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1 Introduction

Rough horizon ideas [1, 2] may eventually lead us to fill in some of the gaps and potentially

bring more radical changes in our understanding of black hole physics. It was proposed

in [2] that not all of the postulates of the black hole complementarity [3] may be mutually

consistent. The arguments that oppose (e.g., [4–10]) or support (e.g., [11–14]) this so-called

Firewall have mostly been indirect. See, e.g., [15–17] for other related discussions as well

as [18–20] for the works that more directly address Firewall by using specific models. We

believe that it would have been possible to address Firewall much more directly if it had

been known how to quantize gravity in a renormalizable way. Thus motivated by better

understanding of Firewall, we have revisited quantization of 4D Einstein gravity in [21, 22].

Quantization of 4D gravity has a long history ([24–33] and refs therein). Past ap-

proaches can be grouped into two categories: “canonical” and “covariant”. The canonical

approach splits the spacetime into time and space, and historically Dirac’s method was

used. The covariant approach treats the time and space on an equal footing, thus rela-

tively more covariant compared with the canonical approach, but does consider the theory

around a fixed background. The present approach has elements from both the canoni-

cal and covariant approaches: it uses 3+1 splitting of the spacetime and starts with the

– 1 –



J
H
E
P
0
4
(
2
0
1
5
)
0
5
3

ADM Hamiltonian quantization. However, instead of remaining entirely in the Hamilto-

nian quantization followed by the Wheeler-DeWitt equation, the present method employs

the Lagrangian method.

Six metric components are kept in the conventional covariant attempts of quantizing

gravity [34–38] wherein four out of ten components are gauge-fixed by the bulk diffeomor-

phism. The advantage of keeping six components, four of which are unphysical, lies in

maintenance of the 4D covariance. It has recently been proposed in [21, 22] that all of

the eight unphysical components can explicitly be removed in the ADM formulation by

exploiting the non-dynamical nature of the lapse function and shift vector. Gauge-fixing

of these non-dynamical fields introduces constraints; 4D Einstein gravity reduces to 3D as

a result of solving these constraints, and thereby a possibility for renormalizability of 4D

Einstein gravity opens.

The proposal was based on the observation that there exists an elaborate gauge-fixing

procedure that induces an effective reduction of the 4D Einstein-Hilbert action to the

3D Einstein-Hilbert action of a hypersurface. Unlike the constraints in the conventional

Hamiltonian quantization, the shift vector and lapse function constraints admit an explicit

solution in the Lagrangian formulation, an outcome that was crucial for the reduction that

opens up the possibility of the renormalizability. The goal of the present work is to give

a more detailed and refined account of [21], and to set the stage for an explicit two-loop

renormalization procedure in the 3D description.

There seem to be several reasons why explicit removal of all of the unphysical degrees

of freedom was not sought in the context of quantizing general relativity in the past even

though such removal was considered in other contexts such as the radiation gauge used

in the linearized gravity [39, 40]. Firstly, it was the success of renormalization of gauge

theories in covariant gauges. Unlike gravity, gauge theories were shown to be renormalizable

even in the presence of the unphysical fields running in the loops: the advantages offered

by covariance outweighed the “inefficiency” of keeping the non-dynamical fields. Even

without the success of the gauge theories, the covariance would have been viewed as a

device that helped one to recognize possible forms of the counterterms. Secondly, emphasis

was somehow placed on the Hamiltonian formalism, while little attention was paid, as far as

we are aware, to the implications of the Hamiltonian result for the Lagrangian formalism.

Once incorporated into the Lagrangian setup, the result of the Hamiltonian analysis reveals,

as we will review, that the physical degrees of freedom of the system are reduced to those

of a hypersurface [21].

The search for the true degrees of freedom for gravity has a long history (see, e.g., [41–

45]). The fact that the true degrees of freedom are those of a 3D hypersurface appeared

in [41, 42]. Reduction of degrees of freedom to lower dimensions also appeared later in the

holography proposed in the black hole entropy context and more recently in AdS/CFT. A

more mathematical search has also been conducted, e.g., in [46–48].

The Quantization carried out in [21] was in the Lagrangian operator framework with

inputs from the Dirac’s Hamiltonian method. In the present work, we discuss passing to

the path integral description after reviewing and refining the analysis in [21]. We classi-

cally identify all the physical degrees of freedom, after which the canonical commutations
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relations can be imposed to quantize the system. The operator formalism, being on-shell,

has certain advantages over the path integral approach.1

Although it might be necessary to restrict the configuration space to globally hyperbolic

spacetimes in order to have the reduction, such restriction must be only mild in nature,

given that our goal at hand is perturbative analysis. This is because small fluctuations

around a given globally hyperbolic spacetime should all be globally hyperbolic since they

must have the same topology.

The second half of this work is devoted to setting a stage for an explicit two-loop per-

turbative analysis in the three-dimensional description. Our 3D theory is not the genuine

3D gravity in that it inherits two physical degrees of freedom from the 4D theory: we

are just using a “3D window” to describe the 4D physics. Thus a legitimate perturba-

tion theory can be set. The counterterms can be computed by using the background field

method [49, 50].

One-loop renormalizability was established in [34, 37] where the counterterms were

obtained through the background field method. The metric was shifted according to

gµν = ĝµν + gBµν where gBµν is the background (or external) field. Once ĝµν was integrated

out, a covariant expression resulted as it should. Although this procedure may be suffi-

cient to establish the one-loop renormalizability, it is rather formal in that one would not

precisely follow this procedure when one considers physics around a specific background.

One would explicitly expand the action around a vacuum of interest (e.g., a flat space-

time), and consider perturbation around it. Although one faces the issue of background

(in)dependence of renormalization in this approach, it should be a good starting point. As

a matter of fact, the perturbative analysis around a flat background was carried out in [51]

long ago. We first review and extend the work of [51]. We also address issues that need

to be understood to relate [51] to [34, 37]. This is the aforementioned issue of whether

renormalizability depends on the choice of the background solution, and seems related to

the question of what gauge invariant physical degrees of freedom are.

The rest of the paper is organized as follows. In the next section, we present a more de-

tailed account of the holographic reduction observed in [21]. We start with the Lagrangian

and employ the Dirac’s Hamiltonian method. The well-known non-dynamism of the lapse

and shift leads then to the conclusion that only 3D residual symmetry is required for the

removal of the shift vector. In other words, the residual symmetry after the bulk gauge-

fixing (we use de Donder gauge) is sufficient to remove the shift vector. The removal of the

shift vector renders the system three-dimensional. After review of the operator approach,

we discuss the transition to the path integral. In section 3, we take the 3D description

to prepare to carry out the two-loop renormalization. First, we check the result of [51]

obtained in the 4D context. Our results do not exactly match those of [51]. In our view,

an error in [51] was made in applying a Ward-Takahashi type identity. We discuss what

we believe to be the correct Ward-Takahashi identity. With our tools checked, we tackle

the background (in)dependence of renormalizability in the current context. Next we turn

1By path integral, we mean the path integral that is referred to as the “independent path-integral

approach” below, i.e., the path integral approach not guided by the canonical operator analysis in precise

identification of the physical degrees of freedom.
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to 3D. Unlike the genuine 3D gravity, the reduced system carries two physical degrees of

freedom inherited from 4D; therefore it is legitimate to introduce the graviton propagator.

We conclude with discussions and future directions.

2 Constraints and quantization

In this section, we review the quantization of 4D Einstein gravity proposed in [21] with a

more detailed and refined account. The operator method2 — which is useful for carefully

identifying the physical fields relevant for path integral quantization — will be considered

first and a transition to the path integral will be discussed. The approach of [21] contains

elements from both the canonical and covariant methods — for example, it employs the

ADM formalism on one hand but at the same time considers a fixed background and

perturbative analysis around it. One of the salient features is solvability of the constraints

that arise from the gauge-fixing of the lapse and shift in the Lagrangian.

The ADM formalism [25] employs the 3+1 splitting

xµ ≡ (ym, x3) (2.1)

The separated-out coordinate x3 will play the role of “time” until the theory is reduced

to 3D; afterwards the genuine time coordinate t will be considered.3 The “Hamiltonian

of x3 evolution” is obtained by applying the usual Legendre transformation to the ADM

Lagrangian. As well known, the Hamiltonian equations of motion reveal that the lapse and

shift are non-dynamical. One can go from the classical theory to the quantum theory by

imposing the canonical commutation relations. In particular, the equations of motion of

the shift and lapse imply they are “time”- (i.e., x3-) independent.

The key step for the quantization is an elaborate gauge-fixing followed by solving of

the resulting constraints: we will review that it is possible to gauge away the shift vector

by exploiting the 3D symmetry left over after the bulk gauge-fixing by the 4D de Donder

gauge.4 Although the relevance of a globally hyperbolic spacetime was discussed only in

the more mathematical context of [22], we will observe below how the potential relevance

of a globally hyperbolic spacetime may arise in the context of [21] as well.

2.1 Dirac’s method and Lagrangian quantization

Consider the 4D Einstein-Hilbert action

S =

∫
d4x
√
−g R (2.2)

Let us separate the x3 out from the rest:

xµ ≡ (ym, x3) (2.3)

2See, e.g., the recent book by K. Huang [52].
3The unconventional splitting of “time” and space appeared, e.g., in [56] in the supergravity context. It

also appeared more recently in [57] in the fluid/gravity context; we thank J. de Boer for pointing out the

use in this context.
4This is one of the places where the analysis will be refined as compared to [21].
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where µ = 0, . . . , 3 and m = 0, 1, 2. (See appendix A for the conventions.) By parameter-

izing the 4D metric according to

gµν =

(
γmn Nm

Nn n2 + γmnNmNn

)
, gµν =

(
γmn + 1

n2N
mNn − 1

n2N
m

− 1
n2N

n 1
n2

)
(2.4)

the 3+1 splitting yields (the boundary terms will not be kept track of) [25, 53–56]

S =

∫
d4xn

√
−γ
(
R(3) +K2 −KmnK

mn
)

(2.5)

with

Kmn =
1

2n
(L∂x3

γmn −∇mNn −∇nNm) , K = γmnKmn (2.6)

where L∂x3
denotes the Lie derivative along the vector field ∂x3 and ∇m is the 3D covariant

derivative constructed out of γmn; n and Nm denote the lapse function and shift vector

respectively. The “time” derivative does not act on Nm or n in their field equations,

which read

∇m(Kmn − γmnK) = 0 (2.7)

R(3) −K2 +KmnK
mn = 0 (2.8)

We should take these as the constraints at the operator level. We come back to this

Lagrangian system after going through the Hamiltonian formulation. One can go to the

Hamiltonian formulation by the usual Legendre transformation. The bulk part of the

“Hamiltonian” of x3-evolution is

H =

∫
d3y

[
nh−1/2

(
−πmnπmn+

1

2
π2
)
− nh1/2R(3) − 2Nmh

1/2∇n(h−1/2πmn)

]
(2.9)

where the canonical momentum is given by

πmn =
√
h(Kmn −Khmn) (2.10)

For any field u including n,Nm, γmn, the Hamiltonian equation of motion can be written as

L∂x3
u = [u,H]P (2.11)

where [· · · ]P denotes the Poisson bracket. For u = n,Nm, the right-hand side vanishes

without using any other relations such as the other constraints:

L∂x3
n = 0 , L∂x3

Nm = 0 (2.12)

These equations tell that n,Nm are non-dynamical. The fact that n,Nm are x3-independent

can be explicitly used.

We now show that the dynamics associated with the x3 evolution of the hypersurface is

not genuine in the perturbative analysis around a vacuum compatible with the gauge-fixing

that will be discussed shortly. As we will see, the shift vector can be gauge-fixed away by

using the 3D residual symmetry. Nevertheless, there should be non-trivial dynamics within
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the hypersurface itself. Let us turn back to the Lagrangian formulation. Given the x3-

independence of n,Nm, the action takes

S =

∫
d4xn(y)

√
−γ
(
R(3) +K2 −KmnK

mn
)

; (2.13)

the constraints (2.7) and (2.8) take the same forms

∇m(Kmn − γmnK) = 0 (2.14)

R(3) −K2 +KmnK
mn = 0 (2.15)

but now with

Kmn =
1

2n(y)

(
L∂x3

γmn −∇mNn(y)−∇nNm(y)
)
, K = γmnKmn . (2.16)

In other words, we have explicitly used the fact that n = n(y), Nm = Nm(y); γmn still has

the full xµ-dependence. The bulk de Donder gauge gρσΓµρσ = 0 [39] reads, in the ADM

fields,

(∂x3 −Nm∂m)n = n2K

(∂x3 −Nn∂n)Nm = n2(γmn∂n lnn− γpqΓmpq) (2.17)

This way of imposing the de Donder gauge differs in two respects from the usual way

adopted in the perturbative analyses in the literature. Firstly, the linear form instead

of the full form is used in perturbative analyses. Secondly, it is actually not the linear

form itself but the square of the linear form so that the quadratic part of the action

can be inverted to yield the propagator. We will impose the de Donder gauge as given

in (2.17), and the usual form of de Donder gauge will be used in the next section where the

perturbative analysis will be carried out. An analogous discussion with the axial gauge in

a gauge theory can be found in [50]. The gauge-fixing (2.17) leaves residual symmetry that

will play an important role. Let us consider the following to see the form of the residual

symmetry. The non-covariant term in the 4D transformation of gρσΓµρσ is the second term

in the right-hand side of

gρ
′σ′

Γµ
′

ρ′σ′ =
∂xµ

′

∂xµ
(
gρσΓµρσ

)
− gρσ ∂2xµ

′

∂xρ∂xσ
(2.18)

Let us set the non-covariant piece to zero:

gρσ
∂2xµ

′

∂xρ∂xσ
= 0 (2.19)

For the case of an infinitesimal transformation xµ
′

= xµ + εµ, this becomes

gρσ
∂2εµ

∂xρ∂xσ
= 0 (2.20)
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With this satisfied, the quantity gρσΓµρσ transforms as a contravariant vector. In other

words, the transformation parameter that satisfies this condition will generate the resid-

ual symmetry. According to theorem 10.1.2 of [40]5 (see also theorem 10.1.1), the equa-

tion (2.20) admits a well-defined initial value problem (thus a solution) if the metric is that

of a globally hyperbolic spacetime. As a matter of fact, all that is needed is for (2.20) to

admit a solution in order for the residual symmetry to exist: it might not be necessary to

restrict the metric to that of a globally hyperbolic spacetime. However, at least as far as

the perturbative analysis is concerned, a globally hyperbolic spacetime should not impose

a serious restriction as stated before. Since Nm is three-dimensional, it should be possible,

by choosing εm (i.e., εµ with ε3 = 0) appropriately, to set

N ′m = Nm +∇3ε
R
m = 0 (2.21)

where the superscript R stands for “residual”. This will set the initial conditions for εRm.

Let us recapitulate: by using the residual 3D symmetry discussed above, one can gauge

away the shift vector:

Nm = 0 (2.22)

As shown in [21] and [22], the constraint equation (2.14) implies

L∂ymn = 0 (2.23)

This, with the “time”-independence of n, allows gauge-fixing n = const; for convenience

we fix n = 1, a valid choice for a flat background, the case of the main focus in this work.

With these fixings, the two equations of the de Donder gauge in (2.17) simplify to

K = 0 (2.24)

and

γpqΓmpq = 0 (2.25)

Note that (2.25) takes the form of the 3D de Donder gauge. This is only apparently true

at this point: the arguments of γpq and Γmpq are still four-dimensional. However, this status

will change.

Although the apparent 3D form of (2.25) may appear to be just a curiosity, it is

more significant than this, as can bee seen from the following analysis. Let us take a

γmn-variation of (2.13) with the constraint (2.15) taken into account:

δS = δ

∫
d4x
√
−γ
(
R(3) +K2 −KmnK

mn
)

=

∫
d4x

(
δ
√
−γ
)(
R(3) +K2 −KmnK

mn
)

+
(
δR(3) + δ[K2 −KmnK

mn]
)

(2.26)

Upon substituting K2 −KmnK
mn = R(3) and δ[K2 −KmnK

mn] = δR(3), one gets

δS = 2δ

∫
d4x
√
−γR(3) (2.27)

5The function A in theorem 10.1.2 will need to be chosen as a metric dependent expression.
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Therefore, the action takes the three-dimensional form other than the measure and the

implicit x3-dependence of R(3). Let us omit the factor 2:

S =

∫
d4x
√
−γR(3) (2.28)

Its field equation is

R(3)
mn = 0 , R(3) = 0 (2.29)

On account of (2.29) and (2.24), the constraint (2.15) becomes

KmnK
mn = 0 (2.30)

This implies, up to the Wick rotation in the time t direction,

Kmn = 0 (2.31)

which, in turn, implies reduction of the metric at the operator (and classical) level,

γmn(xµ)⇒ γmn(yp) (2.32)

The upshot of the operator analysis so far is that, for the perturbative analysis around a

vacuum on which (2.23) can be imposed (Minkowski spacetime is a representative example),

the original system reduces to

S =

∫
d4x
√
−γR(3) (2.33)

with the reduced gauge-fixing condition

γpqΓmpq = 0 (2.34)

As shown in [21] and presented for review in the next section, the action effectively further

reduces to

S =

∫
d3x
√
−γR(3) (2.35)

with renormalization of the Newton’s constant that has been suppressed. The analysis so

far implies that the path integral corresponding to the Lagrangian operator analysis takes

〈Vac, out|Vac, in〉 =

∫
dγrs e

i
∫
d4xR(3)

det(F) δ(f)δ
[
γpqΓmpq

]
(2.36)

where the det(F) is the Faddeev-Popov determinant associated with the gauge-fixing

δ
[
γpqΓmpq

]
. (f will be chosen as the traceless condition of the 3D metric below; this choice

does not introduce a non-trivial determinant.) This completes the discussion of the La-

grangian operator approach and the corresponding path integral description. In the next

subsection, we side-step to examine a more path integral-centered approach and reach the

same conclusion.
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2.2 “Independent” path integral approach

In the previous subsection, we started with the canonical operator analysis, and, thus

guided, could write the path integral down in (2.36). We will use (2.36) in the next section

to carry out an explicit renormalization procedure. In the present subsection, we sidestep

to explore a more path integral-centered attempt to quantize gravity.

If is often stated in the general gauge theory context in literature that one may take

the path integral, instead of the canonical analysis, as the starting point (hence the title

of this subsection). We adopt this viewpoint in this subsection and push quantization as

far as possible. As we will see, this exercise leads to a result not fully consistent with

the path integral approach guided by the canonical operator analysis, namely (2.36). We

attribute this discrepancy to the fact that the unphysical shift vector is not gauge-fixed in

this “independent” path integral approach.

Let us first examine how the gauge symmetry is realized in the ADM formulation. Early

work on gauge symmetry in the ADM Hamiltonian formalism can be found in [58]. The

symmetry generated by the shift vector constraint, the so-called spatial diffeomorphism,

takes a simple form; it is the symmetry generated by the lapse function constraint that

has complications. The present analysis should shed light on the origin of the complication

of the conventional Hamiltonian analysis, and will be used in the subsequent discussion of

the path integral description.

The action of the ADM formulation has manifest 3D gauge invariance with the 4D

invariance not as manifest. In terms of the ADM variable the 4D transformation is a non-

linear field-dependent transformation since the lapse function is given by a non-linear field

redefinition of the usual metric components. The usual infinitesimal coordinate transfor-

mation, δgµν = ∇µεν +∇νεµ, can be translated into the rules in the ADM formalism. The

shift vector transformation is the same as g3m; the lapse function transformation can be

determined from

δg33 = δ(n2 + γmnNmNn) = 2nδn+ 2Nmγ
mnδNn +Nm(δγmn)Nn (2.37)

Solving this for δn, one gets

δn =
δg33 − 2Nmγ

mnδNn −Nm(δγmn)Nn

2n
(2.38)

The complexity seen in [58] should be related to the fact that δn takes a rather complicated

form.6 Let us turn to the “independent” path integral. It is rather obvious from the

beginning that staying entirely within the path integral formulation (i.e., without the close

guidance from the canonical operator formalism) should be impossible since, for one thing,

6Although δn has a highly non-linear and complicated metric dependence, it becomes simple once the

gauge conditions n = 1, Nm = 0 are imposed:

δn|n=1,Np=0 =
1

2
δg33 = ∇3ε3|n=1,Np=0 = ∂3ε3 (2.39)

The transformation parameter εµ with the ε3 = 0 will therefore preserve n, and this is consistent with our

finding above (2.21).
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the physical states must be determined through the operator description. One may still

try to construct as completely as possible the path integral expression that would be the

counterpart of (2.36), and see where this approach leads. As we will show now, this

approach points towards the same direction as the operator approach to a certain extent.

However, the resulting expression does not completely coincide with (2.36), and the reason

will be found in gauge-unfixing of the shift vector.

One’s first guess for the path integral expression would be7

〈Vac, out|Vac, in〉 =

∫
dndNl1dγl2l3dπ

l4l5 ei
∫
(γ̇rsπrs−H) det(D)

δ
[
(∂y3−Np∂p)n−n2K

]
δ
[
(∂y3−N q∂q)N

m−n2(γmq∂q lnn−γpqΓmpq)
]

(2.40)

where H is the Hamiltonian density, H =
∫
d3yH; the arguments of the delta functions

are the de Donder gauge conditions (i.e., γρσΓµρσ = 0) in the ADM variables, and det(D)

denotes the determinant factor that corresponds to this gauge.

However, there are several undesirable features in the expression above. For example,

there is an ambiguity with regards to whether one should use Kmn (or equivalently ∂x3γmn)

or πmn inside the delta functions. To get the usual Lagrangian after the momentum

integration, one should use Kmn (as indicated in (2.40)) and treat the momenta πmn
independently of the K-fields when performing the πmn integration. More seriously, the

path integral form above leads to a clash between the lapse/shift constraint and the de

Donder gauge conditions: the constraints ∇m(Kmn − γmnK) = 0, R(3) −K2 + KmnK
mn

have not been imposed; we would like them to be automatically imposed by the path

integral over n,Nm. But then, one encounters a problem since n and Nm have appeared

inside the delta function.8

Because of these factors, one is led to consider a gauge condition that does not involve

Kmn or n,Nm. As far as we can see, this measure (i.e., employing a gauge condition not

involving Kmn or n,Nm) should be the only reasonable thing to correctly enforce the lapse

and shift constraints. Motivated in part by the operator analysis as well, let us consider

〈Vac, out|Vac, in〉 =

∫
dndNl1dγl2l3dπ

l4l5 ei
∫
(γ̇mnπmn−H) det(F) δ(f)δ

[
γpqΓmpq

]
where the det(F) is the Faddeev-Popov determinant factor associated with the “3D” de

Donder gauge δ
[
γpqΓmpq

]
. (f will be chosen as before in the previous subsection.) The path

integral over the momenta will force the field equation that relates the canonical fields

and their conjugate momenta; thus we may freely insert the delta function with this field

7We will comment shortly on the relationship between this path integral and the more covariant form∫
dgµν(· · · )ei

∫
d4xR where (· · · ) denotes the gauge-fixing related terms.

8There is another fact that should be taken into account. The coefficient of π2
mn in (2.9) is field depen-

dent; therefore, the πmn integration will produce a determinant factor. Such a factor can be removed by

introducing an appropriate determinant factor in the path integral measure. This can also be viewed as

part of the renormalization procedure [59–61].
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equation as the argument:

〈Vac, out|Vac, in〉

=

∫
dndNldγrsdπ

mn ei
∫
(γ̇mnπmn−H) det(F)δ

[
πmn−

√
h(Kmn−Khmn)

]
δ(f)δ

[
γpqΓmpq

]
Let us carry out the n,Nm integration; the path integral takes

〈Vac, out|Vac, in〉

=

∫
dγrsdπ

mn ei
∫
(γ̇mnπmn) det(F)δ

[
πmn−

√
h(Kmn−Khmn)

]
δ(f)δ

[
γpqΓmpq

]
=

∫
dγrs e

i
∫
(γ̇mn[

√
h(Kmn−Khmn)]) det(F) δ(f)δ

[
γpqΓmpq

]
(2.41)

The lapse and shift constraints are to be imposed separately:

∇m(Kmn − γmnK) = 0 (2.42)

R(3) −K2 +KmnK
mn = 0 (2.43)

A direct integration over n,Nm would put these in the path integral in the form of delta

functions. Separate consideration of them, i.e., outside of the path integral, is reminiscent

of old covariant quantization of string theory. With the steps above, the ei
∫
d4x(γ̇mnπmn)

factor becomes ei
∫
d4xR(3)

, bringing the path integral close to the operator formulation:

〈Vac, out|Vac, in〉 =

∫
dγrs e

i
∫
d4xR(3)

det(F) δ(f)δ
[
γpqΓmpq

]
(2.44)

Let us turn to the issue stated in footnote 7. As often stated in the gauge theory context,

one may take, as the starting point, the more covariant form of the path integral in terms

of the usual metric component measure∫
dgµν (· · · )ei

∫
d4x R (2.45)

where (· · · ) represents the gauge-fixing conditions and corresponding Faddeev-Popov de-

terminants: the de Donder gauge and n = 1, Nm = 0 with the corresponding constraints

(with everything expressed in terms of gµν). The Jacobian for the change of variables from

gµν to (n,Nm, γmn) is 2n:

dgµν = dndNmdγpq (2n) (2.46)

The determinant factor from the change of the variables becomes 1 (2 more precisely)

for the n = 1 gauge-fixing. Also, the Faddeev-Popov determinant factor becomes field-

independent, thus immaterial. This way, it seems possible to make a connection between

the current approach and the more covariant approach. In particular, the measure in (2.36)

can be viewed as a gauge-fixed version of the 4D diffeomorphism invariant measure.
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(a) (b)

Figure 1. (a) 4D scattering. (b) Projection onto 3D hypersurface.

3 Effectively 3D perturbative analysis

By the canonical operator quantization in the previous subsections, we have precisely identi-

fied the physical fields and deduced the path integral expression. A legitimate perturbative

analysis can be set up with (2.36), and for the gauge-fixing, the usual linearized version

of (2.34) will be imposed. The renormalization procedure involves much tedious algebra

that is best handled by computer codes. We employ a Mathematica package xAct‘xTensor’.

Since the number of terms is quite large, we have decide to check our strategy and apparatus

against the known results first; namely, the 4D analysis in [51] in which one-loop divergence

of two-point amplitude was computed. As we will show below our result does not fully

agree with [51]. We believe that the reason for the discrepancy is their use of an erroneous

Ward-Takahashi type identity, while our result satisfies the correct Ward-Takahashi type

identity.

The counterterms were not computed in [51]; we go further and compute the explicit

counterterms by applying the background field method to the action expanded around a

flat background. This procedure is different from that of [34] in that we do expand the

action around a specific background (i.e., a flat background in the present case). Although

the type of analysis carried out in [34] may be sufficient to establish renormalizability,9

one will have to fix a background in order to study physical processes such as scattering of

gravitons in a given background.

The difference in the approaches of [34] and the present paper will pose a subtle

question; let us first contrast the two approaches. We illustrate the issue by taking the

scalar λζ3 theory,

L = −1

2
∂µζ∂

µζ − λ

3!
ζ3 (3.1)

Consider the trivial vacuum ζ = 0 and the perturbation theory around it. One can compute

the counterterms by the background field method in which the field is shifted

ζ → ζ + ζB (3.2)

Once one integrates out ζ in such a way that ζB becomes external lines, one can obtain

the counterterms for the one-loop two-point diagram. One may also consider a nonzero

9We will come back to this point later.
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Figure 2. Background method for scalar theory.

constant vacuum ζ = ζ0 and expand the theory (3.1) around this vacuum.

L = −1

2
∂µζ∂

µζ − λ

3!
(ζ + ζ0)

3 (3.3)

This theory will have one-loop divergence, and one can compute the counterterms again

by employing the background field method; shift the action (3.3) around ζ = ζB

L = −1

2
∂µ(ζ + ζB)∂µ(ζ + ζB)− λ

3!
(ζ + ζB + ζ0)

3 (3.4)

and integrate out the ζ field in such a way that the background field becomes external

lines. Both with (3.1) and (3.3), it will be possible to absorb the counterterms into the

existing terms in the shifted actions, and the background independence of renormalization

is demonstrated.10 We also have explicitly checked this for the diagram figure 3(a) below

in which the lines now represent the gauge fields.

The background actions in [34–37] were obtained by shifting the metric gµν = ĝµν+gBµν
where gBµν is the background (or external) field and integrating out ĝµν . The resulting

background action is covariant.11 The perturbation of the scalar theory around ζ = 0

above is analogous to this. However, there is a big difference between non-gravity theories

and gravity theories. For a gravity theory, perturbation around gµν = 0 is not defined.

In this work, we consider shifting the metric g̃µν = φµν + g̃µν0
12 where g̃µν ≡

√
−ggµν

and g̃0µν (or more precisely, g0µν) is a solution of the Einstein equation (such as a flat

metric) to obtain the expanded action as in [51]. Then we shift φµν itself according to

φµν → gµνB + φµν where gBµν is the background (or external) field with the resulting action

and obtain the doubly expanded action. We integrate φµν out and obtain the background

effective action. The situation is analogous to the perturbation around ζ = ζ0 above, but

unlike the scalar theory, the counterterms cannot be reabsorbed into the existing terms in

the action or field redefinition of the metric. The resulting action is not covariant although

it is the correct counter term action. In other words, we employ the background field

method according to chapter 16 of [50] in order to conveniently produce the counterterms

10The author thanks M. Rocek for the discussions on related issues.
11The definition of 1PI action through the usual background method gives the effective action when the

field is expanded around zero vev. In other words, if it is possible to do perturbation theory around gµν = 0,

the counterterms obtained in [34] would be appropriate.
12The use of g̃µν instead of gµν is irrelevant for the issue at hand.
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for the action expanded around a flat background. Since the action is expanded around a

specific background first, the counterterms are not expected to have covariant forms, and

they indeed turn out to be non-covariant. Since the one-loop divergence and counterterms

do not vanish, this brings us back to the question of one-loop renormalizability of the 4D

action, an issue that we take up with other related ones in Discussions. We put these

subtle issues aside for the moment and carry out the computations of divergences and their

counterterms in the next subsection.

3.1 Review of 4D case

In terms of g̃αβ ≡
√
−ggαβ, the Einstein-Hilbert action reads

S = −
∫
dDx

1

4

(
g̃κ1κ3 g̃κ2κ4 g̃

αβ∂αg̃
κ1κ2∂β g̃

κ3κ4 − 2g̃κ1κ2∂αg̃
κ1β∂β g̃

κ2α

− 1

D − 2
g̃αβ g̃κ1κ2∂αg̃

κ1κ2 g̃κ3κ4∂β g̃
κ3κ4

)
(3.5)

where D denotes the spacetime dimensions and will be set D = 4 in this subsection. The

advantage of using g̃µν over gµν is that the number of cubic couplings is substantially

reduced. Let us numerically rescale this action by a factor 2 so that with

g̃µν ≡ ηµν + φµν (3.6)

the quadratic and cubic order actions are given by

L(2) ≡
∫
−1

2
∂αφµν∂

αφµν + φκφκ +
1

2(D − 2)
∂µφ∂

µφ

L(3) ≡
∫
−1

2
φαβ∂αφ

ρσ∂βφρσ + φρσ∂
αφρκ∂αφ

σ
κ − φρσ∂αφρβ∂βφσα

− 1

2(D − 2)
(−φαβ∂αφ∂βφ+ 2φρσ∂αφ∂

αφρσ) (3.7)

where we have introduced short-hand notations

φ ≡ ηµνφµν , φµ ≡ ∂κφκµ (3.8)

The gauge-fixing term is

Lg.c. = −φµφµ (3.9)

and with this the quadratic piece becomes

L(2) + Lg.c. = −1

2
∂αφµν∂

αφµν +
1

2(D − 2)
∂µφ∂

µφ (3.10)

The 4D propagator is given by

〈φµν(x1)φρσ(x2)〉 = Pµνρσ

∫
d4k

(2π)4
eik·(x1−x2)

ik2
(3.11)

where

Pµνρσ ≡
1

2
(ηµρηνσ + ηµσηνρ − ηµνηρσ) (3.12)
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Figure 3. (a) Graviton loop. (b) Ghost loop.

One can show (from (4.6) of [62]) that the quadratic and cubic ghost terms are given by

− ∂µC̄ν Cβ∂β g̃µν + ∂νC̄µ∂
νCγ g̃

µγ + ∂νC̄µ∂γC
µg̃νγ − ∂µC̄ν∂βCβ g̃µν (3.13)

which, upon substituting g̃µν ≡ ηµν + φµν , yields

Lgh(2) + Lgh(3) ≡ C̄ρ∂σ∂σCρ − C̄ρ(∂κ∂σφρκ)Cσ + C̄ρ(∂κ1φ
κ1κ2)∂κ2Cρ

− C̄ρ(∂κ1φρκ1)∂κ2C
κ2 + C̄ρφκ1κ2∂κ1∂κ2Cρ (3.14)

Let us partially integrate and obtain the following form more convenient for Mathematica

manipulations:

Lgh(3) ≡ −φρκ2∂κ1C̄ρ∂κ2Cκ1 − φκ1κ2∂κ1C̄ρ∂κ2Cρ + φρσ∂ρC̄σ∂κC
κ + ∂κφ

ρσ∂ρC̄σ C
κ (3.15)

The ghost propagator is given by

〈Cµ(x1)C̄ν(x2)〉 = ηµν

∫
d4k

(2π)4
1

ik2
eik·(x1−x2) (3.16)

For the 1-loop diagram figure 3, one should consider

〈φµν(x1)φρσ(x2)

(
− 1

2

)(∫
L(3)

)2
〉1-loop , (3.17)

a tedious computation. The computation can be best handled by a computer and we

employ the Mathematica package xAct‘xTensor’. The package can conveniently be used,

once the cubic coupling is written

L(3) ≡ φλ1λ2∂α1φλ3λ4∂β1φλ5λ6T
α1β1λ1λ2λ3λ4 (3.18)

where

Tα1β1λ1λ2λ3λ4 ≡ −1

2
ηλ1α1ηλ2β1ηλ3λ5ηλ4λ6 + ηλ1λ3ηλ2λ6ηα1β1ηλ4λ5

− ηλ1λ3ηλ2λ5ηα1λ6ηβ1λ4 +
1

4
ηλ1α1ηλ2β1ηλ3λ4ηλ5λ6 − 1

2
ηλ1λ5ηα1β1ηλ3λ4ηλ2λ6

Then (3.17) can be rewritten

−1

2

∫∫
〈φµν(x1)φρσ(x2)φλ1λ2∂α1φλ3λ4∂β1φλ5λ6φλ′

1λ
′
2
∂α′

1
φλ′

3λ
′
4
∂β′

1
φλ′

5λ
′
6
〉Tα1β1λ1λ2λ3λ4Tα

′
1β

′
1λ

′
1λ

′
2λ

′
3λ

′
4

After one computes

〈φµν(x1)φρσ(x2)(φλ1λ2∂α1φλ3λ4∂β1φλ5λ6)(φλ′1λ′2∂α′
1
φλ′3λ′4∂β′

1
φλ′5λ′6)〉1-loop (3.19)
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and goes to the momentum space, the multiplication by T ...T ... can effectively be carried

out by xAct‘xTensor’. The following result is obtained for the graviton sector:∫
d4x1
(2π)4

eip1·x1
∫

d4x2
(2π)4

eip2·x2〈φµν(x1)φρσ(x2)〉grav 1-loop

⇒ (2π)4δ(Σpi)
Γ(ε)

(4π)2

[
− 17

48
p1

4(ηµσηνρ + ηµρηνσ)− 7

16
p1

4ηµνηρσ

+
1

3
p1

2(p1
νp1

σηµρ + p1
νp1

ρηµσ + p1
µp1

qηνρ + p1
µp1

ρηνσ)

+
19

24
p1

2(p1
ρp1

σηµν + p1
µp1

νηρσ)− 11

6
p1
µp1

νp1
ρp1

σ

]
(3.20)

where ε ≡ 2−D/2 and ⇒ indicates

⇒: divergent part of the 1PI diagram (3.21)

Not all of the coefficients match those obtained in [51]. (The coefficient of p1
2p1

pp1
qηmn,

19
24 , for example, does not match.) We will come back to this point after discussing the

ghost sector in which a similar discrepancy is found. Our result for the ghost sector is∫
d4x1
(2π)4

eip1·x1
∫

d4x2
(2π)4

eip2·x2〈φµν(x1)φρσ(x2)〉ghost 1-loop

⇒ (2π)4δ(Σpi)
Γ(ε)

(4π)2

[
1

60
p1

4(ηµσηνρ + ηµρηνσ) +
59

240
p1

4ηµνηρσ

+
1

240
p1

2(p1
νp1

σηµρ + p1
νp1

ρηµσ + p1
µp1

σηνρ + p1
µp1

ρηνσ)

− 7

20
p1

2(p1
ρp1

σηµν + p1
µp1

νηρσ) +
7

15
p1
µp1

νp1
ρp1

σ

]
(3.22)

This result again is different from that of [51]. The coefficient of p1
4ηµνηρσ, 59

240 , for

example, is different from the corresponding result in [51]. We manually double-checked

the coefficient of p1
4ηµνηρσ by computing 〈φ11φ22〉 with the condition pµ=1

1 = 0 = pµ=2
1 ,

which substantially reduces the amount of algebra; the manual computation confirmed the

coefficient 59
240 . The sum of the graviton and ghost contributions is given by∫

d4x1
(2π)4

eip1·x1
∫

d4x2
(2π)4

eip2·x2〈φµν(x1)φρσ(x2)〉1-loop total

=̇(2π)4δ(Σpi)
Γ(ε)

(4π)2

[
− 27

80
p1

4(ηµσηνρ + ηµρηνσ)− 23

120
p1

4ηµνηρσ

+
27

80
p1

2(p1
νp1

σηµρ + p1
νp1

ρηµσ + p1
µp1

σηνρ + p1
µp1

ρηνσ)

+
53

120
p1

2(p1
ρp1

σηµν + p1
µp1

νηρσ)− 41

30
p1
µp1

νp1
ρp1

σ

]
(3.23)

The discrepancy observed above seems to be due to the application of an incorrect identity

in [51] wherein it was stated that the following expression is independent of Bν :

Z[jµν ] =

∫
dg̃ρσ∆[g̃αβ]δ(∂µg̃

µν −Bν)ei
∫
L+jκ1κ2 g̃

κ1κ2
(3.24)
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based on which a Ward-Takahashi type identity was written. The expression actually

does depend on the gauge-fixing term δ(∂µg̃
µν − Bν) (and thus on Bν) through a field-

independent factor [50]. For the correct identity, let us consider

Z[jµ] =

∫
dφρσ det(F)e−i

∫
φκφκei

∫
L(2)+L(3)+···+jν φν (3.25)

This is the path integral that we have been using other than the presence of φνjν . This path

integral depends on jν ; schematically the dependence goes as ∼ ej(··· )j . We have checked

that the graviton 3-point amplitude 〈φµφνφρ〉 at tree-level vanishes.13 (The correlator

〈φµφνφρ〉 should not vanish if the Ward-Takahashi type identity of [51] is correct.)

Above, we have computed the total one-loop divergence in the two-point amplitude.

Now we turn to the corresponding counterterms. We illustrate the computations involved

with a sample calculation in the ghost sector; the computation for the rest of the ghost

sector and graviton sector can be found in one of the appendices. The cubic terms that

involve the ghost fields are

LφCC ≡ Lgh(3) ≡ −φρκ2∂κ1C̄ρ∂κ2Cκ1 − φκ1κ2∂κ1C̄ρ∂κ2Cρ + φρσ∂ρC̄σ∂κC
κ + ∂κφ

ρσ∂ρC̄σ C
κ

(3.27)

Let us shift the field

φµν → φµν + ϕµν (3.28)

where ϕµν represents the background field. The relevant part of the shifted action is

LϕCC ≡ −ϕρκ2∂κ1C̄ρ∂κ2Cκ1−ϕκ1κ2∂κ1C̄ρ∂κ2Cρ+ϕρσ∂ρC̄σ∂κC
κ+∂κϕ

ρσ∂ρC̄σ C
κ (3.29)

The background action can be obtained by considering

− 1

2
〈
(∫

LϕCC
)2
〉1-loop (3.30)

and integrating out the ghost fields. For example, one of the terms in (3.30) is

− 1

2
〈
(∫

∂κϕ
ρσ∂ρC̄σ C

κ

)2
〉1-loop (3.31)

and leads to the following background action:

− Γ(ε)

(4π)2

∫
d4x

(
1

12
∂σ1∂σ2φ

ρ1σ1∂ρ1∂ρ2φ
ρ2σ2 +

1

24
∂σ1∂σ2φ

ρ1σ1∂κ∂κφ
σ2
ρ1

)
(3.32)

where we have switched ϕ back to φ. One can straightforwardly show that the divergent

part from (3.31) is cancelled exactly by the tree-level graph of the background action (3.32).

13There seems to be some kind of a non-renormalization theorem: the following two-point function at

one-loop vanishes:

〈φµ φν〉 = 0 (3.26)

(We checked that our result (3.23) satisfies the corresponding momentum space version of this: once the

expression in (3.23) is contracted with pν1p
σ
2 , the resulting expression vanishes.)
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The total one-loop counter term action can be found in (B.14):

∆L1-loop =
Γ(ε)

(4π)2

∫
d4x

[
41

60
∂α∂βφ

αβ ∂γ∂δφ
γδ +

27

80
∂κ∂κφαβ ∂

λ∂λφ
αβ

− 59

480
∂κ∂κφ∂

λ∂λφ+
13

30
∂κ∂κφ∂γ∂δφ

γδ − 27

40
∂κ∂κφαβ ∂

α∂γφβγ

]
(3.33)

where ε ≡ 2−D/2. One can easily check that the counterterms cannot be written in terms

of R and Rµν , given that in the leading order,

Rαβ =
1

2
∂2φαβ −

1

4
ηαβ∂

2φ− 1

2
∂α∂

γφβγ −
1

2
∂β∂

γφαγ

R2 =
1

4
∂2φ∂2φ+ ∂2φ∂µ∂νφ

µν + ∂α∂βφ
αβ∂γ∂κφ

γκ

RαβRαβ =
1

4
∂2φαβ∂

2φαβ− 1

2
∂2φαβ∂

α∂γφ
βγ+

1

2
∂2φ∂α∂βφ

αβ+
1

2
∂α∂βφ

αβ∂γ∂κφ
γκ (3.34)

3.2 3D analysis

Our 3D gravity (with two physical degrees of freedom) does not require counterterms at

one-loop because Gamma functions can be finite by formal identities in dimensional regu-

larization. However, counterterms are required at two-loop as we will see in the following

example.

As in 4D, we consider

g̃mn ≡
√
−ggmn ≡ ηmn + hmn (3.35)

In terms of hmn, the quadratic and cubic actions take

L(2)

3D ≡ −
1

2
∂ahmn∂

ahmn + hκhκ +
1

2
∂mh∂

mh (3.36)

L(3)

3D ≡ −
1

2
hab∂ah

rs∂bhrs + hrs∂
ahrk∂ah

s
k − hrs∂ahrb∂bhsa

− 1

2
(−hab∂ah∂bh+ 2hrs∂ah∂

ahrs) (3.37)

The propagator that follows from (3.36) is

〈φmn(y1)φpq(y2)〉 =
1

2
(ηmpηnq + ηmqηnp − ηmnηpq)

∫
d3k

(2π)3
eik·(y1−y2)

ik2
(3.38)

Let us consider an example of the two-loop diagrams drawn in figure 4. The quartic

coupling is given by

L(4)

3D =
1

2

[
(ηk1k3hk2k4 + ηk2k4hk1k3)hab∂ah

k1k2∂bh
k3k4

− (ηk1k3h
s
k2hsk4 + ηk2k4h

s
k1hsk3 + hk1k3hk2k4)ηab∂ah

k1k2∂bh
k3k4

+ 2hrk1hrk2∂ah
k1b∂bh

k2a − (ηk1k2hk3k4 + ηk3k4hk1k2)hab∂ah
k1k2∂bh

k3k4

+ (ηk1k2h
r
k3hrk4 + ηk3k4h

r
k1hrk2 + hk1k2hk3k4)ηab∂ah

k1k2∂bh
k3k4

]
(3.39)
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Figure 4. Background action from ghost loop.

Figure 5. One of two-loop diagrams.

As in the previous subsections, this can be written as

hl1l2hl3l4∂ahl5l6∂bhl7l8T
abl1l2l3l4l5l6l7l8
4h (3.40)

where T abl1l2l3l4l5l6l7l84h is a numerical tensor whose explicit form can be written easily. The

two-loop diagram comes from the following correlator:

− 1

2
〈hmnhrs

(
hl1l2hl3l4∂ahl5l6∂βhl7l8T

abl1l2l3l4l5l6l7l8
4h

)2〉 (3.41)

Let us compute

〈hmnhrs
∫
hl1l2hl3l4∂ahl5l6∂bhl7l8

∫
hl

′
1l

′
2hl

′
3l

′
4∂a

′
hl

′
5l

′
6∂b

′
hl

′
7l

′
8〉 (3.42)

There are altogether 16 different contractions, some of which are related by simple permuta-

tions of indices, that contribute to the two-loop diagrams in figure 4. We will illustrate the

computations involved with one of the sixteen terms, and pursue the complete evaluation

elsewhere. One of the sixteen terms is given in the momentum space by

i

2
Pmnl1l2P rsl

′
1l

′
2P l3l4l

′
3l

′
4P l5l6l

′
5l

′
6P l7l8l

′
7l

′
8(2π)3δ(p1 + p2)

1

p21

1

p22∫∫
d3k3
(2π)3

d3k5
(2π)3

ka4k
a′
4 k

b
5k
b′
5

k24k
2
5(k5 + k4 − p1)2

(3.43)

Let us evaluate the momentum integrals in two steps; after the Feynman parameterization,

the integration over k5 yields∫
d3k5
(2π)3

kb5k
b′
5

k25(k5 + k4 − p1)2
=

π
3
2

8(4π)
3
2

(
3

(kb14 − p
b1
1 )(kb24 − p

b2
1 )

[(k4 − p1)2]1/2
− ηb1b2 [(k4 − p1)2]1/2

)
(3.44)
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Therefore, one gets∫∫
d3k4
(2π)3

d3k5
(2π)3

ka4k
a′
4 k

b
5k
b′
5

k24k
2
5(k5 + k4 − p1)2

=
π

3
2

8(4π)
3
2

∫
d3k

(2π)3

(
3
kaka

′
(kb − pb1)(kb

′ − pb′1 )

k2[(k − p1)2]1/2
− ηbb′

kaka
′
[(k − p1)2]1/2

k2

)
(3.45)

The integrals in the expression can be evaluated by making repeated use of the following

formula [63]: ∫
dDk

1

(k2)ξ1 [(k − p)2]ξ2
= πD/2

G(ξ1, ξ2)

(p2)ξ1+ξ2−
D
2

(3.46)

where ξ1, ξ2 are arbitrary numbers, and

G(ξ1, ξ2) =
Γ
(
ξ1 + ξ2 − D

2

)
Γ
(
D
2 − ξ1

)
Γ
(
D
2 − ξ2

)
Γ(ξ1)Γ(ξ2)Γ(D − ξ1 − ξ2)

(3.47)

where Γ represents the Gamma function. We illustrate the computations involved with the

second term in (3.45):∫
d3k

(2π)3
kaka

′
[(k − p1)2]1/2

k2

= −1

3

∂

∂(p1)a1

∫
d3k

(2π)3
ka

′
[(k − p1)2]3/2

k2
+ pa11

∫
d3k

(2π)3
ka

′
[(k − p1)2]1/2

k2
(3.48)

Similar steps can be applied to the two terms in (3.48), and lead to expressions that do not

contain any uncontracted indices on the momentum k. One can then use the formula (3.46);

after some tedious algebra, one gets∫∫
d3k4
(2π)3

d3k5
(2π)3

ka4k
a′
4 k

b
5k
b′
5

k24k
2
5(k5 + k4 − p1)2

=
Γ
(
3−D
2

)
64× 105(2π)2

[
(2ηaa

′
ηbb

′
+ ηab1ηa

′b′ + ηab
′
ηa

′b)(p21)
2

− 8(ηaa
′
pb1p

b′
1 + ηbb

′
pa1p

a′
1 )(p21) + 4(ηab

′
pa

′
1 p

b
1 + ηa

′b′pa1p
b
1

+ ηabpa
′

1 p
b′
1 + ηa

′bpa1p
b′
1 )(p21) + 8pa1p

a′
1 p

b
1p
b′
1

]
(3.49)

Once this result is substituted into (3.43), the computation of (3.43) is complete.

4 Discussions

In this work, we have reviewed and refined the proposal in [21], where it was noted that

the Lagrangian analogues of the Hamiltonian and momentum constraints can be solved.

The analysis led to the conclusion that the physical states are three-dimensional at the

classical level. The system can be quantized by imposing the canonical commutation

relations. In general, quantization introduces fluctuations around the classical vacuum;

the fluctuations in the present case were three-dimensional in the operator formalism,
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and this feature has been carried over to the path integral account of the perturbative

analysis that we have developed in this work. The next task was to carry out explicit

renormalization in the three-dimensional description. The 3D renormalization at one-loop

does not require counterterms in dimensional regularization, thus one will have to consider

two-loop renormalization. Most of the computations were done for the 4D case to set the

ground for the 3D case; for the three-dimensional two-loop diagrams, we have considered

figure 4 to illustrate the computations involved.

With the help of a Mathematica package xAct‘xTensor’, we first carried out one-loop

renormalization of the 4D action expanded around a flat spacetime, and compared the

results with the those in [51] obtained long ago. The two results on divergences do not

entirely match up; an erroneous Ward-Takahashi type identity used in [51] should be the

reason for the incongruity. We have explicitly obtained the counterterms by applying the

background field method to the 4D action expanded around a flat background, and as far

as we are aware this is a new result.

Unlike, e.g., [34, 37], the counterterms that we have obtained are non-covariant and

cannot be expressed in terms of covariant quantities such as R2 and/or RµνR
µν expanded

around the flat vacuum. This then takes us to an issue that is relatively well-understood

through a formal argument and explicit examples in non-gravitational theories; namely,

the background independence of renormalizability. The fact that the counterterms cannot

be expressed in terms of R2 and/or RµνR
µν seems to contradict this expectation. The

non-covariance of the counterterms was expected from the beginning since the diffeomor-

phism gets broken once the action is expanded around a flat vacuum. What makes the

gravitational cases different from non-gravitational cases is the fact that the counterterms

cannot be absorbed into the terms in the expanded action even at one-loop: once the action

is expanded around a fixed background, the one-loop renormalizability seems to become

more subtle.

As noted in the main body, this unsettling status of the matter should presumably

be due to the fact that the counterterms obtained in [34] would formally correspond to

the counterterms of the action expanded around the zero metric background.14 With such

expansion, explicit perturbative analysis of course cannot be carried out. In this sense, the

meaning of the counterterms found in [34] is not entirely clear (at least to us). Nevertheless,

the result of [34] does seem to imply that the counterterms for gauge invariant physical

quantities would be covariant and come in powers in R, Rµν , Rµνρσ. Therefore once the

theory is reduced to 3D, renormalizability would be restored in the sense of [34, 37, 38].

The 3D two-loop renormalization would be much more technically demanding than

the analysis in the present work. It would be interesting to investigate the possibility

that removing the trace piece in the sense of [21] could make things work. Of course,

the fact that the external legs are not gauge-invariant does not depend on whether or

not the trace piece is present. Therefore, even after removing the trace piece in 3D, one

cannot a priori expect the counterterms become expressible in terms of R and Rµν . The

14Or it could simply be the field redefinition (A.4) that caused the problem. This issue is currently under

investigation.
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absence of the trace piece will, however, substantially reduce the number of different types

of the counterterms. Also, once the trace piece is removed, all of the unphysical degrees of

freedom are gone, therefore, there might be a higher chance that the counterterms will be

expressible in terms of R and Rµν . We will report on some of these and/or related issues

in the near future.

A Notations/conventions and identities

The signature is mostly plus:

ηµν = (−,+,+,+) (A.1)

All the Greek indices are four-dimensional

α, β, γ, . . . , µ, ν, ρ . . . = 0, 1, 2, 3 (A.2)

and all the Latin indices are three-dimensional

a, b, c, . . . ,m, n, r . . . = 0, 1, 2 (A.3)

The perturbative analysis is carried out in terms of the redefined metric:

g̃µν ≡
√
−ggµν ≡ ηµν + φµν (A.4)

for 4D;

g̃mn ≡
√
−γγmn ≡ ηmn + hmn (A.5)

for 3D. The following shorthand notations were used:

φ ≡ ηµνφµν , φµ ≡ ∂κφκµ (A.6)

for 4D;

h ≡ ηmnhmn, hm ≡ ∂khkm (A.7)

for 3D. The 4D graviton and ghost propagators are given by

〈φµν(x1)φρσ(x2)〉 = Pµνρσ

∫
d4k

(2π)4
eik·(x1−x2)

ik2

〈Cµ(x1)C̄ν(x2)〉 = ηµν

∫
d4k

(2π)4
1

ik2
eik·(x1−x2) (A.8)

where

Pµνρσ ≡
1

2
(ηµρηνσ + ηµσηνρ − ηµνηρσ) (A.9)

Similarly, the 3D graviton and ghost propagators are given by

〈φmn(y1)φpq(y2)〉 = Pmnpq

∫
d3k

(2π)3
eik·(y1−y2)

ik2

〈Cm(y1)C̄n(y2)〉 = ηmn

∫
d3k

(2π)3
1

ik2
eik·(y1−y2) (A.10)
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where

Pmnpq ≡
1

2
(ηmpηnq + ηmqηnp − ηmnηpq) (A.11)

With the Feynman parameterization, one can show∫
dDl

(2π)4
1

(l−p)2l2
=

Γ(ε)

(4π)2∫
dDl

(2π)4
lµ

(l−p)2l2
=

Γ(ε)

(4π)2
pµ
2∫

dDl

(2π)4
lµlν

(l−p)2l2
=

Γ(ε)

(4π)2

[
1

3
pµpν −

1

12
δµνp

2

]
∫

dDl

(2π)4
lµlν lρ

(l−p)2l2
=

Γ(ε)

(4π)2

[
1

4
pµpνpρ −

1

24
(δµνpρ + δµρpν + δνρpµ)p2

]
∫

dDl

(2π)4
lµlν lρlσ
(l−p)2l2

=
Γ(ε)

(4π)2

[
1

5
pµpνpρpσ −

1

40
(δµνpρpσ + δµρpνpσ + δµσpνpρ

+ δνρpµpσ + δνσpµpρ + δρσpµpν)p2

+
1

240
(p2)2(δµνδρσ + δµρδνσ + δµσδρν)

]
(A.12)

where ε ≡ 2 − D/2. For the two-loop graph in three dimensions, the following identities

were used:∫
dDk

(2π)D
1

k2[(k − p)2]
1
2

=
Γ(δ)

(2π)D−1∫
dDk

(2π)D
km

k2[(k − p)2]
1
2

=
Γ(δ)

(2π)D−1

pm

3∫
dDk

(2π)D
kmkn

k2[(k − p)2]
1
2

=
Γ(δ)

(2π)D−1

[
− 1

15
ηmnp2 +

1

5
pmpn

]
(A.13)∫

dDk

(2π)D
kmknkr

k2[(k − p)2]
1
2

=
Γ(δ)

(2π)D−1

[
− 1

35
(ηmnpρ + ηmrpn + ηnrpm)p2 +

1

7
pmpnpr

]
∫

dDk

(2π)D
kmknkrks

k2[(k − p)2]
1
2

=
Γ(δ)

(2π)D−1

[
1

5× 7× 9
(ηmnηrs + ηmrηns + ηnrηms)(p2)2

− 1

7×9
(ηmspnpr+ηnspmpr+ηrspmpn+ηmrpnps+ηmnprps+ηnrpmps)(p2)+

1

9
pmpnprps

]

where δ ≡ 3−D
2 .

B 4D case

Let us shift the field

φµν → φµν + ϕµν (B.1)

where φ on the right-hand side denotes the fluctuation and ϕ the background field.
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B.1 Ghost sector

Let us put LϕCC in (3.29) into two groups:

LϕCC = LϕCC,I + LϕCC,II (B.2)

where

LϕCC,I = −ϕρκ2∂κ1C̄ρ∂κ2Cκ1 − ϕκ1κ2∂κ1C̄ρ∂κ2Cρ + ϕρσ∂ρC̄σ∂κC
κ

LϕCC,II = ∂κϕ
ρσ∂ρC̄σ C

κ

Then L2ϕCC in (3.30) can be grouped into three parts:

L2ϕCC = L2ϕCC,I + 2LϕCC,ILϕCC,II + L2ϕCC,II (B.3)

We have computed the background action from L2ϕCC,II in (3.32):

∆Lgh
II2

= − Γ(ε)

(4π)2

∫
d4x

(
1

12
∂σ1∂σ2φ

ρ1σ1∂ρ1∂ρ2φ
ρ2σ2 +

1

24
∂σ1∂σ2φ

ρ1σ1∂κ∂κφ
σ2
ρ1

)
(B.4)

Here we compute the background action resulting from the other two terms in (B.3). Let

us first note that LϕCC,I can be rewritten as

LϕCC,I = ϕλ1λ2∂α1C̄λ3∂β1Cλ4T
α1β1λ1λ2λ3λ4
gh (B.5)

where

Tα1β1λ1λ2λ3λ4
gh ≡ −ηλ1λ3ηλ2β1ηα1λ4 − ηλ1α1ηλ2β1ηλ3λ4 + ηλ1α1ηλ2λ3ηβ1λ4 (B.6)

The background action from L2ϕCC,I can be obtained by multiplying Tα1β1λ1λ2λ3λ4
gh

T
α2β2λ′1λ

′
2λ

′
3λ

′
4

gh with the background action that arises from

− 1

2

∫
d4ud4v〈(ϕλ1λ2∂α1C̄λ3∂β1Cλ4)(ϕλ′1λ′2∂α2C̄λ′3∂β2Cλ′4)〉 ; (B.7)

a straightforward calculation leads to the following background action

−1

2

Γ(ε)

(4π)2

∫
d4x ηλ3λ′4ηλ4λ′3

[
1

30
∂α1∂β1φλ1λ2∂α2∂β2φλ′1λ′2

+
1

60
∂κ∂

κφλ1λ2(ηα1α2∂β1∂β2 +ηα1β1∂α2∂β2 +ηα2β2∂α1∂β1 +ηβ1β2∂α1∂α2)φλ′1λ′2

− 1

40
∂κ∂

κφλ1λ2(ηα1β2∂α2∂β1 + ηα2β1∂α1∂β2)φλ′1λ′2

+
1

240
(ηα1β2ηα2β1 + ηα1β1ηα2β2 + ηα1α2ηβ1β2)∂κ∂

κφλ1λ2∂δ∂
δφλ′1λ′2

]
(B.8)

Taking the tensors Tα1β1λ1λ2λ3λ4
gh T

α2β2λ′1λ
′
2λ

′
3λ

′
4

gh into account, one gets

∆Lgh
I2

= − 1

60
∂γ∂γφαβ ∂

κ∂κφ
αβ − 1

120
∂γ∂γφ∂

κ∂κφ−
1

15
∂α∂βφ

αβ ∂γ∂κφ
γκ

− 1

20
ηβκ∂γ∂γφαβ∂

α∂δφδκ +
1

60
∂γ∂γφ∂α∂βφ

αβ (B.9)
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The background action from 2LϕCC,ILϕCC,II sector is

∆LghI II =
1

12
∂r∂rφmn ∂

m∂pφpqη
nq − 1

8
∂r∂rφ∂m∂nφ

mn − 1

12
∂m∂nφ

mn ∂p∂qφ
pq (B.10)

The total background action from the ghost sector is sum of (B.4), (B.9) and (B.10):

∆Lgh = ∆Lgh
I2

+ ∆LghI II + ∆Lgh
II2

(B.11)

They will be added to the background action arising from the graviton sector, which we

will now examine.

B.2 Graviton sector

Upon substituting this into the cubic terms and collecting the terms that contain one factor

of ϕ, one gets

Lϕφφ = −∂αϕρσ∂βφρσφαβ + 2∂αϕρκ∂αφ
σ
κφρσ − 2∂βϕ

σα∂αφ
ρβφρσ

+
1

2
∂αϕ∂βφφ

αβ − 1

2
∂αϕρσ∂αφφρσ −

1

2
∂αϕ∂

αφρσφρσ

− 1

2
ϕαβ∂αφ

ρσ∂βφρσ + ϕρσ∂
αφρκ∂αφ

σ
κ − ϕρσ∂αφρβ∂βφσα

+
1

4
ϕαβ∂αφ∂βφ−

1

2
ϕρσ∂αφ∂

αφρσ (B.12)

The background action from this is given by

∆Lgrav = −1

2

Γ(ε)

(4π)2

[
− 11

6
∂m∂nφ

mn ∂p∂qφ
pq − 17

24
∂r∂rφmn ∂

s∂sφ
mn

+
11

48
∂r∂rφ∂

s∂sφ−
13

12
∂r∂rφ∂p∂qφ

pq +
4

3
ηnq∂r∂rφmn ∂

m∂pφpq

]
(B.13)
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B.3 Total background action

Combining the ghost and graviton sectors, one gets for the total one-loop

∆L1-loop=∆Lgrav + ∆Lgh
I2

+ ∆LghI II + ∆Lgh
II2

=
Γ(ε)

(4π)2

∫
d4x

(
− 1

2

)[
− 11

6
∂m∂nφ

mn ∂p∂qφ
pq − 17

24
∂r∂rφmn ∂

s∂sφ
mn

+
11

48
∂r∂rφ∂

s∂sφ−
13

12
∂r∂rφ∂p∂qφ

pq+
4

3
ηnq∂r∂rφmn ∂

m∂pφpq

]
−
(

1

12
∂s1∂s2φ

r1s1∂r1∂r2φ
r2s2 +

1

24
∂s1∂s2φ

r1s1∂k∂kφ
s2
r1

)
+

(
− 1

60
∂r∂rφmn ∂

s∂sφ
mn − 1

120
∂r∂rφ∂

s∂sφ−
1

15
∂m∂nφ

mn ∂p∂qφ
pq

− 1

20
ηnq∂r∂rφmn∂

m∂pφpq +
1

60
∂r∂rφ∂m∂nφ

mn

)
+

(
1

12
∂r∂rφmn ∂

m∂pφpqη
nq − 1

8
∂r∂rφ∂m∂nφ

mn − 1

12
∂m∂nφ

mn ∂p∂qφ
pq

)
=

Γ(ε)

(4π)2

∫
d4x

[
41

60
∂α∂βφ

αβ ∂γ∂δφ
γδ +

27

80
∂κ∂κφαβ ∂

λ∂λφ
αβ

− 59

480
∂κ∂κφ∂

λ∂λφ+
13

30
∂κ∂κφ∂γ∂δφ

γδ − 27

40
∂κ∂κφαβ ∂

α∂γφβγ

]
(B.14)
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[1] S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information

retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].

[2] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or

firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

[3] L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole

complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

[4] Y. Nomura, Quantum mechanics, spacetime locality and gravity, Found. Phys. 43 (2013) 978

[arXiv:1110.4630] [INSPIRE].

[5] B.D. Chowdhury and A. Puhm, Is Alice burning or fuzzing?, Phys. Rev. D 88 (2013) 063509

[arXiv:1208.2026] [INSPIRE].

[6] S.B. Giddings, Nonviolent nonlocality, Phys. Rev. D 88 (2013) 064023 [arXiv:1211.7070]

[INSPIRE].

[7] D.N. Page, Excluding black hole firewalls with extreme cosmic censorship,

JCAP 06 (2014) 051 [arXiv:1306.0562] [INSPIRE].

[8] E. Verlinde and H. Verlinde, Passing through the firewall, arXiv:1306.0515 [INSPIRE].

– 26 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevLett.110.101301
http://arxiv.org/abs/0907.1190
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1190
http://dx.doi.org/10.1007/JHEP02(2013)062
http://arxiv.org/abs/1207.3123
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3123
http://dx.doi.org/10.1103/PhysRevD.48.3743
http://arxiv.org/abs/hep-th/9306069
http://inspirehep.net/search?p=find+EPRINT+hep-th/9306069
http://dx.doi.org/10.1007/s10701-013-9729-1
http://arxiv.org/abs/1110.4630
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4630
http://dx.doi.org/10.1103/PhysRevD.88.063509
http://arxiv.org/abs/1208.2026
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.2026
http://dx.doi.org/10.1103/PhysRevD.88.064023
http://arxiv.org/abs/1211.7070
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.7070
http://dx.doi.org/10.1088/1475-7516/2014/06/051
http://arxiv.org/abs/1306.0562
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0562
http://arxiv.org/abs/1306.0515
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0515


J
H
E
P
0
4
(
2
0
1
5
)
0
5
3

[9] K. Papadodimas and S. Raju, State-dependent bulk-boundary maps and black hole

complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].

[10] S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity,

JHEP 01 (2014) 034 [arXiv:1208.2005] [INSPIRE].

[11] R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023

[arXiv:1207.5192] [INSPIRE].

[12] S.G. Avery and B.D. Chowdhury, Firewalls in AdS/CFT, JHEP 10 (2014) 174

[arXiv:1302.5428] [INSPIRE].

[13] R. Bousso and D. Stanford, Measurements without probabilities in the final state proposal,

Phys. Rev. D 89 (2014) 044038 [arXiv:1310.7457] [INSPIRE].

[14] I.Y. Park, Indication for unsmooth horizon induced by quantum gravity interaction,

Eur. Phys. J. C 74 (2014) 3143 [arXiv:1401.1492] [INSPIRE].

[15] D.-i. Hwang, B.-H. Lee and D.-h. Yeom, Is the firewall consistent? Gedanken experiments on

black hole complementarity and firewall proposal, JCAP 01 (2013) 005 [arXiv:1210.6733]

[INSPIRE].

[16] M. Van Raamsdonk, Evaporating firewalls, JHEP 11 (2014) 038 [arXiv:1307.1796]

[INSPIRE].

[17] W. Kim and E.J. Son, Freely falling observer and black hole radiation,

Mod. Phys. Lett. A 29 (2014) 1450052 [arXiv:1310.1458] [INSPIRE].

[18] H. Kawai, Y. Matsuo and Y. Yokokura, A self-consistent model of the black hole evaporation,

Int. J. Mod. Phys. A 28 (2013) 1350050 [arXiv:1302.4733] [INSPIRE].

[19] A. Almheiri and J. Sully, An uneventful horizon in two dimensions, JHEP 02 (2014) 108

[arXiv:1307.8149] [INSPIRE].

[20] E. Silverstein, Backdraft: string creation in an old Schwarzschild black hole,

arXiv:1402.1486 [INSPIRE].

[21] I.Y. Park, Hypersurface foliation approach to renormalization of gravity, arXiv:1404.5066

[INSPIRE].

[22] I.Y. Park, Quantization of gravity through hypersurface foliation, arXiv:1406.0753

[INSPIRE].

[23] P.A.M. Dirac, Fixation of coordinates in the Hamiltonian theory of gravitation,

Phys. Rev. 114 (1959) 924 [INSPIRE].

[24] B.S. DeWitt, Quantum theory of gravity. 2. The manifestly covariant theory,

Phys. Rev. 162 (1967) 1195 [INSPIRE].

[25] R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity,

Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].

[26] C.J. Isham, Conceptual and geometrical problems in quantum gravity, in Recent aspects of

quantum fields, Lect. Notes Phys. 396 (1991) 123 [INSPIRE].

[27] K.V. Kuchar, Canonical quantum gravity, gr-qc/9304012 [INSPIRE].

[28] S. Carlip, Quantum gravity: a progress report, Rept. Prog. Phys. 64 (2001) 885

[gr-qc/0108040] [INSPIRE].

– 27 –

http://dx.doi.org/10.1103/PhysRevD.89.086010
http://arxiv.org/abs/1310.6335
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6335
http://dx.doi.org/10.1007/JHEP01(2014)034
http://arxiv.org/abs/1208.2005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.2005
http://dx.doi.org/10.1103/PhysRevD.87.124023
http://arxiv.org/abs/1207.5192
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5192
http://dx.doi.org/10.1007/JHEP10(2014)174
http://arxiv.org/abs/1302.5428
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5428
http://dx.doi.org/10.1103/PhysRevD.89.044038
http://arxiv.org/abs/1310.7457
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.7457
http://dx.doi.org/10.1140/epjc/s10052-014-3143-5
http://arxiv.org/abs/1401.1492
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.1492
http://dx.doi.org/10.1088/1475-7516/2013/01/005
http://arxiv.org/abs/1210.6733
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6733
http://dx.doi.org/10.1007/JHEP11(2014)038
http://arxiv.org/abs/1307.1796
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.1796
http://dx.doi.org/10.1142/S0217732314500527
http://arxiv.org/abs/1310.1458
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1458
http://dx.doi.org/10.1142/S0217751X13500504
http://arxiv.org/abs/1302.4733
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4733
http://dx.doi.org/10.1007/JHEP02(2014)108
http://arxiv.org/abs/1307.8149
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.8149
http://arxiv.org/abs/1402.1486
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.1486
http://arxiv.org/abs/1404.5066
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5066
http://arxiv.org/abs/1406.0753
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.0753
http://dx.doi.org/10.1103/PhysRev.114.924
http://inspirehep.net/search?p=find+J+Phys.Rev.,114,924
http://dx.doi.org/10.1103/PhysRev.162.1195
http://inspirehep.net/search?p=find+J+Phys.Rev.,162,1195
http://dx.doi.org/10.1007/s10714-008-0661-1
http://arxiv.org/abs/gr-qc/0405109
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0405109
http://dx.doi.org/10.1007/3-540-54978-1_11
http://inspirehep.net/search?p=find+J+LNPHA,396,123
http://arxiv.org/abs/gr-qc/9304012
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9304012
http://dx.doi.org/10.1088/0034-4885/64/8/301
http://arxiv.org/abs/gr-qc/0108040
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0108040


J
H
E
P
0
4
(
2
0
1
5
)
0
5
3

[29] R.P. Woodard, Perturbative quantum gravity comes of age,

Int. J. Mod. Phys. D 23 (2014) 1430020 [arXiv:1407.4748] [INSPIRE].

[30] A. Sen, Gravity as a spin system, Phys. Lett. B 119 (1982) 89 [INSPIRE].

[31] A. Ashtekar, New variables for classical and quantum gravity,

Phys. Rev. Lett. 57 (1986) 2244 [INSPIRE].

[32] C. Rovelli, Loop quantum gravity, Living Rev. Rel. 1 (1998) 1 [gr-qc/9710008] [INSPIRE].

[33] T. Thiemann, Modern canonical quantum general relativity, Cambridge University Press,

Cambridge U.K. (2007) [gr-qc/0110034] [INSPIRE].

[34] G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation,

Ann. Poincare Phys. Theor. A 20 (1974) 69 [INSPIRE].

[35] S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the quantized Dirac-Einstein

system, Phys. Rev. D 10 (1974) 411 [INSPIRE].

[36] S. Deser and P. van Nieuwenhuizen, One loop divergences of quantized Einstein-Maxwell

fields, Phys. Rev. D 10 (1974) 401 [INSPIRE].

[37] M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity,

Nucl. Phys. B 266 (1986) 709 [INSPIRE].

[38] D. Anselmi, Renormalization of quantum gravity coupled with matter in three-dimensions,

Nucl. Phys. B 687 (2004) 143 [hep-th/0309249] [INSPIRE].

[39] L. Smarr and J.W. York, Radiation gauge in general relativity, Phys. Rev. D 17 (1978) 1945

[INSPIRE].

[40] R.M. Wald, General relativity, Chicago University Press, Chicago U.S.A. (1984) [INSPIRE].

[41] J.W. York Jr., Mapping onto solutions of the gravitational initial value problem,

J. Math. Phys. 13 (1972) 125 [INSPIRE].

[42] J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation,

Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].

[43] C.J. Isham and K.V. Kuchar, Representations of spacetime diffeomorphisms. II. Canonical

geometrodynamics, Annals Phys. 164 (1985) 316 [INSPIRE].

[44] J. Engle, M. Han and T. Thiemann, Canonical path integral measures for Holst and

Plebanski gravity. I. Reduced phase space derivation, Class. Quant. Grav. 27 (2010) 245014

[arXiv:0911.3433] [INSPIRE].

[45] C. Gerhardt, The quantization of gravity in globally hyperbolic spacetimes,

Adv. Theor. Math. Phys. 17 (2013) 1357 [arXiv:1205.1427] [INSPIRE].

[46] J.A. Isenberg and J.E. Marsden, A slice theorem for the space of solutions of Einstein’s

equations, Phys. Rept. 89 (1982) 179.

[47] A.E. Fischer and V. Moncrief, Hamiltonian reduction of Einstein’s equations of general

relativity, Nucl. Phys. Proc. Suppl. 57 (1997) 142 [INSPIRE].

[48] F. Gay-Balmaz and T.S. Ratiu, A new Lagrangian dynamic reduction in field theory,

Ann. Inst. Fourier 16 (2010) 1125 [arXiv:1407.0263] [INSPIRE].

[49] B.S. DeWitt, Quantum field theory in curved space-time, Phys. Rept. 19 (1975) 295

[INSPIRE].

– 28 –

http://dx.doi.org/10.1142/S0218271814300201
http://arxiv.org/abs/1407.4748
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.4748
http://dx.doi.org/10.1016/0370-2693(82)90250-7
http://inspirehep.net/search?p=find+J+Phys.Lett.,B119,89
http://dx.doi.org/10.1103/PhysRevLett.57.2244
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,57,2244
http://arxiv.org/abs/gr-qc/9710008
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9710008
http://arxiv.org/abs/gr-qc/0110034
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0110034
http://inspirehep.net/search?p=find+J+AHPAA,A20,69
http://dx.doi.org/10.1103/PhysRevD.10.411
http://inspirehep.net/search?p=find+J+Phys.Rev.,D10,411
http://dx.doi.org/10.1103/PhysRevD.10.401
http://inspirehep.net/search?p=find+J+Phys.Rev.,D10,401
http://dx.doi.org/10.1016/0550-3213(86)90193-8
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B266,709
http://dx.doi.org/10.1016/j.nuclphysb.2004.03.023
http://arxiv.org/abs/hep-th/0309249
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309249
http://dx.doi.org/10.1103/PhysRevD.17.1945
http://inspirehep.net/search?p=find+J+Phys.Rev.,D17,1945
http://inspirehep.net/search?p=find+IRN+SPIRES-1334239
http://dx.doi.org/10.1063/1.1665945
http://inspirehep.net/search?p=find+J+J.Math.Phys.,13,125
http://dx.doi.org/10.1103/PhysRevLett.28.1082
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,28,1082
http://dx.doi.org/10.1016/0003-4916(85)90019-3
http://inspirehep.net/search?p=find+J+AnnalsPhys.,164,316
http://dx.doi.org/10.1088/0264-9381/27/24/245014
http://arxiv.org/abs/0911.3433
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.3433
http://dx.doi.org/10.4310/ATMP.2013.v17.n6.a5
http://arxiv.org/abs/1205.1427
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1427
http://dx.doi.org/10.1016/0370-1573(82)90066-7
http://dx.doi.org/10.1016/S0920-5632(97)00363-0
http://inspirehep.net/search?p=find+J+Nucl.Phys.Proc.Suppl.,57,142
http://dx.doi.org/10.5802/aif.2549
http://arxiv.org/abs/1407.0263
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0263
http://dx.doi.org/10.1016/0370-1573(75)90051-4
http://inspirehep.net/search?p=find+J+Phys.Rept.,19,295


J
H
E
P
0
4
(
2
0
1
5
)
0
5
3

[50] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications,

Cambridge University Press, Cambridge U.K. (1996) [INSPIRE].

[51] D.M. Capper, G. Leibbrandt and M. Ramon Medrano, Calculation of the graviton selfenergy

using dimensional regularization, Phys. Rev. D 8 (1973) 4320 [INSPIRE].

[52] K. Huang, Quantum field theory: from operators to path integrals, Wiley, New York U.S.A.

(2010) [INSPIRE].

[53] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman & Co.,

San Francisco U.S.A. (1973) [INSPIRE].

[54] E. Poisson, A relativist’s toolkit: the mathematics of black-hole mechanics, Cambridge

University Press, Cambridge U.K. (2004).

[55] F. Embacher, Actions for signature change, Phys. Rev. D 51 (1995) 6764 [gr-qc/9501004]

[INSPIRE].

[56] M. Sato and A. Tsuchiya, Born-Infeld action from supergravity,

Prog. Theor. Phys. 109 (2003) 687 [hep-th/0211074] [INSPIRE].

[57] V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence,

arXiv:1107.5780 [INSPIRE].

[58] P.G. Bergmann and A. Komar, The coordinate group symmetries of general relativity,

Int. J. Theor. Phys. 5 (1972) 15 [INSPIRE].

[59] J. Honerkamp and K. Meetz, Chiral-invariant perturbation theory,

Phys. Rev. D 3 (1971) 1996 [INSPIRE].

[60] J. Honerkamp, Chiral multiloops, Nucl. Phys. B 36 (1972) 130 [INSPIRE].

[61] A.A. Tseytlin, Partition function of string σ model on a compact two space,

Phys. Lett. B 223 (1989) 165 [INSPIRE].

[62] E.S. Fradkin and I.V. Tyutin, S matrix for Yang-Mills and gravitational fields,

Phys. Rev. D 2 (1970) 2841 [INSPIRE].

[63] V.A. Smirnov, Feynman integral calculus, Springer, Berlin Germany (2006) [INSPIRE].

– 29 –

http://inspirehep.net/search?p=find+IRN+SPIRES-3763846
http://dx.doi.org/10.1103/PhysRevD.8.4320
http://inspirehep.net/search?p=find+J+Phys.Rev.,D8,4320
http://inspirehep.net/search?p=find+IRN+SPIRES-3885712
http://inspirehep.net/search?p=find+IRN+SPIRES-6627595
http://dx.doi.org/10.1103/PhysRevD.51.6764
http://arxiv.org/abs/gr-qc/9501004
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9501004
http://dx.doi.org/10.1143/PTP.109.687
http://arxiv.org/abs/hep-th/0211074
http://inspirehep.net/search?p=find+EPRINT+hep-th/0211074
http://arxiv.org/abs/1107.5780
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5780
http://dx.doi.org/10.1007/BF00671650
http://inspirehep.net/search?p=find+J+Int.J.Theor.Phys.,5,15
http://dx.doi.org/10.1103/PhysRevD.3.1996
http://inspirehep.net/search?p=find+J+Phys.Rev.,D3,1996
http://dx.doi.org/10.1016/0550-3213(72)90299-4
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B36,130
http://dx.doi.org/10.1016/0370-2693(89)90234-7
http://inspirehep.net/search?p=find+J+Phys.Lett.,B223,165
http://dx.doi.org/10.1103/PhysRevD.2.2841
http://inspirehep.net/search?p=find+J+Phys.Rev.,D2,2841
http://inspirehep.net/search?p=find+IRN+SPIRES-6927351

	Introduction
	Constraints and quantization
	Dirac's method and Lagrangian quantization
	``Independent'' path integral approach

	Effectively 3D perturbative analysis
	Review of 4D case
	3D analysis

	Discussions
	Notations/conventions and identities
	4D case
	Ghost sector
	Graviton sector
	Total background action


