
ecology of parameters: an illustration using bounded max leaf number. Theory Comput. Syst. 45(4),
822–848 (2009). doi:10.1007/s00224-009-9167-9

24. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems pa-
rameterized by vertex cover. In: Proc. 19th ISAAC, pp. 294–305 (2008). doi:10.1007/978-3-540-
92182-0_28

25. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Com-
put. Syst. Sci. 77(1), 91–106 (2011). doi:10.1016/j.jcss.2010.06.007

http://dx.doi.org/10.1007/s00224-007-1328-0
http://dx.doi.org/10.1137/S0895480196305124
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.165
http://dx.doi.org/10.1007/978-3-642-22006-7_37
http://dx.doi.org/10.1007/978-3-642-22006-7_37
http://dx.doi.org/10.1137/0222038
http://dx.doi.org/10.1016/S0166-218X(02)00242-1
http://dx.doi.org/10.1006/jagm.2001.1186
http://dx.doi.org/10.1016/j.tcs.2010.06.026
http://dx.doi.org/10.1016/j.dam.2007.03.026
http://dx.doi.org/10.1007/978-3-540-30559-0_22
http://dx.doi.org/10.1007/978-3-642-16926-7_15
http://dx.doi.org/10.1145/1806689.1806725
http://dx.doi.org/10.1007/11764298_21
http://dx.doi.org/10.1007/978-3-642-02927-1_32
http://dx.doi.org/10.1007/978-3-642-10217-2_2
http://dx.doi.org/10.1007/s00224-009-9167-9
http://dx.doi.org/10.1007/978-3-540-92182-0_28
http://dx.doi.org/10.1007/978-3-540-92182-0_28
http://dx.doi.org/10.1016/j.jcss.2010.06.007

Theory Comput Syst (2013) 53:263–299 299

26. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory of NP-Completeness.
Freeman, New York (1979)

27. Griggs, J.R., Kleitman, D., Shastri, A.: Spanning trees with many leaves in cubic graphs. J. Graph
Theory 13, 669–695 (1989). doi:10.1002/jgt.3190130604

28. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1),
31–45 (2007). doi:10.1145/1233481.1233493

29. Gutin, G., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameterized above and below
tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011). doi:10.1007/s00224-010-9262-y

30. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited: upper and lower bounds for a
refined parameter. In: Proc. 28th STACS, pp. 177–188 (2011). doi:10.4230/LIPIcs.STACS.2011.177

31. Jansen, B.M.P., Kratsch, S.: On polynomial kernels for structural parameterizations of odd cycle
transversal. In: Proc. 6th IPEC (2012) (To appear)

32. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. J. Comput. Syst. Sci.
74(3), 335–349 (2008). doi:10.1016/j.jcss.2007.06.019

33. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In: Proc.
12th SWAT, pp. 81–92 (2010). doi:10.1007/978-3-642-13731-0_9

34. Mishra, S., Raman, V., Saurabh, S., Sikdar, S., Subramanian, C.: The complexity of König sub-
graph problems and above-guarantee vertex cover. Algorithmica 61(4), 857–881 (2011). doi:10.1007/
s00453-010-9412-2

35. Nemhauser, G., Trotter, L.: Vertex packings: structural properties and algorithms. Math. Program. 8,
232–248 (1975). doi:10.1007/BF01580444

36. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
37. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc.

27th STACS, pp. 17–32 (2010). doi:10.4230/LIPIcs.STACS.2010.2495
38. Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for weighted vertex cover.

J. Algorithms 47(2), 63–77 (2003). doi:10.1016/S0196-6774(03)00005-1
39. Raman, V., Ramanujan, M.S., Saurabh, S.: Paths, flowers and vertex cover. In: Proc. 19th ESA, pp.

382–393 (2011). doi:10.1007/978-3-642-23719-5_33
40. Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8),

435–450 (2009). doi:10.1016/j.jcss.2009.04.002
41. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin (2003)
42. Soleimanfallah, A., Yeo, A.: A kernel of order 2k − c for vertex cover. Discrete Math. 311(10–11),

892–895 (2011). doi:10.1016/j.disc.2011.02.014
43. Uhlmann, J., Weller, M.: Two-layer planarization parameterized by feedback edge set. In: Proc. 7th

TAMC, pp. 431–442 (2010). doi:10.1007/978-3-642-13562-0_39
44. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci.

26, 287–300 (1983). doi:10.1016/0304-3975(83)90020-8
45. Zito, J.: The structure and maximum number of maximum independent sets in trees. J. Graph Theory

15(2), 207–221 (1991). doi:10.1007/s00224-012-9393-4

http://dx.doi.org/10.1002/jgt.3190130604
http://dx.doi.org/10.1145/1233481.1233493
http://dx.doi.org/10.1007/s00224-010-9262-y
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.177
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1007/978-3-642-13731-0_9
http://dx.doi.org/10.1007/s00453-010-9412-2
http://dx.doi.org/10.1007/s00453-010-9412-2
http://dx.doi.org/10.1007/BF01580444
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2495
http://dx.doi.org/10.1016/S0196-6774(03)00005-1
http://dx.doi.org/10.1007/978-3-642-23719-5_33
http://dx.doi.org/10.1016/j.jcss.2009.04.002
http://dx.doi.org/10.1016/j.disc.2011.02.014
http://dx.doi.org/10.1007/978-3-642-13562-0_39
http://dx.doi.org/10.1016/0304-3975(83)90020-8
http://dx.doi.org/10.1007/s00224-012-9393-4

	Vertex Cover Kernelization Revisited
	Abstract
	Introduction
	Our Results
	Upper Bounds
	Lower Bounds
	Related Work
	Organization

	Preliminaries
	Cubic Kernel for FVS-Vertex Cover
	Reduction Rules for Clean Instances
	Construction of a MIS
	Using the Subgraph to Prove the Claim

	Structure of Reduced Instances
	Packing Conflict Structures
	Initialization
	Augmentation

	The Kernelization Algorithm

	No Polynomial Kernel for VC-Weighted Vertex Cover
	Conclusion
	Weighted Problems
	Other Parameterizations

	Acknowledgements
	References

