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A holistic view of cancer bioenergetics: 
mitochondrial function and respiration 
play fundamental roles in the development 
and progression of diverse tumors
Md Maksudul Alam†, Sneha Lal†, Keely E. FitzGerald and Li Zhang*

Abstract 

Since Otto Warburg made the first observation that tumor cells exhibit altered metabolism and bioenergetics in the 
1920s, many scientists have tried to further the understanding of tumor bioenergetics. Particularly, in the past decade, 
the application of the state-of the-art metabolomics and genomics technologies has revealed the remarkable plasticity 
of tumor metabolism and bioenergetics. Firstly, a wide array of tumor cells have been shown to be able to use not only 
glucose, but also glutamine for generating cellular energy, reducing power, and metabolic building blocks for biosyn-
thesis. Secondly, many types of cancer cells generate most of their cellular energy via mitochondrial respiration and oxi-
dative phosphorylation. Glutamine is the preferred substrate for oxidative phosphorylation in tumor cells. Thirdly, tumor 
cells exhibit remarkable versatility in using bioenergetics substrates. Notably, tumor cells can use metabolic substrates 
donated by stromal cells for cellular energy generation via oxidative phosphorylation. Further, it has been shown that 
mitochondrial transfer is a critical mechanism for tumor cells with defective mitochondria to restore oxidative phos-
phorylation. The restoration is necessary for tumor cells to gain tumorigenic and metastatic potential. It is also worth 
noting that heme is essential for the biogenesis and proper functioning of mitochondrial respiratory chain complexes. 
Hence, it is not surprising that recent experimental data showed that heme flux and function are elevated in non-small 
cell lung cancer (NSCLC) cells and that elevated heme function promotes intensified oxygen consumption, thereby 
fueling tumor cell proliferation and function. Finally, emerging evidence increasingly suggests that clonal evolution and 
tumor genetic heterogeneity contribute to bioenergetic versatility of tumor cells, as well as tumor recurrence and drug 
resistance. Although mutations are found only in several metabolic enzymes in tumors, diverse mutations in signaling 
pathways and networks can cause changes in the expression and activity of metabolic enzymes, which likely enable 
tumor cells to gain their bioenergetic versatility. A better understanding of tumor bioenergetics should provide a more 
holistic approach to investigate cancer biology and therapeutics. This review therefore attempts to comprehensively 
consider and summarize the experimental data supporting our latest view of cancer bioenergetics.
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Introduction
Terrestrial organisms vary in many ways, but one char-
acteristic common to all living organisms is the need 

for cellular energy. The universal energy currency is 
ATP. Eukaryotes ranging from yeast to humans generate 
ATP via glycolysis and oxidative phosphorylation. The 
term glycolysis comes from the Greek “glyco-,” meaning 
“sweet,” and “-lysis,” meaning “to split.” The name is apt, 
as the glycolytic pathway involves the splitting of sugar to 
produce ATP. Oxidative phosphorylation (OXPHOS) is 
so named because it combines inorganic phosphate with 
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ADP to form ATP in the presence of oxygen. Human cells 
can use various fuels, including glucose, amino acids, and 
fat for ATP production to support cellular function and 
proliferation. Fuel usage for ATP generation is dependent 
on the conditions of the body. For example, in healthy, 
well-fed individuals, skeletal muscle is degraded and 
regenerated frequently. The amino acid pool in humans 
remains relatively unchanged. To keep the amino acid 
pool constant during starvation, the degradation of skel-
etal muscles increases. This occurs so that the body can 
continue to provide energy for essential functions. Glu-
tamine and alanine constitute the majority of amino 
acids released from skeletal muscles during starvation. 
One consequence of unlimited cancer cell proliferation is 
likely to make the human body feel starved and respond 
in a way similar to the body’s response to starvation. 
Hence, it is conceivable that glutamine can be a preferred 
fuel for many types of cancer cells. The importance of 
glutamine in tumor metabolism and bioenergetics is fur-
ther confirmed by recent metabolomics studies show-
ing that α-ketoglutarate from glutamine can undergo 
reductive carboxylation to generate citrate, which can 
be turned into malate for generating NADPH via malic 
enzyme. This provides an alternative pathway for cancer 
cells to generate citrate and NADPH for sustaining ana-
bolic reactions. Another noteworthy development in can-
cer bioenergetics research is the finding that stromal cells 
in the tumor microenvironment can provide cancer cells 
with bioenergetic substrates. Below, we consider previous 
and emerging research results and attempt to provide a 
holistic and up-to-date view of tumor bioenergetics.

Review
High glycolytic rates occur concomitantly with oxidative 
phosphorylation (OXPHOS) in cells of most tumors
Glycolysis was first studied by Louis Pasteur in an 
attempt to understand the process of fermentation in 
1856 [1]. Glycolysis as we understand it today was final-
ized by Buchner in 1947 [2]. Glycolysis consumes 2 ATP 
and produces 4 ATP for a net yield of 2 ATP (Fig. 1). In 
the absence of oxygen, glycolysis is the metabolic path-
way of choice. In the presence of oxygen, however, gly-
colysis only begins the process of aerobic respiration. 
In the presence of oxygen, pyruvate is consumed by the 
tricarboxylic acid (TCA) cycle (Fig.  1). Albert Szent-
Gyorgyi made major contributions elucidating the TCA 
cycle, also known as the Krebs cycle, in the 1920s and 
1930s [3–7]. In 1945, coenzyme A was discovered by 
Fritz Lipmann [8]. However, the most important and 
well-known contributor to the discovery and under-
standing of the TCA cycle is Hans Krebs, who discovered 
that cycle began with citrate [9]. The TCA cycle does 
not produce ATP directly, although it produces 1 GTP, 

which is easily converted to ATP (Fig.  1). However, the 
TCA cycle is extremely important for energy produc-
tion because it provides the precursor molecules, namely 
NADH and FADH2, for OXPHOS (Fig. 1). Breakthroughs 
in OXPHOS were made from 1944 to 1980, beginning 
with Dickens, McIlwain, Neuberger, Norris, Obrien, and 
Young and ending with Boyer [10–12]. OXPHOS is the 
preferred energy-generating method of many life forms, 
including mammals, in the presence of oxygen. This is 
because OXPHOS creates up to 38 ATP molecules per 
one molecule of glucose, as compared to only 2 ATP mol-
ecules generated anaerobically by glycolysis (Fig. 1). Both 
TCA cycle and OXPHOS occur in mitochondria.

How cancer cells gain sufficient ATP to support their 
unabated proliferation and function has fascinated many 
scientists for nearly a century. The German scientist Otto 
Warburg and co-workers performed the first quanti-
tative study of cancer cell metabolism in the 1920s [13, 
14]. They showed that tumor tissues metabolize approxi-
mately tenfold more glucose to lactate in a given time 
than normal tissues, even when presented with enough 
oxygen to metabolize glucose completely to CO2. This 
phenomenon is widely known as the Warburg effect and 
is the origin of the perception that a high glycolytic rate 
is typical of cancer/tumor cells [15]. The rationale for the 
high glycolytic rate was that tumor mitochondria have 
impaired respiration, which is compensated by an unusu-
ally high contribution of aerobic glycolysis to sustain ATP 
generation. The hallmark of aerobic glycolysis is a high 
rate of lactate production from glucose in the presence 
of oxygen. Warburg’s observation has motivated genera-
tions of cancer biologists and biochemists to refine his 
hypothesis and provide mechanistic explanations for it.

However, immediately after the publication of War-
burg’s paper “On the Origin of Cancer Cells” [15], Wein-
house contested Warburg’s ideas based on results in his 
laboratory showing that neoplastic tissues have a normal 
OXPHOS (oxidative phosphorylation) capacity when 
supplemented with NAD+ [16, 17]. In 1979, Reitzer 
and co-workers showed that in cultured HeLa cells, 
more than half of the ATP requirement (determined by 
comparing 14CO2 production from 14C-glutamine and 
14C-lactate production from 14C-glucose) comes from 
glutamine even when a high concentration (10  mM) of 
glucose is present [18]. When fructose or galactose is the 
carbohydrate, glutamine provides greater than 98  % of 
energy by aerobic oxidation from the TCA cycle. Experi-
mental studies in recent years have confirmed the idea 
that glutamine is a major nutrient in cancer cells [19–
22]. Additionally, ample experimental evidence showed 
that glutamine is a good substrate for oxidative metabo-
lism in various tumor and cancer cells [23–26]. It is also 
worth noting that the authors’ lab recently showed that 
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glutamine enables an array of non-small cell lung cancer 
(NSCLC) cells to increase oxygen consumption substan-
tially when glucose is depleted [27]. Taken together, vari-
ous studies have shown that glucose and glutamine are 
key nutrients and fuels for cancer cells [21, 28]. Different 
cancer cells may exhibit varying dependence on glucose 
or glutamine [29, 30].

Both glucose and glutamine are important nutrients 
for many types of cancer cells and tumors
The importance of glutamine as a nutrient and fuel is 
consistent with the fact it is the most abundant amino 
acid released from skeletal muscle, and it is the most 
abundant amino acid in plasma [31]. The importance of 
glucose and glutamine in cancer metabolism and bioen-
ergetics can be easily gleaned from the architecture of 
metabolic pathways (Fig. 2). Both glucose and glutamine 

have dual roles in ATP production and biosynthesis 
(anabolism). Although glucose can generate ATP via 
glycolysis, its most prominent function is evidently in 
anabolism (biosynthesis). As shown in Fig.  2, glucose 
can generate the precursor ribulose-5-P and the reduc-
ing power NADPH via the pentose phosphate pathway. 
The glycolysis intermediate glyceraldehyde 3-P can yield 
glycerol-3-P, which serves as a backbone for the synthesis 
of phosphatidic acid, a precursor for the synthesis of tria-
cylglycerol and phospholipids. Another glycolysis inter-
mediate, 3-P glycerate, is a precursor for serine, which 
can be used to synthesize ceramide and is a precursor for 
one-carbon metabolism. Ultimately, pyruvate generated 
from glucose via glycolysis can be turned into Acetyl CoA 
and serves as a substrate feeding the TCA cycle. Under 
conditions permitting mitochondrial respiration, NADH 
and FADH2 generated from the TCA cycle will lead to 
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high yield of ATP, via the electron transport chain and 
OXPHOS (Fig. 1).

Glutamine is a very versatile nutrient feeding into 
many pathways for ATP generation, redox homeostasis, 
and biosynthesis [22]. Firstly, glutamine is the main sub-
strate supporting TCA cycle anaplerosis. Glutamine can 
be readily turned into α-ketoglutarate, which feeds the 
TCA cycle (Fig.  2), leading to the generation of NADH 
and FADH2, which is used to generate ATP via electron 
transport and OXPHOS (Fig. 1). This can lead to the gen-
eration of various TCA cycle intermediates, which can 
support many biosynthetic reactions and gluconeogen-
esis. Secondly, under hypoxic conditions or when mito-
chondria are defective, α-ketoglutarate from glutamine 
can undergo reductive carboxylation to generate citrate, 
providing a mechanism to sustain anabolic reactions 
[32–34] (Fig.  2). Additionally, citrate generated in this 
way can be turned into malate, which provides another 
mechanism to generate NADPH via malic enzyme 1 [35, 
36]; (Fig. 2).

Cancer cells also exhibit an increased demand for 
fatty acids, besides glucose and glutamine [37, 38]. Fatty 
acids can be synthesized endogenously (Fig. 2) or taken 
up from exogenous sources. In prostate tumors, which 
import less glucose than other tumors [39], β-oxidation 
of fatty acids provides an important energy source [40, 
41]. Additionally, two recent studies showed that acetate 
is a bioenergetic substrate for glioblastoma and brain 
metastases, and it is important for biosynthesis and his-
tone modification in a wide spectrum of tumors [42, 43]. 
Overall, metabolic phenotypes in cancer cells are plastic, 
and cancer cells exhibit greater plasticity than normal 
cells [44].

Stromal cells and adipocytes can provide building blocks 
and fuels to tumor cells
Like other aspects of cancer biology, our understanding 
of tumor metabolism is continuously evolving. Particu-
larly in recent years, some researchers have investigated 
tumor metabolism in the context of the whole tumor 
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microenvironment. These studies suggest a two-com-
partment model for understanding tumor metabolism 
[45–49]. In this model, under the education of cancer 
cells and inflammatory cytokines, stromal cells and adi-
pocytes become “food donors.” Tumor stromal cells 
principally include cancer-associated fibroblasts (CAFs), 
tumor endothelial cells (TECs), and tumor-associated 
macrophages (TAMs). Catabolism in stromal cells and 
adipocytes provides fuels and building blocks (see Fig. 2) 
for the anabolic growth of cancer cells via metabolic 
coupling [48, 49]. For example, by examining MCF7 
breast cancer cells cultured alone or co-cultured with 
nontransformed fibroblasts, Ko et al. showed that CAFs 
undergo an autophagic program, leading to the gen-
eration and secretion of high glutamine levels into the 
tumor microenvironment [50]. The glutamine released 
from CAFs fuel cancer cell mitochondrial activity, driv-
ing a vicious cycle of catabolism in the tumor stroma 
and anabolic tumor cell expansion. Likewise, Nieman 
et  al. showed that triglyceride catabolism in adipocytes 
drives ovarian cancer metastasis by providing fatty acids 
as mitochondrial fuels [51]. Furthermore, a study by Sot-
gia et  al. suggested that glycolytic stromal cells produce 
mitochondrial fuels, L-lactate and ketone bodies, which 
are transferred to oxidative epithelial cancer cells, driv-
ing OXPHOS and mitochondrial metabolism [52]. This is 
strongly supported by their finding that metastatic breast 
cancer cells amplify OXPHOS and that adjacent stromal 
cells are glycolytic and lack detectable mitochondria. In 
essence, these observations and the two-compartment 
model are still consistent with Warburg’s original obser-
vation that tumors show a metabolic shift towards aero-
bic glycolysis.

The metabolic enzymes found to be mutated 
in tumors include isocitrate dehydrogenase, succinate 
dehydrogenase, and fumarate hydratase
With the increased interest in tumor metabolism in 
recent years, mutations in metabolic enzymes have been 
intensely studied. To date, the metabolic mutations asso-
ciated with cancer are found mainly in isocitrate dehy-
drogenase (IDH), succinate dehydrogenase (SDH), and 
fumarate hydratase (FH). IDH catalyzes the oxidative 
decarboxylation of isocitrate to produce α-ketoglutarate 
(α-KG). In humans, there are three different IDH iso-
forms: IDH1, IDH2 and IDH3 (Fig. 2). IDH1 is located in 
the cytosol and peroxisomes, while IDH2 and IDH3 are 
located in mitochondria. IDH1 and IDH2 use NADP+ 
as a cofactor, while IDH3 uses NAD+ as a cofactor in 
the TCA cycle for energy metabolism [53, 54]. All three 
enzymes convert isocitrate to α-KG.

In 2008, the R132H IDH1 mutation was first found 
in human glioblastoma multiforme [55]. Subsequently, 

mutations of the R132 residues were found in leukemic 
cells of myeloid leukemia (AML) patients [56]. These 
findings were quickly confirmed by multiple studies 
involving direct sequencing of IDH1 and its homologue 
IDH2. Mutations in IDH1 and IDH2 were found in 75 % 
of grade 2–3 gliomas and secondary glioblastoma, and 
in about 20 % of AML [57–69]. Additionally, IDH1 and 
IDH2 mutations were found in several other human 
tumors, including cartilaginous tumors (75  %), intrahe-
patic cholangiocarcinoma (10 %), and thyroid carcinomas 
(16 %) [70–77]. The most common cancer mutations map 
to single arginine residues in the catalytic pockets: IDH1 
(R132) and IDH2 (R172 or R140) [55, 56, 61]. Mutant 
IDH1/2 forms a dimer with the wild-type protein from 
the normal allele and displays a neomorphic activity that 
allows the heterodimeric enzyme to catalyze the reduc-
tion of α-KG directly to D-2-hydroxyglutarate (D-2-HG, 
also known as R-2-HG) in the presence of NADPH [65, 
69, 78, 79]. In human glioma with IDH1/2 mutation, the 
level of D-2-HG accumulates as high as 5–35 mmol L−1 
[63, 79, 80].

SDH is a highly conserved protein complex with four 
subunits: SDHA, SDHB, SDHC, and SDHD. SDHA and 
SDHB are catalytic subunits, and SDHC and SDHD are 
ubiquinone-binding and membrane-anchorage subunits. 
SDH functions in the TCA cycle, and as complex II of the 
electron transport chain (ETC), catalyzes the oxidation of 
succinate to fumarate in a reaction that generates FADH2, 
and donates electrons to the ETC. Mutations in genes 
encoding SDH subunits and the SDH assembly factor 2 
are found in hereditary paraganglioma and pheochro-
mocytoma, as well as in gastrointestinal stromal tumors, 
renal tumors, thyroid tumors, testicular seminomas, and 
neuroblastomas [81]. Over 650 reported cases of SDH 
mutations have been reported, and these mutations sig-
nificantly reduce SDH activity. In three cases of paragan-
gliomatosis with SDH mutation, succinate accumulated 
to a high level of 364–517  μmol  g−1 protein [82]. Also, 
Xiao et al. showed that depleting SDH in mice or ectopic 
expression of tumor-derived SDH mutants resulted in 
the accumulation of succinate [83].

FH exists as a homotetrameric enzyme that catalyzes 
the stereospecific and reversible hydration of fumarate to 
malate. Mutations in the FH gene were first identified in 
inherited uterine fibroids, skin leiomyoma, and papillary 
renal cell cancer by a combination of mapping methods 
[84]. FH mutations were also found in cerebral caverno-
mas, Leydig cell tumors, and ovarian mucinous cystad-
enoma with low frequency [85–87]. Over 300 cases of 
FH mutations have been reported. Like SDH mutations, 
FH mutations significantly reduce FH activity, result-
ing in the accumulation of fumarate to a level as high as 
417–688  μmol/g protein in hereditary leiomyomatosis 
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and renal cell cancer [82]. The accumulation of fumarate 
was also observed in cells depleted for FH or expressing a 
tumor-derived FH mutant [83].

The accumulation of D-2-HG, succinate, and fumarate 
all lead to impaired activity of a class of enzymes called 
α-KG-dependent dioxygenases. These oxygenases include 
prolyl hydroxylase (PHD), which causes HIF1α degrada-
tion [88]. Hence, the accumulation of D-2-HG, succinate, 
and fumarate causes HIF1α accumulation. Other α-KG-
dependent dioxygenases include the JMJD family KDMs 
and the TET family of 5mC hydroxylases, which impact 
epigenetic events [89]. Ultimately, by impacting cellu-
lar processes such as hypoxia response and epigenetic 
modifications, D-2-HG, succinate, and fumarate promote 
tumorigenesis. Such metabolites whose abnormal accu-
mulation causes both metabolic and nonmetabolic dys-
regulation and promotes tumorigenesis are often called 
oncometabolites. However, there is only limited evidence 
linking these oncometabolites to metastatic progression. 
For example, treatment with dimethylfumarate, a cell-
permeable form of fumarate, strongly reduces invasion 
and metastasis formation in melanoma [90–92], although 
overexpression of FH in a FH-deficient renal cell carci-
noma line inhibits cellular migration and invasion [93].

Mitochondrial OXPHOS is essential for ATP generation 
in most tumor types
As discussed above, mutations in IDH, SDH, and FH may 
interfere with mitochondrial function and respiration 
in certain rare tumor types. However, a plethora of stud-
ies have shown that mitochondrial function and respira-
tion are critical for many common types of tumors. Over 
the years, various studies have identified several modes 
of mitochondrial function in tumorigenesis. For example, 
mitochondria and cancer are linked through the genera-
tion of reactive oxygen species (ROS). Notably, mitochon-
dria generate much of the endogenous cellular ROS 
through mitochondrial OXPHOS. Under normal physi-
ological conditions, ROS production is highly regulated, 
at least in part, by complex I [94–98]. When the electron 
transport chain (ETC) is inhibited by an OXPHOS gene 
mutation, the ETC electron carriers accumulate excessive 
electrons, which can be passed directly to O2 to generate 
superoxide anion (O2

−). The O2
− generated by complex I 

is released into the mitochondrial matrix and is converted 
to H2O2 by the mitochondrial manganese superoxide dis-
mutase (MnSOD). The O2

− generated from complex III is 
released into the mitochondrial intermembrane space and 
is converted to H2O2 by copper/zinc superoxide dismutase 
(Cu/ZnSOD). Mitochondrial H2O2 can then diffuse into 
other cellular compartments. Mitochondrial ROS are 
important signaling molecules and potent mitogens [99–
101]. Increased production of ROS has long been observed 

to be a hallmark of many tumors and cancer cell lines [102, 
103]. The mechanisms by which ROS promote tumorigen-
esis have been reviewed extensively elsewhere [95, 104, 
105]. Additionally, it is well known that ROS can inhibit 
tumor progression by inducing apoptosis, and many anti-
cancer agents act by generating ROS and inducing cancer 
cell death [106, 107]. However, this is beyond the scope of 
this review and is therefore not discussed further here.

Another link of mitochondria to tumorigenesis is 
OXPHOS. Although it has long been believed that the gly-
colytic phenotype in cancer is due to defective mitochon-
drial OXPHOS, as proposed by Otto Warburg [15], this 
view has been challenged since it was proposed [17]. Many 
lines of experimental evidence have shown that the func-
tion of mitochondrial OXPHOS in most tumors is intact. 
For example, Guppy and co-workers showed that in the 
MCF-7 breast cancer cell line, ATP production is 80 % oxi-
dative and 20 % glycolytic [108]. Rodriguez-Enriquez et al. 
showed that in AS-30D hepatoma tumor cells, cellular ATP 
is mainly provided by OXPHOS [109]. Furthermore, Rod-
riguez-Enriquez et  al. showed that in both human HeLa 
and rodent AS-30D fast-growing tumor cells, mitochon-
dria respiration is the predominant source of ATP in both 
cell types (66–75 %), in spite of an active glycolysis [110]. In 
glucose-free medium with glutamine, proliferation of both 
lines is diminished by 30 %, but OXPHOS and the cytosolic 
ATP level are increased by 50 %. In glutamine-free medium 
with glucose, proliferation, OXPHOS, and ATP concen-
tration are diminished drastically. In 2004, Zu and Guppy 
reviewed a plethora of experimental studies regarding gly-
colytic and oxidative contribution to ATP production in a 
wide array of tumor cells [111]. Their analyses of previous 
data showed that the vast majority of tumor cells generate 
ATP via oxidative phosphorylation.

Notably, a recent study has linked OXPHOS to onco-
gene ablation-resistant pancreatic cancer cells [112]. 
Viale et  al. showed that a subpopulation of dormant 
tumor cells surviving oncogene ablation, responsible 
for tumor relapse, relies on OXPHOS for survival. Fur-
thermore, recent experimental studies have identified 
transcription factors that promote mitochondrial biogen-
esis and OXPHOS in cancer cells. For example, LeBleu 
and co-workers identified the transcription coactiva-
tor peroxisome proliferator-activated receptor gamma, 
coactivator 1alpha (PPARGC1A or PGC-1α) as the tran-
scription factor promoting mitochondrial biogenesis and 
OXPHOS in cancer cells [113]. They showed that migra-
tory/invasive cancer cells favor mitochondrial respiration 
and increased ATP production. There is a strong correla-
tion between PGC-1α expression in invasive cancer cells 
and the formation of distant metastases. In another study, 
Mauro et al. showed that NF-κB plays a role in metabolic 
adaptation in cancer by upregulating OXPHOS [114].
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Mitochondrial transfer provides a mechanism for restoring 
OXPHOS in tumor cells defective in mitochondrial 
respiration and for promoting tumor progression
Importantly, a recent study involving mtDNA transfer 
between normal and tumor cells provided further evi-
dence supporting the importance of OXPHOS in cancer 
progression [115]. Tan et al. showed that tumor cells with-
out mitochondrial DNA (mtDNA) exhibit delayed tumor 
growth and that tumor formation is associated with the 
acquisition of mtDNA from host cells [115]. By following 
mtDNA acquisition in the 4T1 breast carcinoma model, 
Tan and colleagues found that stable cell lines derived 
from primary subcutaneous tumors that grew from 4T1ρ0 
cells showed partial recovery of mitochondrial respiration 
and an intermediate lag to tumor growth. Cell lines from 
circulating tumor cells and from lung metastases showed 
further and staged recovery of mitochondrial respira-
tion, and tumor growth more similar to that of parental 
4T1 cells. They demonstrated that restored mitochon-
drial respiration is critical for the tumorigenic potential of 
cancer cells without mtDNA [115]. Interestingly, the role 
of mitochondrial transfer has been observed in canine 
transmissible venereal tumor (CTVT), which is a highly 
adapted cancer and is transmitted as an allograft during 

coition [116]. Rebbeck et al. analyzed mtDNA in 37 trans-
missible venereal tumors in dogs and comparable mtDNA 
regions from 15 host animals and 43 published canine 
mtDNA sequences [117]. Their analyses suggested that 
these tumors have periodically acquired mitochondria 
from their hosts, perhaps over a period of 11,000  years 
when this tumor type originated [116, 117]. It was esti-
mated that the transfer of mitochondria into malignant 
cells with heavily mutated mtDNA occurs once in about 
100  years [117]. Clearly, ample experimental evidence 
exists to demonstrate the importance of mitochondrial 
respiration in the progression of many cancers.

Heme is an essential factor for the proper functioning 
of OXPHOS complexes and directly regulates many 
molecular and cellular processes
Mitochondrial respiration is carried out by the 
OXPHOS complexes I–V (Fig.  3) [118]. Complex I, 
the NADH-coenzyme Q reductase or NADH dehy-
drogenase, is constituted of 45 polypeptides, of which 
seven (ND-1, -2, -3, -4, -4L, -5, and -6) are encoded 
by the mtDNA, and the rest are encoded by nuclear 
DNA [119, 120]. Complex II, succinate-coenzyme 
Q reductase or succinate dehydrogenase, contains 
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four nDNA-encoded protein subunits. Complex III, 
cytochrome bc1 complex or ubiquinol-cytochrome c 
oxidoreductase, contains 11 subunits, of which one 
(cytochrome b) is encoded by the mtDNA. Complex 
IV, cytochrome c reductase, is composed of 13 subu-
nits, of which three (CO-I, -II, and -III) are from the 
mtDNA. Complex V, ATP synthase, contains approxi-
mately 16 subunits, of which two (ATP-6 and -8) are 
from the mtDNA. Complexes I, III, IV, and V retain 
mtDNA-encoded protein subunits and transport pro-
tons (Fig. 3). Importantly, three complexes, II, III, and 
IV, require heme for proper functioning. Particularly, 
multiple subunits in complexes III and IV require heme 
as a prosthetic group, and different forms of heme are 
present (Fig. 3) [121].

The function of heme as a prosthetic group in proteins 
and enzymes involved in the transport, storage, and utili-
zation of oxygen is well-known [122]. Furthermore, heme 
directly regulates the expression of proteins and enzymes 
involved in using oxygen [123]. In humans, heme plays 
essential roles in many physiological processes, including 
erythropoiesis, neurogenesis, cell growth and differentia-
tion [123–125]. Heme constitutes 95 % of functional iron 
in the human body, as well as two-thirds of the average 
person’s iron intake in developed countries. In the human 
body, erythroid and hepatic cells use the most heme. 
Most, if not all, human cells need a basal level of heme for 
survival. Mammalian cells can synthesize heme endog-
enously in the mitochondria, or they can import heme 
from the circulation via heme transporters (Fig. 4) [ [126] 
and references therein]. In mammalian cells, intracellular 
heme is used to synthesize various hemoproteins, such as 
cytochromes, or it can be degraded by heme oxygenase 
(Fig. 4) [127]. It is also worth noting that heme can serve 
as a regulatory and signaling molecule and directly regu-
late transcription, translation, and cell growth and dif-
ferentiation [125]. For example, in erythroid precursor 
cells, heme regulates the transcription of globin chains 
and heme oxygenase genes by modulating the activity 
of transcriptional regulators, such as NF-E2 and Bach1 
[128–131]. Additionally, heme regulates the translation 
of globin chains by directly controlling the activity of the 
heme-regulated eIF-2α kinase (HRI) [132, 133]. These 
mechanisms ensure the coordination of globin chain syn-
thesis with heme synthesis. In neuronal cells, heme can 
modulate the activity of the NMDA receptor and the 
Ras-ERK1/2 signaling pathway [134–137]. Furthermore, 
heme directly regulates the activity of the nuclear recep-
tors REV-ERBα and REV-ERBβ [138, 139], microRNA 
processing protein DiGeorge critical region-8 (DGCR8) 
[140], and ion channels (SloBK potassium channel and 
epithelial sodium channel ENaCs) [141–143], in an array 
of mammalian cells (Fig. 4).

Elevated heme flux and function are critical for the 
proliferation and function of non‑small cell lung cancer 
cells
Interestingly, it has long been observed that inhibiting 
heme synthesis in various cancer cell lines suppresses cell 
proliferation and induces apoptosis [144–146]. However, 
it is not clear how heme deficiency impacts normal cells. 
This was clarified recently by a study carried out in the 
authors’ laboratory [147]. In this study, we took advan-
tage of a matched pair of cell lines representing the nor-
mal, nonmalignant bronchial epithelial and non-small 
cell lung cancer (NSCLC) cells developed from the same 
patient [148, 149]. Using this pair of cell lines and several 
other NSCLC lines, we examined the differences in bio-
energetic activities in normal and cancer cells. We found 
that the rates of both glucose and oxygen consumption 
in NSCLC cells are elevated, with the elevation of oxy-
gen consumption greater than glucose consumption 
[147]. Next, we showed that the rate of heme synthesis 
is increased significantly in the NSCLC cells, compared 
to the normal lung cells. Additionally, we showed that 
the expression level of the rate-limiting heme synthetic 
enzyme, ALAS1, is highly elevated in NSCLC cells and 
tumors. Further, the levels of two heme transporters 
HCP1 and HRG1 [150, 151] are dramatically increased 
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in NSCLC cells and tumors, compared to the normal 
cells [147]. The increased availability of heme is expected 
to intensify the production of oxygen-utilizing hemo-
proteins. Indeed, we found that the levels of cytoglobin, 
cytochrome c, cytochrome P450 CYP1B1, and Cox-2 are 
significantly increased in NSCLC cells and tumors [147]. 
Our results revealed that both heme biosynthesis and 
uptake are intensified to enhance heme availability for 
the production of oxygen-utilizing hemoproteins in can-
cer cells and xenograft tumors [147].

Increased levels of heme and oxygen-utilizing hemo-
proteins presumably contribute to intensified oxygen 
consumption in cancer cells. Conversely, depleting heme 
in cancer cells is expected to cause a lack of hemopro-
teins, leading to reduced oxygen consumption and cel-
lular energy generation. Indeed, we found that oxygen 
consumption in the NSCLC cells is selectively reduced 
when cells are cultured in heme-depleted medium [147]. 
In contrast, heme depletion in the medium does not 
affect oxygen consumption in normal cells. Further, we 
showed that lowering heme levels strongly suppresses 
NSCLC cell proliferation, colony formation, and migra-
tion [147]. Together, our results showed that heme availa-
bility is significantly increased in cancer cells and tumors, 
which leads to elevated production of hemoproteins, 
resulting in intensified oxygen consumption and cellu-
lar energy production for fueling cancer cell progression 
[147].

The selective importance of heme in tumor cell prolif-
eration and function is also consistent with the previous 
observation that NSCLC cells require serum (contain-
ing heme) for maintenance and proliferation, whereas 
the normal lung cells survive and proliferate better with 
growth factors in the absence of serum [148, 149]. Fur-
ther, the preferential requirement of NSCLC cells for 
heme is in complete agreement with the critical roles of 
heme in mitochondrial respiratory chain complexes. As 
shown in Fig.  4, OXPHOS complexes II, III, and IV all 
require heme for proper functioning. By logical reason-
ing, tumor cells that depend mainly on OXPHOS for ATP 
generation should require elevated levels of heme and 
hemoproteins for proliferation and function.

Clonal evolution and genetic heterogeneity likely 
contribute to the remarkable versatility of tumor cells 
in the use of bioenergetic substrates
In recent years, whole-genome and whole-exome 
sequencing studies have provided an ever-expanding 
survey of somatic aberrations in cancers [152–156]. 
Such large-scale sequencing studies have revealed a high 
degree of genetic heterogeneity among patients with 
the same type of cancer, namely inter-tumor heteroge-
neity, and that within a single tumor or sample, namely 

intra-tumor heterogeneity [157–165]. For example, Ger-
linger et al. found that over half the mutations in primary 
tumor and its various metastases of the same advanced 
renal cell carcinoma are different [166]. Likewise, sev-
eral groups have demonstrated the vast heterogeneous 
mutational landscape of pancreatic cancer by analyzing 
data from whole-genome and whole-exome sequencing 
[167–169]. Additionally, Ellsworth et  al. found genomic 
heterogeneity within primary breast carcinomas and 
among regional LN metastases [170]. They concluded 
that metastasis is a complex process influenced by pri-
mary tumor heterogeneity and variability in the timing of 
dissemination. Furthermore, Leiserson et  al. performed 
a pan-cancer analysis of mutated networks in 3281 sam-
ples from 12 cancer types from the Cancer Genome Atlas 
(TCGA) [171]. They identified 16 significantly mutated 
subnetworks that comprise well-known cancer signaling 
pathways as well as subnetworks with less characterized 
roles in cancer, including cohesin, condensin, and others. 
In a comprehensive review, Vogelstein et al. summarized 
the genes altered in a high percentage of tumors and a 
much larger number of genes altered infrequently [163]. 
They reported ~140 driver genes whose intragenic muta-
tions can promote or drive tumorigenesis. These driver 
genes can be classified into 12 signaling pathways that 
regulate three core cellular processes: cell fate, cell sur-
vival, and genome maintenance.

Data from these large-scale cancer genome sequencing 
studies also support clonal evolution as the mechanism 
responsible for generating intra-tumor heterogeneity 
(ITH). Clonal evolution was initially proposed by Nowell 
[172]. It refers to the process in which cancer cells accu-
mulate genetic and epigenetic changes over time, giving 
rise to new subclones. It suggests that cancer evolves by a 
process of clonal expansion, diversification, and selection 
within the tissue ecosystems. Clonal evolution can be lin-
ear evolution or branched evolution [158, 159]. Evidence 
of clonal evolution is found in many tumors. For exam-
ple, evaluation of genomic heterogeneity within primary 
breast carcinomas and among axillary LN metastases 
indicated that multiple clonal cell lineages exist in every 
primary tumor and between many metastatic deposits 
from the same patient [170]. Two recent studies revealed 
substantial intra-tumoral heterogeneity within lung ade-
nocarcinomas [173, 174]. Cancer evolution and tumor 
heterogeneity likely contribute to tumor recurrence 
and the emergence of drug-resistant disease [175–177]. 
Under therapeutic pressure, those tumor clones that are 
most adaptive or resistant to treatment will be selected. 
These clones will then dominate and populate the tumor 
rendering it highly resistant to the given therapy. Fur-
ther, some of these resistance pathways lead to multid-
rug resistance, generating an even more difficult clinical 
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problem to overcome. Likewise, high mutational het-
erogeneity and subclonal mutation fraction can lead to 
increased likelihood of tumor recurrence.

Very likely, changes in tumor cell bioenergetic charac-
teristics accompany tumor progression, recurrence, and 
drug resistance. Tumor cells are remarkably versatile in 
their ability to adapt to and take advantage of the envi-
ronment to support their proliferation and function. 
Firstly, tumor cells use a variety of fuels, including glu-
cose, glutamine, fatty acids, ketone bodies, and acetate 
[37–43]. Secondly, tumor cells from the same type of 
tumors can exhibit great variations in metabolic and bio-
energetic phenotypes. Notably, different NSCLC cell lines 
exhibit a wide range of dependence on glutamine [30]. 
These cell lines also show a varying degree of increased 
oxygen consumption rates, as well as heme synthesis and 
uptake rates. Evidently, tumor cells adapt to the environ-
ment and adopt specific bioenergetic features in order 
to take advantage of whatever fuels are available. For 
example, tumor cells in an environment rich in adipo-
cytes would likely adapt to preferentially use fatty acids, 
while tumor cells in an environment rich in myocytes 
may adapt to preferentially use glutamine. Clonal evolu-
tion enables different tumor cells to adopt metabolic and 
bioenergetic phenotypes fit to their environment. Such 
variations in tumor bioenergetic characteristics are likely 
underpinned by genetic heterogeneity. That is, the afore-
mentioned diverse mutations in signaling pathways and 
networks would ultimately impact the expression and 
activity of metabolic enzymes, thereby enabling tumor 
cells to adopt specific bioenergetic features fit for their 
unique environment.

Conclusions
Recent advances in cancer research have clarified many 
issues relating to tumor bioenergetics. Some important 
points include the following: (1) High glycolytic rates 
in tumors and mitochondrial respiration often oper-
ate simultaneously in tumors. Increased glycolysis most 
likely contributes building blocks for biosynthesis. (2) 
Glutamine is the preferred oxidative fuel for tumor cells. 
(3) Tumor cells can use a range of fuels including glu-
cose, glutamine, fatty acids, and acetate. (4) Mutations 
in metabolic enzymes are found mainly in three enzymes 
involved in the TCA cycle. (5) Mitochondrial respiration 
can be restored by mitochondrial transfer in tumor cells 
defective in OXPHOS, and it is critical for the initiation 
and metastasis of diverse tumors. (6) Elevated heme flux 
and function lead to intensified oxygen consumption in 
NSCLC cells, fueling cancer cell proliferation, migra-
tion, and colony formation. (7) Lowered heme availability 
selectively diminishes the proliferation and function of 
NSCLC cells. (8) Clonal evolution contributes to a high 

degree of genetic heterogeneity in tumors, which likely 
underpin metabolic and bioenergetic versatility of tumor 
cells, as well as tumor recurrence and drug resistance. 
Evidently, clonal evolution likely enables NSCLC cells to 
enhance heme synthesis and uptake, in order to increase 
their cellular energy generation. Heme coordinates the 
production and function of OXPHOS complexes. Hence, 
increasing heme availability provides an effective way to 
upregulate OXPHOS complexes and mitochondrial res-
piration for energy generation. It is likely that this mecha-
nism involving elevated heme flux and function operates 
in other types of tumors besides NSCLC tumors to pro-
mote tumor development and progression.

Recent research has also provided ample evidence 
showing that many types of tumors indeed consume 
larger amounts of glucose, compared to normal tis-
sues, as Warburg originally observed [15]. However, his 
hypothesis that tumor mitochondria have impaired res-
piration is largely incorrect for most types of tumors, as 
discussed extensively in this review. The observed large 
increases in glucose consumption in tumor tissues can 
be attributed to increased demand for building blocks 
in tumor cells and to increased glucose consumption in 
stromal cells, which in turn provide oxidative fuels, such 
as lactate, to tumor cells. Nonetheless, Warburg’s origi-
nal observation has motivated generations of scientists 
to better understand tumor bioenergetics, and this will 
undoubtedly lead to a more holistic approach in cancer 
research and therapeutics.
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