
J
H
E
P
0
2
(
2
0
1
4
)
0
1
4

Published for SISSA by Springer

Received: January 3, 2014

Accepted: January 15, 2014

Published: February 4, 2014

Thermodynamics of Lovelock black holes with a

nonminimal scalar field

Francisco Correaa and Mokhtar Hassaineb

aCentro de Estudios Cient́ıficos (CECs),

Valdivia, Chile
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1 Introduction

During the last decades, the interests on higher-dimensional physics have grown up par-

ticulary concerning the higher-dimensional General Relativity. In this context, apart from

the standard Einstein-Hilbert action, there also exists an interesting gravity theory in di-

mension d ≥ 5 involving higher powers of the curvatures such that the field equations for

the metric are at most of second-order. This theory known as the Lovelock gravity has

been first implemented in five dimensions by Lanczos [1] and then generalized in higher

dimension d ≥ 5 by Lovelock [2]. The resulting action is a d−form constructed out of

the vielbein, the spin connection and their exterior derivative without using the Hodge

dual. The invariance under local Lorentz transformations of the Lovelock Lagrangian can

be extended to a local anti-de Sitter (AdS) or Poincaré symmetry through a particular

choice of the coefficients appearing in the Lovelock expansion. In both cases, the result-

ing Lagrangian is a Chern-Simons form whose supersymmetric extensions are also known;

see [3] for a good review on Chern-Simons (super)gravity. The Lovelock gravity or its

Chern-Simons particular case have been shown to possess (topological) AdS black hole

solutions with interesting thermodynamical properties [4–7] generalizing those obtained in

the Einstein-Gauss-Bonnet case [8, 9].

In order to source the Lovelock gravity with the purpose of obtaining black hole so-

lutions, nonminimally coupled scalar field can be an excellent candidate. Indeed, the

nonminimal coupling may be useful to escape the standard no-hair theorems, and black

hole solutions are known in this case in standard Einstein gravity (with and without cos-

mological constant) in four dimensions with a conformal coupling [10–13]. Recently, there

has been a renewal interest concerning this kind of source particularly in order to gain a

better understanding of some unconventional superconductors [14–16]. Indeed, it is be-

lieved that black hole solutions with scalar hair at low temperature that disappears at high

temperature will be of particular importance for the unconventional superconductors since

they will reproduce the correct behavior of the superconductor phase diagram.
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In the present work, we consider a series of particular Lovelock gravity actions indexed

by an integer k in dimension d, and sourced by a self-interacting nonminimal scalar field.

To be more precise, the arbitrary coefficients appearing in the Lovelock series are fixed

by requiring that the resulting theory has a unique anti-de Sitter vacuum with a fixed

cosmological constant This yields to k = 1, 2 · · · , [d−1
2 ] inequivalent gravity theories where

k = 1 corresponds to the standard Einstein-Hilbert action. Note that such model with a

mass term potential has been considered in [17, 18], and black hole solutions with planar

horizon have been obtained for two particular values of the nonminimal coupling parameter.

Here, we generalize these solutions and obtain black hole solutions for any value of the

nonminimal coupling parameter. This task is achieved thanks to the introduction of a

much more general self-interacting term that depends explicitly on the integer index k.

More specifically, we show that for each inequivalent Lovelock gravity theory indexed by k,

there exists a judicious choice for the self-interacting potential that permits to derive black

hole solutions for arbitrary value of the nonminimal coupling parameter. The solutions are

shown to be uniparametric and reduce to those derived in [17, 18] for the special values of

the nonminimal coupling parameter. The thermodynamics study of the solutions realized

through the Hamiltonian analysis reveals that these configurations have a zero mass as

well as a vanishing entropy. More precisely, we show that the mass contribution coming

from the gravity side exactly cancels the mass contribution inherent to the matter source.

The vanishing of the entropy can be also corroborated by the fact that the entropy of the

solutions is proportional to the lapse function evaluated at the horizon. Since the constant

appearing in the black hole solution does not contribute to any conserved charge, we

interpret it as a sort of hair which turns out to be inversely proportional to the temperature.

Hence, at high temperature, this hair will disappear and this kind of behavior is excepted

in the unconventional superconductors in order to correctly reproduce the phase diagram.

The plan of the paper is organized as follows. In the next section, we present the

model, the field equations and the solutions. Section 3 is devoted to the thermodynamical

analysis while our conclusions and comments are given in the last section.

2 Lovelock black hole solution with arbitrary nonminimal coupling

parameter

We consider a generalization of the Einstein-Hilbert gravity action in arbitrary dimension

d yielding at most to second-order field equations for the metric and known as the Lovelock

Lagrangian. This latter is a d−form constructed with the vielbein ea, the spin connection

ωab, and their exterior derivatives without using the Hodge dual. The Lovelock action is

a polynomial of degree [d/2] (where [x] denotes the integer part of x) in the curvature

two-form, Rab = dωab + ωa
c ∧ ωcb as

∫ [d/2]
∑

p=0

αp L(p), (2.1a)

L(p) = ǫa1···adR
a1a2 · · ·Ra2p−1a2pea2p+1 · · · ead , (2.1b)
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where the αp are arbitrary dimensionful coupling constants and where wedge products

between forms are understood. Here L(0) and L(1) are proportional respectively to the

cosmological term and the Einstein-Hilbert Lagrangian. As shown in ref. [6], requiring the

Lovelock action to have a unique AdS vacuum with a unique cosmological constant, fixes

the αp yielding to a series of actions indexed by an integer k, and given by

Ik = − 1

2k(d− 3)!

∫ k
∑

p=0

Ck
p

(d− 2p)
L(p), 1 ≤ k ≤

[

d− 1

2

]

, (2.2)

where Ck
p corresponds to the combinatorial factor. The global factor in front of the integral

is chosen such that the gravity action (2.2) can be re-written in the standard fashion as

Ik =
1

2

∫

ddx
√−g

[

R+
(d− 1)(d− 2)

k
+

(k − 1)

2(d− 3)(d− 4)
LGB

+
(k − 1)(k − 2)

3!(d− 3)(d− 4)(d− 5)(d− 6)
L(3) + · · ·

]

, (2.3)

where LGB = R2 − 4RµνR
µν +RαβµνR

αβµν stands for the Gauss-Bonnet Lagrangian, and

L(3) is given by

L(3) = R3 − 12RRµνR
µν + 16RµνR

µ
ρR

νρ + 24RµνRρσR
µρνσ + 3RRµνρσR

µνρσ

− 24RµνR
µ
ρσκR

νρσκ + 4RµνρσR
µνηζRρσ

ηζ − 8RµρνσR
µ ν
η ζR

ρησζ .

Note that in odd dimension d = 2n− 1 and for k = n− 1, the corresponding action In−1 is

a Chern-Simons action, that is a (2n−1)−form whose exterior derivative can be written as

the contraction of an invariant tensor with the wedge product of n curvatures two-forms.

In even dimension d = 2n, the maximal value of k is n − 1, and in this case the resulting

gravity action has a Born-Infeld like structure since it can be written as the Pfaffian of

the 2−form R̄ab = Rab + eaeb. The gravity theories Ik have been shown to possess black

hole solutions with interesting features, in particular concerning their thermodynamics

properties, see [6] and [7].

For each k ≥ 2, we source the gravity actions Ik with a self-interacting and nonmini-

mally coupled scalar field, that is

Sk = Ik −
∫

ddx
√−g

[

1

2
∂µΦ∂

µΦ+
ξ

2
RΦ2 + Uk(Φ)

]

, (2.4)

where ξ denotes the nonminimal coupling parameter and Uk is a potential term which de-

pends explicitly on the index k, and whose form will be given below. The field

equations read

G(k)
µν = Tµν , (2.5a)

�Φ = ξRΦ+
dUk

dΦ
, (2.5b)
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where G(k)
µν is the gravity tensor associated to the variation of the action Ik (2.2),

G(k)
µν = Gµν −

(d− 1)(d− 2)

2k
gµν +

(k − 1)

2(d− 3)(d− 4)
Kµν

+
(k − 1)(k − 2)

3!(d− 3)(d− 4)(d− 5)(d− 6)
Sµν + · · ·

where Kµν is the Gauss-Bonnet tensor

Kµν = 2
(

RRµν − 2RµρR
ρ
ν − 2RρσRµρνσ +R ρσγ

µ Rνρσγ

)

− 1

2
gµνLGB

and Sµν arises from the variation of L(3),

Sµν = 3
(

R2Rµν − 4RRρµR
ρ
ν − 4RρσRρσRµν + 8RρσRρµRσν − 4RRρσRρµσν

+ 8RρκRσ
κRρµσν − 16RρσRκ

(µR|κσρ|ν) + 2RRρσκ
µRρσκν +RµνR

ρσκηRρσκη

− 8Rρ
(µR

σκη
|ρ|R|σκη|ν) − 4RρσRκη

ρµRκησν + 8RρσR
ρκσηRκµην − 8RρσR

ρκη
µR

σ
κην

+ 4RρσκηRρσζµR
ζ

κη ν − 8RρκσηRζ
ρσµRζκην − 4Rρσκ

ηRρσκζR
η ζ
µ ν

)

− 1

2
gµνL(3).

In the matter part of the equations, Tµν stands for the energy-momentum tensor of the

scalar field whose expression is given by

Tµν = ∂µΦ∂νΦ− gµν

(

1

2
∂σΦ∂

σΦ+ Uk(Φ)

)

+ ξ (gµν�−∇µ∇ν +Gµν) Φ
2. (2.6)

For each inequivalent theory k ≥ 2 and for ξ 6= 1
4 , the potential is given by the sum of the

six following terms

Uk(Φ)=
1

(4ξ−1)2

[

α1Φ
2+α2 bΦ

1
2ξ +α3 b

2Φ
1−2ξ

ξ +α4Φ
2k
k−1 +α5 bΦ

4ξ+k−1
2ξ(k−1) +α6 b

2Φ
2ξ(2−k)+k−1

ξ(k−1)

]

(2.7)

and depends of a parameter b and the constants αi which read

α1 = 8ξd(d− 1)(ξ − ξd)(ξ − ξd+1), α2 = −16ξ2(d− 1)(ξ − ξd), α3 = 2ξ2

α4 = −8ξ
k

k−1 (1 + (k − 1)d)((k − 1)d+ 2− k)

(k − 1)k

(

ξ − ξ̂k,d

)(

ξ − ξ̂k,d+1

)

α5 =
16ξ (k(d− 1)− (d− 2))− 4d(k − 1) + 8(k − 1)

(k − 1)
ξ

2k−1
k−1 , α6 = −8ξ + 2(k−1)

k − 1
ξ

2k−1
k−1 .

Here ξd denotes the conformal coupling in d dimensions and we have defined ξ̂k,d by

ξd =
d− 2

4(d− 1)
, ξ̂k,d =

(d− 2)(k − 1)

4 [(d− 1)k − (d− 2)]
. (2.8)

Various comments can be made concerning the particular form of the potential (2.7). We

anticipate that this potential naturally emerges looking for solutions of the field equations

with an Ansatz of the form

ds2 = −F (r)dt2 +
dr2

F (r)
+ r2d~x2d−2, Φ = Φ(r). (2.9)
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We also note that the self-interacting term depends explicitly on a coupling constant b

as well as on the index parameter of the Lovelock theories k, and this dependence on k

only concerns the last three terms of the potential. The first three terms of Uk exactly

reproduce the potential that appears in many different contexts involving nonminimally

coupled scalar field as for examples for the stealth configuration [19] on the BTZ black

hole [20], or when looking for AdS wave backgrounds [21], or for black hole solutions when

adding axionic fields coupled with the scalar field [22]. For b = 0 and ξ = ξ̂k,d or ξ = ξ̂k,d+1,

the potential reduces to the mass term considered in [17, 18] for which black hole solutions

have been found. It is also clear from its expression that Uk is not well defined for ξ = 1
4 ,

and its derivation for this particular coupling involves logarithmic pieces.

Let us now present some solutions of the field equations (2.5). For k ≥ 2 and ξ 6= 1
4 ,

an uniparametric black hole solution with planar horizon is given by

ds2 = −r2

(

1−
[

ξ(ar + b)
4ξ

4ξ−1

]

1
k−1

)

dt2 +
dr2

r2

(

1−
[

ξ(ar + b)
4ξ

4ξ−1

]

1
k−1

) + r2d~x2d−2,

Φ(r) = (ar + b)
2ξ

4ξ−1 , (2.10)

where a is an integration constant. We first stress that this solution is valid for any

arbitrary value of the nonminimal coupling parameter ξ 6= 0, and for ξ ∈]0, 14 [, the solution
is asymptotically AdS while for ξ > 1

4 the asymptotic behavior of the metric is faster that

the usual AdS one. It is interesting to note that the singularity rs is localized at rs = − b
a

but it can always be hidden by the horizon rh = − b
a + ξ

1−4ξ
4ξ

a provided that the constant

a > 0. For b = 0, and for ξ = ξ̂k,d or for ξ = ξ̂k,d+1, the solutions (2.10) reduce to those

found in the case of a mass term potential [17, 18]. We would like also to point out an

important remark concerning the lapse function appearing in the metric solution that will

be of importance in the thermodynamics study of these solutions. The metric function

solution can be expressed in term of the scalar field as

r2

(

1−
[

ξ(ar + b)
4ξ

4ξ−1

]

1
k−1

)

= r2
(

1−
(

ξΦ2
)

1
k−1

)

and, hence the localization of the horizon rh is such that

(

1− ξΦ2
)

|rh = 0. (2.11)

However, as we will see below, the entropy of the solutions is always proportional to this

quantity (2.11), and consequently the solutions (2.10) will have a zero entropy. We also

remark that the existence of these solutions is strongly inherent to the presence of the

higher curvature terms present in the Lovelock Lagrangian. Indeed, it is clear from the

different expressions obtained here that the standard GR limit k = 1 is singular, and hence

these solutions are only effective for the higher order Lovelock terms k ≥ 2.

– 5 –
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To conclude this section, we present the solution for the coupling ξ = 1
4 . The self-

interacting potential is given by

U[k,ξ= 1
4
](Φ) =

1

8k(k − 1)

{

4

[

ln

(

Φ

b

)]2
(

−4
1

1−k k2Φ
2k
k−1 +Φ2k(k − 1)

)

− 4k(k − 1)(d− 1) ln

(

Φ

b

)

(

4
1

1−kΦ
2k
k−1 − Φ2

)

+ (d− 2)(d− 1)(k − 1)
(

−4
1

1−k (k − 1)Φ
2k
k−1 +Φ2k

)

}

, (2.12)

and the equations of motion (2.5) admit a solution where the scalar field and the metric

are given as follows

Φ(r) = b ear, F (r) = r2

(

1−
[

1

4
b2 e2ar

]
1

k−1

)

.

3 Thermodynamics

The partition function for a thermodynamical ensemble is identified with the Euclidean

path integral in the saddle point approximation around the Euclidean continuation of the

classical solution [23]. The Euclidean and Lorentzian action are related by IE = −iI where

the periodic Euclidean time is τ = it. The Euclidean continuation of the class of metrics

considered here is given by

ds2 = N(r)2F (r)dτ2 +
dr2

F (r)
+ r2

(

dx21 + dx22 + · · ·+ dx2d−2

)

.

In order to avoid conical singularity at the horizon in the Euclidean metric, the Euclidean

time is made periodic with period β and the Hawking temperature T is given by T = β−1.

Here we are interested only in the static solution with a radial scalar field, and hence it is

enough to consider a reduced action principle. This latter is given by

IE = −βΣd−2

∫ ∞

rh

N

2k
(d− 2)

d

dr

[

rd−1

(

1− F

r2

)k
]

+ βΣd−2

∫ ∞

rh

Nrd−2

{(

1− 4ξ

2

)

F (Φ′)2 − ξΦΦ′

(

F ′ +
2(d− 2)

r
F

)

− 2ξΦΦ′′F

−(d− 2)ξ

2r
F ′Φ2 +Φ2

(

− ξ

2r2
(d− 2)(d− 3)F

)

+U(Φ)

}

+B (3.1)

where the radial coordinate r belongs to the range [rh,∞[ where rh is the location of the

horizon. Here, β stands for the inverse of the temperature and Σd−2 corresponds to the

compactified volume of the planar (d − 2)−dimensional base manifold. In the reduced

action (3.1), B is a boundary term that is fixed by requiring that the Euclidean action has

an extremum, that is δIE = 0 which in turn implies that

δB = βΣd−2 (δBgravity + δBmatter) (3.2)

– 6 –
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where the first contribution δBgravity arises from the variation of the gravity part while the

second one δBmatter comes from the matter source, and are given by

δBgravity =

∫ ∞

rh

N

2k
(d− 2)

d

dr

[

rd−1δ

(

1− F

r2

)k
]

,

(3.3)

δBmatter =

∫ ∞

rh

2ξΦFrd−2δΦ′ +

∫ ∞

rh

δF

[

ξ(d− 2)

2
rd−3Φ2 + ξΦΦ′rd−2

]

+

∫ ∞

rh

{

δΦ
[

FΦ′rd−2(2ξ − 1)− ξF ′Φrd−2
]}

.

In the grand canonical ensemble, the Euclidean action is related with the mass M and the

entropy S by

IE = βM−S. (3.4)

For the solution (2.10), we have the following asymptotic variation behaviors

δF |∞ = −αξ
1

k−1aα−1(δa)

[

rα+2 +
b(α− 1)

a
rα+1 +

b2(α− 1)(α− 2)

a2
rα + · · ·

]

,

δΦ|∞ = a
(k−1)α

2 (δa)

[

r
(k−1)α

2 +
(k−1)αb

2a
r

(k−1)α−2
2 +

(k−1)α ((k−1)α−2) b2

4a2
r

(k−1)α−4
2 +· · ·

]

,

δΦ′|∞ =
d

dr
(δΦ|∞) ,

where for simplicity we have defined α = 4ξ
(k−1)(4ξ−1) . At the horizon rh the variations read

δF |rh = −F ′|rhδrh, δΦ|rh = δΦ(rh)− Φ′|rhδrh .

It is intriguing that for the solution (2.10), the variation of the gravity part at the infinity

exactly cancels at each order the variation of the matter at infinity, that is

δBgravity(∞) = −δBmatter(∞),

and hence we have B(∞) = 0. At the horizon, a simple computation yields

δB(rh) = 2πΣd−2δ
[

(

1− ξΦ2(rh)
)

rd−2
h

]

but as stressed before (2.11) the quantity between brackets vanishes. Hence, the bound-

ary term vanishes identically, B = 0, and the identification of the mass and the entropy

through (3.4) yields

M = 0, S = 0.

It is then clear that the solutions obtained here have the particularity that their entropy

is proportional to the lapse function evaluated at the horizon (2.11), and this quantity,

by definition of the horizon, precisely vanishes. Consequently, the integration constant

– 7 –
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a appearing in the solution can be naively interpreted as a sort of hair since it has not

conserved charged associated to it. The temperature of the solution is given by

T = − ξ
8ξ−1
4ξ

πa(k − 1)(4ξ − 1)

(

ξ
1−4ξ
4ξ − b

)2

, (3.5)

and turns out to be positive provided that the nonminimal coupling parameter ξ < 1
4

which is precisely the range where the solutions behaves asymptotically AdS. Interestingly

enough, the temperature being inversely proportional to the hair a, this implies that a

high temperature the hair will disappear as it is excepted in order to reproduce the phase

diagram of the unconventional superconductors. It is also strange that the mass as well as

the entropy of these solutions vanish identically.

4 Conclusions

Here, we have considered some particular Lovelock gravity theories indexed by an integer k

whose coefficients are fixed by requiring the existence of a unique AdS vacuum with a matter

source given by a self-interacting nonminimally coupled scalar field. We have shown that for

each inequivalent Lovelock gravity theories there exists an appropriate choice for the self-

interacting potential that permits to obtain black hole solutions for any arbitrary values

of the nonminimal coupling parameter. The form of the potential involves six different

terms where the first three terms exactly correspond to the potential that usually arises

in different situations involving nonminimally coupled scalar fields. It will be interesting

to explore in which context the k−depending part of the potential Uk (which concerns

the last three terms in (2.7)) may emerge. The thermodynamics analysis of the solutions

shows that the mass and the entropy of the solutions both vanish, and hence the integration

constant a of the solutions can be viewed as a sort of hair. Such kind of black hole solutions

with vanishing entropy and mass have also be found in the case of pure Lovelock gravity

in [24]. In this reference, the authors consider a direct product Mm ×Hn where Hn is a

negative constant curvature space, and the field equations of the m−dimensional space are

trivially satisfied. Black hole solutions with zero mass and entropy have also be found in

pure Lovelock gravity in even dimension [25] as well as in the case of Lifshitz black hole

solutions of R2 gravity [26]. We believe that, in all these cases, the most general solution

has not been found and only particular solutions have been derived where some parameters

have been switched out, and these latter may contain information about the mass of the

solution. To illustrate this fact, we can take the example of the asymptotically AdS black

solution found in [27] for new massive gravity in three dimensions. The metric solution is

given by F (r) = r2+ br− 4GM , and depends on two integration constants M and b where

b is a sort of gravitational hair while M is related to the mass of the solution [28]. Hence if

one would have only found the particular solution with M = 0, one would have concluded

that the mass of the solution is vanishing.

We have also shown that the temperature T goes like T ∝ a−1 and hence at high

temperature the hair should disappear as it is excepted in order to reproduce the phase

diagram of the unconventional superconductors. It will be more than interesting to explore

– 8 –
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more intensively the possible applications of the solutions derived here in the context of

holographic superconductors. We end with the fact that for a coupling constant b = 0 and

ξ = ξ̂k,d+1 as defined in (2.8), the potential reduces to a mass term and the solution becomes

a stealth configuration [17, 18], that is a particular solution of the field equations (2.5) where

both sides of the equations (gravity and matter) vanish identically

G(k) = 0 = Tµν .

In this particular case, the solution involves an additional integration constant which is due

to the fact that the equation Tµν = 0 becomes invariant under the rescaling of the scalar

field Φ → AΦ, where A is a constant. In order to be self-contained, we present the stealth

solution as found in [17, 18] for b = 0 and ξ = ξ̂k,d+1

ds2 = −
(

r2 − (ar)
1−d
k

)

+
dr2

(

r2 − (ar)
1−d
k

) + r2d~x2d−2,

Φ = Ar
(k−1)(1−d)

2k .

Because of this additional constant A, the quantity (1 − ξΦ2) evaluated at the horizon

may not necessarily be zero, and consequently, the entropy may not be zero. We would

like to further explore this issue concerning the thermodynamics properties of the stealth

solutions arising in the context of nonminimally coupled scalar field.
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