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Abstract

Background: Epidemiological studies suggest that air pollution is adversely associated with pregnancy outcomes.
Such associations may be modified by spatially-varying factors including socio-demographic characteristics, land-use
patterns and unaccounted exposures. Yet, few studies have systematically investigated the impact of these factors
on spatial variability of the air pollution’s effects. This study aimed to examine spatial variability of the effects of air
pollution on term birth weight across Census tracts and the influence of tract-level factors on such variability.

Methods: We obtained over 900,000 birth records from 2001 to 2008 in Los Angeles County, California, USA. Air
pollution exposure was modeled at individual level for nitrogen dioxide (NO2) and nitrogen oxides (NOx) using
spatiotemporal models. Two-stage Bayesian hierarchical non-linear models were developed to (1) quantify the
associations between air pollution exposure and term birth weight within each tract; and (2) examine the socio-
demographic, land-use, and exposure-related factors contributing to the between-tract variability of the associations
between air pollution and term birth weight.

Results: Higher air pollution exposure was associated with lower term birth weight (average posterior effects: −14.7
(95 % CI: −19.8, −9.7) g per 10 ppb increment in NO2 and −6.9 (95 % CI: −12.9, −0.9) g per 10 ppb increment in
NOx). The variation of the association across Census tracts was significantly influenced by the tract-level socio-
demographic, exposure-related and land-use factors. Our models captured the complex non-linear relationship
between these factors and the associations between air pollution and term birth weight: we observed the
thresholds from which the influence of the tract-level factors was markedly exacerbated or attenuated. Exacerbating
factors might reflect additional exposure to environmental insults or lower socio-economic status with higher
vulnerability, whereas attenuating factors might indicate reduced exposure or higher socioeconomic status with
lower vulnerability.

Conclusions: Our Bayesian models effectively combined a priori knowledge with training data to infer the posterior
association of air pollution with term birth weight and to evaluate the influence of the tract-level factors on spatial
variability of such association. This study contributes new findings about non-linear influences of socio-demographic
factors, land-use patterns, and unaccounted exposures on spatial variability of the effects of air pollution.
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Background
Pregnant women and fetuses are vulnerable to adverse ef-
fects of air pollution [1–3]. Studies have associated air pol-
lution exposures with adverse pregnancy outcomes [1, 4].
Exposure to toxic compounds in traffic-generated air pol-
lutants may result in impaired placental hemodynamics
with subsequent reduction of nutrients and oxygen sup-
ply, which reduces intrauterine growth and probably
causes low birth weight [1]. The adverse health effect of
air pollution is likely heterogeneous in space and possibly
influenced by other environmental, socioeconomic, demo-
graphical and psychological factors [3, 5–7]. In particular,
neighborhood socioeconomic status (SES) was found to
be significantly associated with the heterogeneity of the ef-
fects of air pollution on birth weight [8, 9].
A few studies quantified between-region heterogeneity

of air pollution effects. Dadvand et al. [10] reported
stronger associations of reduction in term birth weight
with higher median levels of particular matter (PM) with
diameter <2.5 μm (PM2.5) across 14 study centers from
North America, Europe, South America and Asia. Parker
et al. [11] suggested that the composition of PM may in-
fluence the variability of the observed associations be-
tween PM mass and term birth weight in seven regions
in the US. Williams et al. [12] quantified the spatially
varying effects of sulfur dioxide and lead on birth weight
across Census tracts in Tennessee. Recently, Coker et al.
[13] and Hao et al. [14] respectively investigated the
spatially varying effects of PM2.5 on low birth weight
across Census tracts in Los Angeles and divisions in the
contiguous United States. Most previous studies focused
on particulate matter. Nitrogen dioxide (NO2) and nitro-
gen oxides (NOx) have been shown to be the best avail-
able indicators of local traffic emissions [15]. However,
few studies have systematically investigated the spatial
variability of the association between exposure to NO2

or NOx and adverse pregnancy outcomes at a fine spatial
resolution (e.g. Census tract).
As important geographic regions of survey and adminis-

tration, Census tracts are designed to be relatively homo-
geneous with respect to population characteristics,
socioeconomic status, and living conditions. On average,
Census tracts has about 4000 (ranging from 1200 to 8000)
inhabitants [16]. Socioeconomic status, demographics,
and natural and built environment across Census tracts
may modify the effects of air pollutants. In addition,
spatial confounders may affect pregnancy outcomes, as
shown in English et al. [17] where low birth weight was in-
fluenced by spatial autocorrelation. Confounders not cap-
tured in the models may result in biased estimates, which
might lead to residual spatial autocorrelation (positive cor-
relation between the residuals from the estimates made at
nearby locations) [18]. Such unaccounted confounders
can be partly accounted for by including spatial

autocorrelation in the models [17, 19]. However, spatial
autocorrelation has been ignored in many previous studies
linking pregnancy outcomes to air pollution.
Previous studies have associated air pollution exposure

with reduction in term birth weight [1, 3], although they
reported varying effect sizes of air pollutants, possibly due
to differences in study region, population, sample size, and
exposure assessment methods [10]. We assume that the
literature-reported mean effects of air pollution (weighted
by the sample size) from independent studies follow a
normal distribution according to the central limit the-
orem [20]. By using a priori knowledge of the effect
of air pollution (i.e. quantitative summary of the ef-
fect sizes reported by previous studies), a Bayesian
approach can be employed to combine a priori evi-
dence and new data from a specific study setting to
obtain the posterior estimates of the effects [21] in
the study setting of interest.
Linear and logistic regressions have been used in most

previous studies on the associations of air pollution and
birth weight [1]. Logistic regression assumes a linear and
additive relationship on a logistic scale, although the lin-
ear assumption may be over-simplistic for characterizing
the influence of multiple factors [22, 23]. Non-linear
methods have been used to directly evaluate associations
between air pollution and birth weight [24, 25], and to
adjust for individual confounding factors [26, 27]. In the
non-linear methods, the penalized splines have been
mostly used to construct the non-linear associations
[28]; however, it may cause overfitting under the condi-
tion of a high number of degrees of freedom and a small
size of sample. Bayesian hierarchical additive regression,
while taking into account non-linear association and
spatial effects, can combine a priori knowledge and new
data to minimize potential overfitting.
This study aims to examine spatial variability of the as-

sociations between local traffic-related air pollutants (NO2

and NOx) and birth weight in term births (≥37 weeks)
across Census tracts, and the influence of socio-
demographic, land-use pattern and other spatial factors
on these associations.

Methods
This study domain covers Los Angeles County, California,
USA. Birth certificate records from January 1, 2001 to
December 31, 2008 (n = 1,203,782) were obtained from the
California Department of Public Health. The birth data in-
clude birth weight, maternal residential address, and other
individual-level variables (such as maternal age, length of
gestation and primary health care). Maternal residential ad-
dresses on birth certificates were geocoded at the centroid
of tax parcels whenever feasible using the University of
Southern California Geographical Information System Re-
search Laboratory geocoding engine [29]. The birth
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records were anonymized and de-identified prior to ana-
lysis for protection of privacy. Term birth was defined as
births occurring between 37 and 45 weeks of gestation.
Multiple births (n = 35,213) were excluded as well as in-
fants with recorded birth defects (n = 3353) or unknown
birth defects status (n = 398). The study domain included
2043 Census tracts (Fig. 1), among which 1948 tracts
remained for analysis after we removed those with too
large an area (>50 km2, approximately the top 98.3 % per-
centile by area; N = 37), too small sample size (less than 50
births; N = 29), islands (isolated Census tracts disconnected
with any other tracts) (N = 12), or those with extreme
values of term birth weight or covariates in the tracts (the
outer fences [30] were used to filter the outlier tracts; N =
17). The 1.7 % very large tracts usually had a small popula-
tion that were more heterogeneously distributed within the
tracts than most of the other tracts, thus the statistics of
environmental exposure and other parameters within the
tract might not be representative of the whole tract. A very
small sample size might introduce imprecision in model
training, while the islands without neighbors would lead to
difficulty in spatial modeling. Overall, we removed 95
(about 4.7 %) out of the 2043 tracts.
To study the association between air pollution and

term birth weight, it is essential to obtain exposure

estimates at a fine spatiotemporal resolution since air
pollution can be highly heterogeneous in time and space
[31, 32] and the fetus is likely to be more sensitive to air
pollution during specific time windows of exposure [33,
34]. We employed an advanced spatiotemporal models
recently developed and validated in the same study re-
gion [35] to estimate weekly NO2 and NOx concentra-
tions at the residence of each subject. Two major
advantages of the models were the combination of long-
term time-series data (high temporal but low spatial
resolution) with dense sampling data from field cam-
paigns (high spatial but low temporal resolution), and
the incorporation of non-linear relationships between
the predictor variables and the pollutant concentrations.
The models showed good performance based on cross
validation: for the weekly temporal trends, Pearson’s cor-
relation was 0.84–0.91 for NO2 and 0.81–0.90 for NOx(-
Additional file 1: Figures S1 and S2). We averaged weekly
exposure estimates to compute exposures in each of the
three trimesters of pregnancy and the entire pregnancy
period (more details in Additional file 1: Section 1).
According to a priori knowledge [1, 4] and the de-

scriptive statistics of this study, we included the follow-
ing confounding factors in the models: maternal age,
length of gestation, ethnicity, educational level, parity,

Fig. 1 The Los Angeles Census tracts of this study. The black lines of one-dash-three-dots style indicate the boundaries for the Census tracts
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primary health care, and gender of the infant. In sensitivity
analysis, we also tested the influence of pregnancy compli-
cations (i.e. diabetes, hypertension and preeclampsia) and
their influence was limited. All the confounders were dir-
ectly retrieved from the birth certificates.
Laurent et al. [36] showed the beneficial effect of

greenness (indicated by normalized difference vegetation
index [NDVI]) on birth weight for a subset of the
present study’s population; thus, we included NDVI in
this analysis as well. NDVI within a 500 m buffer of each
residence was extracted and averaged based on a set of
mostly cloud-free Landsat scenes (resolution: 30 m)
from the Global Land Survey 2005 (United States Geo-
logical Survey) dataset covering Southern California.
Selection of the tract-level influential factors was based

on a priori knowledge. We obtained information on
these factors from the following sources:

(1)Community survey data from the TIGER 2006–2010
5-year estimation [37]. The community survey data
included the socio-demographic factors (median
household income, percentages of race/ethnicity
[Hispanic, White, Black or Asian], female educational
level) as well as the factors that may be related to air
pollution exposure at the tract level but were not
accounted for in the individual-level exposure
estimates (percentages of the people driving cars,
trucks or vans to work, walking or bicycling to work,
commuting time shorter than 30 min, using utility
gas for heating). The commuting patterns of the
population may directly influence personal exposures
to traffic-related pollutants [38]. For these variables,
we aggregated the Census block data to Census tracts
by weighting the area of blocks within a tract.

(2)Land-use patterns. We obtained the 2008 parcel-
level land-use data from the Southern California
Association of Government (SCAG). The percentages
of areas for the following land-uses were extracted for
each tract: low/high density residential community,
heavy industry (including manufacturing, petroleum
refining and processing, major metal and chemical
processing and mineral extraction), electrical power
facilities, park and recreational space (including local,
developed or undeveloped parks and recreations,
wildlife preserves and sanctuaries, specimen gardens
and arboreta and beach parks).

(3)Others: We obtained the 2005 TeleAtlas roadway
network data from ArcGIS 10.1 (ESRI, Redlands,
CA). The shortest distance to freeways/highways
was calculated as the distance from the center point
of each tract to the nearest freeways/highways. The
same 30-m NDVI we used before for individual-level
exposure was averaged over the entire area of each
tract to characterize neighborhood greenspace.

Based on the Bayesian framework, we developed a
hierarchical two-stage model to: 1) quantify the associa-
tions (effects) of individual air pollutants with term birth
weight by adjusting for individual-level factors; and 2)
investigate the influence of tract-level factors on the
spatial variability of such effects.
Stage One: Within each Census tract, Bayesian addi-

tive model was used to link term birth weight with air
pollution exposure while adjusting for individual-level
confounding factors:

yiceN μic; σcð Þ
μ yicð Þ or tr μ yicð Þð Þ ¼ a0c þ xpcβ

p
c þ

X
j
sc xjc
� �þX

k
f c xkcð Þ þ εc

μ yicð Þ ¼ E yicjAll μ ylc l≠ið Þ
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8>><
>>:

ð1Þ
where c is the index of Census tract (c = 1,…,n), yic is the
ith individual term birth weight for the tract c, μ(yic) is
the expected value of the target variable (yic), tr(μ(yic)) is
the transformation (e.g. log, box-cox) of μ(yic), xc

p is the
average of the pth air pollutant (NO2 or NOx) during a
study period, a0c is the intercept, βc

p is the regular health
effect (change in term birth weight per unit increase in ex-
posure) of the pth air pollutant; xjc indicates the j

th continu-
ous confounder such as NDVI and maternal age, while
xkcindicates the factor variables such as race/ethnicity, par-
ity and educational level. sc() is a semi-parametric spline
function and fc() is a factor function. yic, a0c and βc

p

are assumed to be normally distributed: yic ~N(μc, σc),
a0c or βc

p ~N(0, σp). μ(yic) is the expected value of the
ith individual yic conditional on their neighborhood
[E(yic|All μ(ylc(l ≠ i)))] and modeled using spatial resid-
uals, εc ~N(0, Σc). Σc = [σij

c ] represents spatial autocor-
relation (σij

c based on the distance between the ith and
jth subject locations, modeled using the variogram).
We used Moran’s I [39] to determine the magnitude
of spatial autocorrelation and whether it is necessary
to incorporate it into the model [40]. In the end, we
did not include spatial autocorrelation in the stage
one model since insignificant spatial autocorrelation
was found for 91 % of the Census tracts.
The associations of air pollution with term birth

weight were estimated based on a posterior distribution
using full Bayesian inference via Markov Chain Monte
Carlo (MCMC) simulation, which updated full condi-
tionals of single or blocks of parameters [41]. Additional
file 1: Section 2 presents the details for this.
Figure 2a shows the stage one model of our approach,

in which the intercept (a0c) and effect coefficient of air
pollutant (βp

c) were assumed to be normally distributed
and their hyper-parameters (mean: m; standard variance:
σ) were derived from a priori knowledge based on the
systematic summarized findings from the literature on
the effects of NO2 on term birth weights after weighting

Li et al. Environmental Health  (2016) 15:14 Page 4 of 12



by the sample size (Additional file 1: Table S1). To avoid
double counting, we excluded the meta-analysis papers
and only included the individual studies that they cov-
ered (plus other independent studies) without duplicates
in the summary (Additional file 1: Figure S3). We also
made sensitivity analyses using the pooled estimates re-
ported by Stieb et al. [3] (−14.1 g per 10 ppb for NO2) as
a priori knowledge in the models.
Only a few published studies reported the association

between NOx and term birth weight and mixed results
were observed [42]. Therefore, we assumed a uniform
distribution of the NOx effect with a mean of 0 (no ef-
fect) with a standard deviation of 1 as non-informative
prior knowledge [3, 43].
Stage Two: the effects (β) of air pollution on term

birth weight were modeled against the tract-level covari-
ates to examine their influence on spatial variability of β.

βpeNk m βp

� �
;Vp

� �
μ βp

� �
¼ h ηp

� �
ηp ¼ α0 þ

Xmp

j¼1
s cj
� �þ εp

μ βp

� �
¼ E βpjNei βpj j≠cð Þ
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8>>>>>><
>>>>>>:

ð2Þ

where p represents the pth air pollution exposure, μ(βp)
represents the expected estimates for βp, h(ηp) is the link
function for μ(βp) (h(ηp) = ηp for normal distribution), cj
are the influential factors at the tract level, s(cj) is the
semi-parametric non-linear spline function for the factor
cj. The intercept, α0 represents the average estimate of
air pollution effect [α0 ~N(0, σp)]. εp is assumed to be
spatially auto-correlative (εp|Σ ~Np(0, Σ

p)) and is mod-
eled by spatially conditional auto-correlative regression
(∑p = [σij

p] represents spatial covariance) [44]. The

a. Stage One

b. Stage Two

Fig. 2 Two-stages Bayesian modeling framework a. Stage One; b. Stage Two. The circles or ellipses represent the random variables; the arrow
lines indicate the influential relationship (association) from the staring node to the ending node of the line
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variance of βp measures the variability of the association
between air pollution and term birth weight across Cen-
sus tracts. Moran’s I was used to determine whether
spatial autocorrelation of the effects of air pollution
should be included in the stage two model.
The conditional expectation of the target variable (βp)

incorporates spatial effects [41] and is determined by
Census tract-level covariates and the weighted sum of
the residuals of the effect coefficient from the means at
neighborhoods [Nei(βpj(j ≠ c)) in Eq. (2)]. In this study,
spatial adjacency is based on the rook type that defines
two tracts with at least one shared common boundary as
neighbors [45]. The residual to incorporate spatial influ-
ence from neighborhood is:

εp ¼ ρ
X

j≠c
wcj βpj−m βpj

� �� �
ð3Þ

where ρ represents the effects of adjacent neighbors to
be estimated, wcj are spatial weights determining the
relative influence of neighborhood Census tract j on
Census tract c [44] (wcj = 1 if tract c is an adjacent neigh-
bor of tract j; wcj = 0 otherwise).
Point estimates (means) of the posterior effects of air

pollutants and the impact of tract-level factors on the ef-
fects were calculated based on the posterior distribution
using full Bayesian inference in the stage two model,
which is similar to Bayesian inference via Markov Chain
Monte Carlo simulation in stage one. Additional file 1:
Section 2 provides more details for the models. In the
stage one and two models, we ran nine times of MCMC
simulations and used the Gelman and Rubin approach
to diagnose the convergence of the simulations to the
stationary posterior distribution [45].
Figure 2b shows the stage two model of the Bayesian

framework. The hyper-parameters (mean: μ; standard
variance: σ) of the tract-level influential factors were de-
termined according to a priori knowledge or as unin-
formative priors. The outputs included the uncertainty
of the posterior estimates of the effects, and the 95 %
credible intervals (CI).
For evaluation of Bayesian hierarchical models, we used

deviance information criterion (DIC) as a generalization
of the Akaike information criterion and Bayesian informa-
tion criterion. In Bayesian models, DIC has the advantage
over other criteria mainly because it can be easily calcu-
lated from the samples generated by a Markov Chain
Monte Carlo simulation. Smaller values of DIC indicate a
better fitting model.
Although some variables (e.g. ethnicity and NDVI)

were simultaneously used in the stage one and two
models, they represented individual-level characteristics
in the stage one model, and neighborhood or context
characteristics as aggregated features in the stage two
model [46, 47]. We treated ethnicity as a categorical

variable in stage one, but as continuous variables (e.g.
percentages of Hispanic, White, Black and Asian) in
stage two. The NDVI was extracted as the average over
a 500 m buffer of a specific residence in stage one but as
the average over the entire Census tract in stage two.
Our models were constructed in R 3.2.1 (Bell Labora-

tories, New Jersey, US) with the JAGS [48] and BayesX
[49] packages. Details about the use of the packages are
described in the last paragraph in Additional file 1: Sec-
tion 2. We also include the main codes used for the two
stage models as Additional files 2, 3, 4 and 5.
The study has been approved by the Institutional Re-

view Board of the University of California, Irvine.

Results
Table 1 presents summary statistics (mean, median and
inter-quartile range [IQR]) for the means of individual-
level variables across 1948 Census tracts (statistics of
Census tracts: mean area: 4.0 km2; variance of the areas:
26.9 km2). Mean term birth weight was 3393 g with an
IQR of 58 g among all the tracts. Spatiotemporally-
modeled NO2 and NOx exposures (IQR: 11.4 ppb for
NO2; 31.3 ppb for NOx) had high variability (defined as
standard variance divided by mean: 0.42 for NO2, 0.83
for NOx). Table 2 lists the statistics of the association be-
tween air pollution and term birth weight for each indi-
vidual tract across all the tracts. Since a stronger
association was found for exposure during the entire
pregnancy than trimester-specific exposures (Table 2),
we mainly reported the results for exposure during the
entire pregnancy period. The DIC value was 454 for
NO2 and 465 for NOx and the difference in DIC was
relatively small (Table 2).
From the existing literature, the summary of the prior

effects of air pollution on term birth weight confirmed the
normal distribution of the effect size (Additional file 1:
Figure S3). Our sensitivity analysis showed limited influ-
ence of a priori knowledge on posterior estimates (means
NO2 effect: −13.7 g per 10 ppb [our summary] vs. −13.9 g
per 10 ppb [Stieb’s pooled estimate]) despite the small to
moderate differences in a priori estimates using our sum-
mary (as a priori knowledge, Additional file 1: Table S1
and Figure S3) vs. the pooled estimates [3].
Global Moran’s I tests showed spatially-clustering distri-

bution of the associations between air pollutants and term
birth weight. The Z-scores (6.4 for NO2; 6.1 for NOx) were
outside the range of −2.5 and 5.4 with p-value < 0.01, indi-
cating moderate to strong spatial autocorrelation [50].
Therefore, we incorporated spatial effects in stage two.
The potential scale reduction factor for the nine

MCMC simulations ranged from 1.01 to 1.03, ap-
proaching 1.0, indicating a stationary convergence to the
posterior distribution. The overall intercept as the tract-
level posterior average effects of air pollutants on term
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birth weight (Additional file 1: Table S3) was −14.7
(95 % CI: −19.8, −9.7) g per 10 ppb for NO2, and −6.9
(95 % CI: −12.9, −0.9) g per 10 ppb for NOx.
We found significant non-linear associations of

exposure-related factors, socio-demographic factors,
land-use patterns, and greenness with spatial variability
of air pollution effects across Census tracts; the non-
linear trends varied by these factors. The results of linear
models (Additional file 1: Table S2) obscured significant
nonlinear trends of such associations. The non-linear
model captured the thresholds of the influential factors
when their effects started to change markedly (Fig. 3 and
Additional file 1: Figures S4 and S5). For illustration pur-
poses, Additional file 1: Table S3 shows the changes in
the average effects of air pollutants between the 1st and

the 4th quartiles of the tract-level factors, compared
with the average posterior effects as the reference.
We found that the tracts further away from freeways/

highways generally had smaller reduction in term birth
weights associated with exposure to NO2 and NOx (less
weight reduction from the 1st to the 4th quartile of the
distance: 3.7 g per 10 ppb for NO2; 4.9 g per 10 ppb for
NOx). The tracts with a higher percentage of the people
driving to work (approximately 36–60 %) were associ-
ated with higher reduction in term birth weight for ex-
posure to NO2 and NOx (more weight reduction from
the 1st to the 4th quartile of the percentage of the popu-
lation driving to work: 1.6 g per 10 ppb for NO2; 14.7 g
per 10 ppb for NOx). Additionally, the tracts with more
people using gas for indoor heating had larger reduction

Table 1 Statistics for the means of the target and individual-level variable across Census tracts

Type Variable Category Mean Median Inter quartile range (IQR)a

Target variable Term birth weight (g) 3393 3392 58 (3363,3421)

Pollution indicator Spatiotemporal NO2 (ppb)
b 25.00 24.14 11.43 (18.74, 30.17)

Spatiotemporal NOx (ppb)
c 17.32 26.31 31.32 (15.48, 46.80)

Individual- level variable NDVI 0.26 0.25 0.09 (0.21, 0.30)

Maternal age 28.8 28.1 4.1 (26.7, 30.8)

Length of gestation 277 276 12 (271,283)

Infant gender (percentage) Male 49 % 49 % 6 % (46–52 %)

Female 51 % 51 % 6 % (48–54 %)

Race/ethnicity (percentage) Hispanic 54 % 57 % 57 % (26–83 %)

White 24 % 12 % 43 % (2–45 %)

Black 6 % 3 % 5 % (0.8–6 %)

Asian 13 % 8 % 14 % (2–16 %)

Others 2 % 1 % 2 % (1–3 %)

Maternal educational level (percentage) Less than 8th grade 10 % 8 % 15 % (1–16 %)

9th grade to high school 42 % 47 % 36 % (24–60 %)

Less than 4 years of college 29 % 20 % 43 % (6–49 %)

4+ of college 19 % 19 % 11 % (13–24 %)
aIQR for the mean (continuous variables) or percentage (categorical variables);
bEstimates of NO2 by the spatiotemporal model; cEstimates of NOx by the spatiotemporal model

Table 2 Statistics of the effectsa of NO2 and NOx on term birth weight across all the tracts

Pollutants Period Mean (g/ppb) 95 % confidence intervals Mean of deviance
information criterion

NO2(ppb) 1st trimester −0.99 [−1.39, −0.59] 512

2st trimester −0.79 [−1.26, −0.32] 501

3st trimester −1.27 [−1.72, −0.82] 505

Entire Pregnancy −1.89 [−2.23, −1.55] 454

NOx(ppb) 1st trimester −0.54 [−0.80, −0.28] 514

2st trimester −0.52 [−0.78, −0.26] 512

3st trimester −0.61 [−0.90, −0.32] 512

Entire Pregnancy −0.87 [−1.09, −0.65] 465
aChange in term birth weight (g) per unit increase in exposure to air pollution (ppb)
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in term birth weight from air pollution (more weight re-
duction from the 1st to the 4th quartile of the percent-
age of the population using gas for indoor heating: 1.8 g
per 10 ppb for NO2; 17.4 g per 10 ppb for NOx).
For the tract-level socio-demographic factors, house-

hold income, ethnicity and education level played im-
portant roles in spatial variability of the health effects on
term birth weight. Higher household income was associ-
ated with smaller reduction in birth weight from air pol-
lution exposure (less weight reduction from the 1st to
the 4th quartile: 1 g per 10 ppb for NO2; 3.4 g per 10 ppb
for NOx). Race/ethnicity showed significant influence on
the effects of air pollution: a higher percentage of the
Whites were associated with a lower risk of reduced birth
weight from air pollution exposure (less weight reduction
from the 1st to the 4th quartile: 0.3 g per 10 ppb for
NO2). Further, a higher percentage (>10 %) of the women
with no or low education (below bachelor level) was asso-
ciated with a higher risk of reduced birth weight from
NO2 exposure (more weight reduction by 5.1 g per 10 ppb
from the 1st to the 4th quartile).
For the land-use patterns, a higher percentage (>ap-

proximately 18 %) of heavy-industry land-use (range: 0–
30 %) was linked to larger effects of NO2 and NOx on
reduced birth weight (more weight reduction by 13.0 g
per 10 ppb of NO2 and 3.9 g per 10 ppb of NOx, about
56–88 % of the tract-level posterior average effects, from
the 1st to the 4th quartile of the percentage of heavy-
industry land-use area]. A higher percentage (>5.8 % for
NO2; >3.8 % for NOx) of electrical power facilities land-

use (range: 0–12 %) resulted in higher risks of NO2 and
NOx (more weight reduction by 31.4–62.3 g per 10 ppb
from the 1st to the 4th quartile). Conversely, park and
recreational land-use and NDVI (Fig. 3-f ) were respect-
ively associated with smaller reduction in birth weight
from NOx (less weight reduction by 6.7 g per 10 ppb
from the 1st to the 4th quartile) and NO2 (less weight
reduction by 4.8 g per 10 ppb from the 1st to the 4th
quartile) exposure.
Spatial effects accounted for an important proportion

(35–46 %) of the spatial variability of air pollution effect
on term birth weight. Additional file 1: Figure S6 showed
moderate-to-strong spatial clustering of the spatial dis-
tribution of posterior effects of NO2 (a) and NOx (b) on
term birth weight and the spatial clustering patterns
were similar between the two pollutants. Additional file
1: Figure S7 presents the uncertainty of the results, i.e.
the probability that air pollution effect is negative
(adverse effect) in a given Census tract.

Discussion
Using the two-stage hierarchical Bayesian models, we
quantified the effects of air pollution exposure on term
birth weight and examined Census tract-level factors
contributing to the spatial variability of such effects.
Overall, the posterior estimates confirmed the negative
association between air pollution exposure and term
birth weight although the associations with NO2 were
more supported by the previous studies than that with
NOx. The sensitivity analysis shows small difference

a. Decrease in effect for distance from freeways (NO2)  b. Increase in effect for population driving to work (NO2) c. Decrease in effect for mean NDVI (NO2)  

d. Decrease in effect for median household income (NOx) e. Increase in effect for heavy industry land-use (NOx) f. Increase in effect for electricity facility land-use (NOx)  

Fig. 3 Non-linear influence of the tract-level factors on effects of air pollutants on term birth weight. The gray dash lines indicate the approximate
intervals of thresholds where the influential factors start to take pronouncedly attenuating (a, c and d) or aggravating (b, e, f) influence on effects
of air pollutants. The shades around the curve indicate the 95 % pointwise confidence limits of the estimate acquired by the hierarchical models
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between the prior effects of NO2 and our posterior esti-
mates. This may reflect the consistency about the ad-
verse effect of NO2 on term birth weight. The average
posterior output showed adverse effects of NO2 and
NOx on term birth weight: NO2 and NOx may suppress
antioxidant defense system, cause lipid peroxidation and
disturb fetus development, thus potentially leading to
low birth weight [2].
To our knowledge, this is the first study employing the

Bayesian non-linear approach to examine spatial vari-
ability of the effects of air pollution on term birth weight
across Census tracts and the factors contributing to such
variability. Whereas the previous studies used the penal-
ized smooth splines to adjust for the covariates [26, 27]
or to simulate non-linear exposure-response associations
[24, 25], this study used Bayesian hierarchical regression
to quantify non-linear trends for the influence of the
Census tract-level factors on the associations between
ambient air pollutant concentrations and term birth
weight, e.g. identifying the thresholds where the influ-
ence had significant marked change, as shown in Fig. 3.
Compared to the other non-linear methods, the Bayesian
approach can minimize over-fitting by combining data
with a priori knowledge; the latter is used as a penalty
on the parameters (e.g. effects of NO2 on term birth
weight) to be learned to reflect the prior knowledge. Epi-
demiological studies have frequently linked air pollution
with adverse birth outcomes [3]. Based on the literature,
we summarized the mean effect and the variance, and
use them as a priori knowledge in the Bayesian models.
The variances of a priori knowledge and the training
sample determine the weights between both [43]: if the
prior mean effect has a small variance, indicating rela-
tively consistent findings from the previous studies,
higher weight is assigned to the prior mean effect; con-
versely, if the prior mean effect has a high variance, indi-
cating heterogeneity in previous findings, lower weight is
given to the prior mean effect and higher weight is given
to the training sample. Thereby, the use of variances as
the weights for a priori knowledge and data can effect-
ively control the influence of over-smoothing by using
the prior mean. Further, the incorporation of spatial ef-
fects within the Bayesian model enabled the identifica-
tion of spatial patterns of the adverse effects of NO2 and
NOx on term birth weight.
The emissions of air pollutants not accounted for by

NO2 and NOx exposures may influence the spatial vari-
ability of the effects of the two pollutants on term birth
weight. Being away from freeway/highway might lead to
lower local traffic-related air pollutant exposure and lower
noise exposure at residential locations, thus lowering the
effect of NO2 and NOx at the Census tract level. We
found lower risk of air pollution for reduction in term
birth weight in Census tracts with a higher percentage of

people biking or walking to work, or with a higher per-
centage of people who commute less than 30 min to work.
For the working population taking vehicles, average ex-
posure to traffic-related pollutants may be higher due to
their exposure in commutes [38]. Further, more work-
related commutes may increase the concentrations of
traffic-related air pollution in local communities that were
not captured by the spatiotemporal models for NO2 and
NOx. Additionally, long commuting time is likely associ-
ated with a higher stress level (e.g. driving activity itself
and shorter time with family) that might lead to the ob-
served higher risk associated with air pollution [8, 51].
Besides ambient pollution, we observed that house heat-

ing was significantly associated with increase of the tract-
level adverse effects. This may indicate an effect of
increased exposure to indoor air pollution [52]. Although
house heating is uncommon in Los Angeles, the availabil-
ity of gas heaters may indicate a 50 % probability of use of
gas stove at least for cooking according to the US Residen-
tial Energy Consumption Survey [53, 54]. Gas stove use
may increase indoor concentrations of NO2, particulate
matter and other pollutants [52, 55, 56], which may add to
the observed risk of NO2 and NOx.
This study suggests important influence of socio-

demographic factors. Higher household income reflects
higher SES and likely lower vulnerability to the effects of
air pollution, consistent with the previous studies [9, 57].
Results also showed a non-linear trend: beyond the thresh-
old of about $40,000–60,000, the influence of income on
the effects of air pollution became much weaker [58].
Further, Census tracts with a higher percentage of

Whites had a lower risk of reduced birth weight. Previ-
ous studies [6, 57, 59] consistently showed weaker ad-
verse effects of air pollution in White mothers than in
African American mothers. Besides genetic differences,
SES in different race groups may also contribute to the
observed differences in health effects. In our study popu-
lation, tract-level median household income was nega-
tively associated with the percentage of African
Americans and positively correlated with the percentage
of Whites (Pearson’s correlation: −0.19 vs. 0.54).
Higher maternal education may indicate higher SES,

more knowledge on potential adverse effects of environ-
mental agents, and healthier life style, which may reduce
the adverse effects of air pollution on pregnancy outcomes.
Our results agree with a number of previous studies that
linked lower maternal educational level with adverse preg-
nancy outcomes including term low birth weight [6].
Land-use patterns may indicate more or less exposures

to uncounted air pollution sources or to green space.
Typically, heavy industry might produce higher local
emissions of air pollution or other pollutants not cap-
tured by our exposure measures and models. In fact, in-
dustry land-use was not included as a predictor in our
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spatiotemporal models. Heavy industry might also be as-
sociated with other environmental insults such as noise.
Further, we found a non-linear trend, with a threshold
(approximately 18 % of area) for heavy industrial land-use,
above which the influence was noticeably exacerbated for
the effects of NO2 and NOx. Further, the land-use of elec-
trical power facilities had significant influence on the effects.
Electrical power facilities included electric power installa-
tion, welding, induction heaters and electrified transport sys-
tems that were important sources of extremely low
frequency fields [60]. We found non-linearly increased ad-
verse effects of air pollution on term birth weight beyond
the threshold of 3.8–5.8 % of area for electrical power facil-
ities. Several studies [61–63] showed adverse influence of
the extremely low frequency fields on pregnant women. A
possible mechanism for this is that the extremely low fre-
quency fields might disturb the balance between plasma and
vascular cell Ca2+, subsequently resulting in disruption of
placental vascular function change and suboptimal growth
of the fetus, thus potentially impairing fetal growth. How-
ever, more investigation is required to evaluate whether the
electrical power facility land-use as a neighborhood factor
might aggravate the adverse effects of air pollution.
Contrarily, the exposure to the park and recreational

land-use and greenness was associated with a smaller re-
duction in term birth weight from NO2 and NOx expos-
ure. A higher value of the two variables might be
associated with more active social and physical activities
in the neighborhoods [64], reduced local temperature and
exposure level to air pollution and noise, and less stress
[65]. Our findings on the beneficial effects of greenness
are consistent with the previous studies [36, 64, 66].
Traditional regression analysis, without considering

spatial effects, may generate the estimates with spatially
auto-correlative residuals [67]. In this study, NO2 and
NOx had similar patterns of spatial clustering. Strong
spatial patterns might indicate significant influence of the
regional factors such as regional patterns (potentially cor-
related with pregnancy outcomes) in diet and lifestyle, and
surrounding terrain or physical setting (not included in
the model) on the health effects of air pollution.
Our finding of spatially varying effects of air pollution is

consistent with the recent finding of Coker et al. [13] for
the same study region (Los Angeles). Our study advanced
the previous studies [12–14] by using Bayesian hierarch-
ical models to assess which factors contributed to the
varying spatial effects of air pollution. We identified the
tract-level factors that attenuate or exacerbate the associ-
ation between air pollutants and term birth weight.
This study has several limitations. First, a priori effect

of air pollution on term birth weight was derived from a
limited number of studies that either used air pollution
measures of relatively coarse spatial resolution or used
simplistic regression models. To minimize the potential

inconsistency and bias in the estimation of air pollution
effects, we incorporated the variance of the prior evi-
dence as an uncertainty indicator and used it as weights
between data learning and a priori knowledge. Second,
although advanced spatiotemporal models were used to
estimate air pollutant concentrations, there was still un-
certainty in estimating the personal exposure of preg-
nant women. We did not consider exposures at
workplace and in vehicles. In addition, we relied on the
address at delivery for exposure assessment and did not
consider the change of address during pregnancy due to
a lack of data. This might introduce exposure misclassifi-
cation for a limited number of mothers. Third, we did
not account for the influence of multiple pollutants.
However, it is difficult to put the pollutants together in
one model since this may introduce co-linearity (we
found strong correlation [Pearson’s r = 0.81] between
NO2 and NOx). Fourth, although our non-linear models
detected the thresholds of the land-use from which the in-
fluences on the effects of air pollutants had pronounced var-
iations, such thresholds may vary across cities or regions.
For example, the heavy-industry land-use may be affected
by the type of industry, spatial distribution of population
and emission sources, and thus such threshold may vary by
city. In addition, the greenness indicator of NDVI did not
specify types of vegetation, which may differ by region and
have different influence on the effects of air pollutants.
However, the spatial effect included in our models might
partially account for such confounding effects. Fifth, our ap-
proach quantified the associations between the influential
factors and the effects of air pollutants, but such associations
were not necessarily causal. For example, the distance from
highway may just represent suburban tracts, which are very
different from the urban tracts.

Conclusions
This study developed a new two-stage hierarchical
model based on a Bayesian framework to quantify the ef-
fects of air pollution exposure on term birth weight and
examine the factors contributing to spatial variability of
such effects across Census tracts. The posterior results
confirmed the adverse effect of air pollution on term
birth weight. The effects of air pollution varied across
Census tracts, and were significantly influenced by
the tract-level exposure-related environmental, socio-
demographic and land-use factors. We detected non-
linear thresholds from which the influential factors
started to pronouncedly attenuate or exacerbate the
influence of air pollutants. Further, modeled spatial
effect accounted for a large portion of the variance
explained. Our results can inform the public and the
decision makers about the spatial distribution of the
health effects of air pollution across Census tracts
and the influential factors of such effects.
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