
Hunt et al. Genome Biology 2014, 15:R42
http://genomebiology.com/2014/15/3/R42

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector
RESEARCH Open Access
A comprehensive evaluation of assembly
scaffolding tools
Martin Hunt1*, Chris Newbold2,1, Matthew Berriman1 and Thomas D Otto1
Abstract

Background: Genome assembly is typically a two-stage process: contig assembly followed by the use of paired
sequencing reads to join contigs into scaffolds. Scaffolds are usually the focus of reported assembly statistics; longer
scaffolds greatly facilitate the use of genome sequences in downstream analyses, and it is appealing to present
larger numbers as metrics of assembly performance. However, scaffolds are highly prone to errors, especially when
generated using short reads, which can directly result in inflated assembly statistics.

Results: Here we provide the first independent evaluation of scaffolding tools for second-generation sequencing
data. We find large variations in the quality of results depending on the tool and dataset used. Even extremely
simple test cases of perfect input, constructed to elucidate the behaviour of each algorithm, produced some
surprising results. We further dissect the performance of the scaffolders using real and simulated sequencing data
derived from the genomes of Staphylococcus aureus, Rhodobacter sphaeroides, Plasmodium falciparum and Homo
sapiens. The results from simulated data are of high quality, with several of the tools producing perfect output.
However, at least 10% of joins remains unidentified when using real data.

Conclusions: The scaffolders vary in their usability, speed and number of correct and missed joins made between
contigs. Results from real data highlight opportunities for further improvements of the tools. Overall, SGA, SOPRA
and SSPACE generally outperform the other tools on our datasets. However, the quality of the results is highly
dependent on the read mapper and genome complexity.
Background
Obtaining a genome sequence is a vital component for
detailed molecular analysis of an organism and for sev-
eral thousands of species, genome projects are now un-
derway or complete [1]. Through the process of de novo
assembly, a genome is pieced together computationally,
from overlapping randomly sequenced reads. Depending
on several factors, including the depth of sequence
coverage, sequencing methodology and complexity of
the genome, the sequence can be assembled into a vari-
able, but large number of contigs. The more fragmented
the assembly is, the harder the downstream analysis be-
comes. Analysing gene order and synteny, carrying out
comparative or functional genomics or investigating pat-
terns of recombination all rely heavily on obtaining an
assembly with good continuity.
* Correspondence: mh12@sanger.ac.uk
1Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust
Genome Campus, Cambridge CB10 1SA, UK
Full list of author information is available at the end of the article

© 2014 Hunt et al.; licensee BioMed Central Lt
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
Contig sizes are determined by the under-representation
of sequences, due to coverage variation or sequencing
bias, read lengths, sequencing technology and the exist-
ence of repeats in the genome. However, assembly con-
tinuity can be vastly improved by linking contigs together
into scaffolds. This study compares the accuracy of
methods that use paired sequences obtained from each
end of DNA templates to bridge over regions of the gen-
ome that are difficult to sequence or assemble. Depending
on the design of sequencing libraries, paired reads can
bridge over gaps in sequence ranging from hundreds to
tens of thousands of base pairs, to order and orientate
contigs as well as to estimate the length of gaps. However,
a combinatorial problem arises from repeat sequences. Re-
peats are often collapsed or mis-assembled during the as-
sembly process, so that a scaffolder must resolve the
numerous links arising from each repetitive contig. Unfor-
tunately, scaffolding does not scale linearly and is compu-
tationally intractable [2].
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

https://core.ac.uk/display/81737554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mh12@sanger.ac.uk
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Hunt et al. Genome Biology 2014, 15:R42 Page 2 of 15
http://genomebiology.com/2014/15/3/R42
The scaffolding problem can be formalised using graph
theory, with contigs corresponding to nodes of the graph,
and linking read pairs corresponding to edges. The avail-
able scaffolding tools take different approaches to produce
approximate solutions. In addition to ordering and orien-
tation, the expected distance between linking reads,
known from the library construction, can be used to esti-
mate the distance between contigs so that sequence gaps
in the output scaffolds will be approximately of correct
length. When used, this distance information is usually
encoded into the scaffolding graph by assigning lengths to
the edges. The ideal output from a scaffolder is one scaf-
fold per chromosome of the genome, with gaps of the cor-
rect lengths separating each contig.
The increased availability of next generation sequen-

cing (NGS) technology has driven intensive development
of algorithms that assemble efficiently and, with varying
success, scaffold millions of short sequencing reads into
genome sequences. Recent studies that benchmarked de
novo assemblers and analysed assembly quality, GAGE
[3], Assemblathon [4] and Assemblathon2 [5], all re-
ported large variations between assemblers, datasets and
assembler parameters. Although most assemblers include
a built in scaffolding algorithm, it is standard practice to
perform an independent run of scaffolding immediately
after de novo assembly to further improve continuity.
Bambus [6], the first stand-alone scaffolding tool, was
published in 2004 and consequently was not developed
with large NGS datasets in mind. In this study we evalu-
ated the contemporary scaffolders Bambus2 [7], GRASS
[8], MIP [9], Opera [10], SCARPA [11], SOPRA [12] and
SSPACE [13] and the scaffolding modules from the assem-
blers ABySS [14], SGA [15] and SOAPdenovo2 [16] (see
Table 1). We have made all our scripts freely available so
that the results can be reproduced and any new scaffold-
ing tools can easily be analysed using our methods.
The first stage of any scaffolding algorithm is to decide

where each read should be placed, if at all, in the input
contigs. All the algorithms we tested use an existing read
mapping tool to place reads in the assembly. Significant
effort has been invested in tools that can efficiently map
NGS sequencing reads to a genome sequence and there
are many mappers now available [17]. Some scaffolders
perform this read mapping for the user, by bundling one
or both of the popular mappers BWA [18] or Bowtie
[19] with the software, or in the case of SOAPdenovo2,
use SOAP2′s own mapper. Other scaffolders require the
user to run the mapping and provide a SAM or BAM
[20] file of reads mapped to contigs, so that the user is
free to choose any read mapper that outputs a compat-
ible format.
Once the positions of reads in contigs have been deter-

mined, scaffolding can be undertaken. Bambus uses a
greedy algorithm, joining together contigs with the most
links first and ignoring subsequent edges that conflict with
an existing join. SSPACE takes a similar approach, but
starts building the first scaffold from the longest contig
and continues to make joins as long as the majority of
read pairs support the join. The other scaffolders do
not use greedy algorithms but instead construct a graph
and use a variety of methods to manipulate the graph
and simplify the problem by partitioning the graph and
solving each subgraph, or by changing the constraints
on the graph.
Bambus2 first identifies repetitive contigs and removes

them from the scaffolding graph, but retains contigs
arising from variants, then orders and orients the contigs
into scaffolds and finishes with a variant detection stage.
SOPRA iteratively removes inconsistent linking informa-
tion (edges of the graph) and contigs (nodes of the
graph) that give rise to spurious links, using statistical
optimisations to make the method practical. These steps
are repeated until there are no more contigs to be re-
moved and the graphs nodes and edges are all consist-
ent. Opera solves the problem exactly, at the expense of
dropping constraints on contig distances. Conversely,
ABySS limits its search for inter-contig links using an
upper limit on the allowed distance between any two
contigs. SCARPA determines the orientation and then
ordering of contigs in two separate stages, using restric-
tions that make the computation tractable and unlike
the other scaffolders, includes a verification step that
breaks contigs that appear to be mis-assembled. SGA
uses a very conservative approach by essentially disal-
lowing any conflicts in the graph, thereby avoiding heu-
ristics at the expense of missing valid joins. MIP
partitions the graph into subgraphs of restricted size and
transforms each of these into a Mixed Integer Program-
ming problem. Each subproblem is solved exactly be-
cause its size is limited and the constraint of contig
orientation is not imposed. GRASS also uses Mixed In-
teger Programming but, like SOPRA, works iteratively to
produce a final set of scaffolds.

Results
We assessed the scaffolding tools using a variety of input
data and found large variations in the results, depending
on the scaffolder and mapping tool used, the genome being
analysed and insert size of the library. In order to under-
stand more about the behaviour of each scaffolder, we first
constructed 11 simple test cases (Figure 1, Additional file
1: Figures S1-S3). We then went on to use larger datasets
from four different genomes of varying size and GC
content (Tables 2 and 3). These comprised Illumina reads
from the Staphylococcus aureus, Rhodobacter sphaeroides,
the human chromosome 14 GAGE datasets and the Plas-
modium falciparum clone 3D7 reference genome [21].
Contig sets made by Velvet were chosen from the GAGE



Table 1 Scaffolding tools

Scaffolder Version Publication datea Citationsb Method Install Run Read mapper Comments

ABySS 1.3.6 27/02/2009 764c Graph + o User’s choice

Bambus2 3.1.0d 16/09/2011 37 Graph - - User’s choice Hard to install and run. Scripting work needed
to prepare input for running scaffolding

GRASS 0.003 06/04/2012 1 Graph - - BWA/NovoAlign Hard to install and did not produce scaffolds

MIP 0.5 13/10/2011 16 Graph o - User’s choice A few dependencies required, significant work
needed to prepare input files

Opera 1.2 19/09/2011 30 Graph + o Bowtie/BWA

SCARPA 0.22 29/12/2012 3 Graph + o User’s choice

SGA 0.9.43 07/12/2011 74c Graph - o User’s choice Several dependencies to install

SOAPdenovo2 r223 27/12/2012 47c Graph o - SOAP2 Little documentation on how to run scaffolder
module alone

SOPRA 1.4.6 24/06/2010 41 Graph + - User’s choice Scripting work needed to prepare input for
running scaffolding

SSPACE 2 (basic) 07/12/2010 151 Greedy + + Bowtie/BWAe Extremely easy to install and run
aDate the article was first available online.
bRetrieved from Google scholar 11 December 2013.
cCitations will include general assembly, not just scaffolding.
dBambus2 is part of the AMOS package. AMOS version 3.1.0 was used, but with latest goBambus2 script from the AMOS git repository.
eBWA only available with a paid version of the software.

A B C

D

E F G

H180 180

20 20200200 200 200
A B C

D

E F G

HBambus2, MIP, OPERA(1), 
SGA, SSPACE

A B C

D

E F G

HOPERA(4)

A B C

D

E F G

HSCARPA(1)

A B C

D

E F G

HSCARPA(4)

A B C

D

E F G

HSOAP2

A B C

D

E F G

HSOPRA

Randomly
generated contigs

Trimmed contigs 
input to scaffolder

a
Perfect read pairs

180X

A B C H E F G

20X

A B C D E F G

b

A B C

D

E F G

HABySS

Figure 1 Data generation and results of test case 11. (a) Generation of contigs and read pairs for the test. (b) The test in graph form and the
output of each scaffolder. Each node represents a 5 kb contig and each edge represents read pair evidence and is labelled with the read depth.
Green nodes and edges mark the correct solution. Incorrect paths are coloured black. Numbers in brackets after each tool indicate the number of
times that configuration was output by that tool. Tools with no number produced the same output on all runs.

Hunt et al. Genome Biology 2014, 15:R42 Page 3 of 15
http://genomebiology.com/2014/15/3/R42



Table 2 Summary of datasets

Dataset Size
(Mb)

%
GC

Potential
joins

Number
of reads
(millions)

Read
length

Insert
sizea

Percent reads mapped (fwd/rev) Maximum
read
coverage

Bowtie -v 0 Bowtie -v 3 Bowtie2 BWA

S. aureus perfect 2.8 32 27 0.76 76 505 96 96 95 95 97 97 97 97 40

27 0.76 76 2,795 96 96 95 95 97 97 97 97 40

940 0.76 76 505 95 94 94 94 96 96 96 96 40

940 0.76 76 2,995 95 94 94 94 97 96 96 96 40

S. aureus GAGE 2.9 32 167 3.5 37 3,385 35 35 56 54 55 54 53 52 49

R. sphaeroides GAGE 4.6 68 570 2.1 101 3,695 17 11 36 32 69 68 35 30 62

P. falciparum 3D7 de novo 23.3 19 9,302 52.5 76 645 70 67 73 70 79 77 76 74 267

9,302 12.0 75 2,705 27 25 31 30 43 42 33 32 33

Human chromosome 14 GAGEb 88.2 40 19,935 22.7 101 2,865 46 19 68 29 90 55 69 30 38

19,935 2.4 57-82 34,500 47 6 73 48 93 85 79 56 3
aCalculated from Bowtie2 mapping to contigs.
bExcluding the 19 Mb of Ns at the start of the sequence.

Table 3 Results summary of simulated data

Scaffolder Read
mapper

10 kb contigsa 3 kb contigs

Short fragment reads Long fragment reads Short fragment reads Long fragment reads

% Correct
joins found

Score % Correct
joins found

Score % Correct
joins found

% Joins
incorrect

Score % Correct
joins found

% Joins
incorrect

Score

ABySS abyss-map 100.0 1.00 66.7 0.91 98.9 0.0 1.00 99.5 0.0 1.00

Bambus2 Bowtie 2 100.0 1.00 66.7 0.91 63.7 0.0 0.84 95.9 0.0 0.99

BWA 48.2 0.82 48.2 0.87 59.6 0.0 0.82 96.2 0.0 0.99

MIP Bowtie -v 0 100.0 1.00 96.3 0.99 98.9 0.0 1.00 98.4 0.0 1.00

Bowtie -v 3 100.0 1.00 96.3 0.99 98.4 0.0 0.99 97.9 0.0 1.00

Bowtie 2 100.0 1.00 29.6 0.82 96.3 0.5 0.74 98.7 0.5 0.96

BWA 100.0 1.00 33.3 0.83 98.0 1.1 0.54 98.2 0.4 0.96

Opera Bowtie 100.0 1.00 92.6 0.98 98.4 0.0 0.99 1.0 10.0 0.79

BWA 100.0 1.00 92.6 0.98 99.8 0.2 0.93 1.2 80.0 0.37

SCARPA Bowtie -v 0 100.0 1.00 96.3 0.99 98.9 0.0 1.00 95.0 0.0 0.99

Bowtie -v 3 100.0 1.00 96.3 0.99 98.6 0.0 0.99 96.3 0.0 0.99

Bowtie 2 85.2 0.95 96.3 0.99 96.8 0.0 0.99 76.3 0.7 0.92

BWA 85.2 0.95 92.6 0.98 96.6 0.0 0.98 77.9 0.4 0.93

SGA Bowtie 2 100.0 1.00 96.3 0.99 97.3 0.0 0.99 97.6 0.0 1.00

BWA 100.0 1.00 92.6 0.98 99.0 0.0 1.00 96.2 0.0 0.99

SOAP2 SOAP2 96.3 0.99 96.3 0.99 98.6 0.0 0.99 99.5 0.0 1.00

SOPRA Bowtie -v 0 100.0 1.00 96.3 0.99 98.3 0.0 0.99 98.2 0.0 1.00

Bowtie -v 3 100.0 1.00 96.3 0.99 97.2 0.0 0.99 97.2 0.0 1.00

Bowtie 2 74.1 0.91 100.0 1.00 91.5 0.5 0.82 85.6 0.5 0.93

BWA 74.1 0.91 88.9 0.97 92.9 0.2 0.89 83.1 0.4 0.93

SSPACE Bowtie -v 0 100.0 1.00 92.6 0.98 99.1 0.0 1.00 99.6 0.0 1.00

Bowtie -v 3 100.0 1.00 92.6 0.98 98.7 0.0 0.99 99.3 0.0 1.00
aNo incorrect joins were made by any of the tools.

Hunt et al. Genome Biology 2014, 15:R42 Page 4 of 15
http://genomebiology.com/2014/15/3/R42



Hunt et al. Genome Biology 2014, 15:R42 Page 5 of 15
http://genomebiology.com/2014/15/3/R42
datasets because they were relatively more fragmented,
maximising the possibility for the scaffolders to make joins.
We included P. falciparum because it has an extremely
low GC content of 19% and often poses quite a challenge
to assembly algorithms despite its relatively small size of
23 MB. In addition to real data, four perfect datasets were
generated from the S. aureus reference genome.
GRASS did not join any contigs together in any of

the test cases or using the S. aureus genome. It either
crashed or wrote ‘scaffolds’ that simply consisted of
the input contig sequences. Therefore it was not ana-
lysed any further.

Read mapping
As described earlier, some of the scaffolders run the read
mapping for the user using either BWA or Bowtie (ex-
cept for SOAPdenovo2). Every scaffolder was run using
its default settings. However Opera and SSPACE run
Bowtie using slightly different settings with one more
permissive than the other (see Materials and methods
for details). To be consistent, for each scaffolder wher-
ever possible both settings of Bowtie were used in
addition to one run each with BWA and Bowtie2 [22],
so that up to four runs of each scaffolder were carried
out. Reads were mapped for ABySS using its own map-
per (abyss-map) with the default settings.
The way in which the read mappers were run meant

that BWA maps a read if there were up to two mis-
matches in its first 32 bases and if it could map to more
than one position, one of those positions was chosen
at random. Bowtie2 also places repetitive reads ran-
domly but only reports reads mapped with a minimum
alignment score that depends on the length of the
read. Bowtie mapped any read that matched to only
one position, and either had no mismatches (when
using the option -v 0) or up to three mismatches (when
using -v 3). Table 2 and Additional file 2: Table S1 show
the difference in numbers of reads mapped for each
dataset and read mapper. For example, on human
chromosome 14 Bowtie -v 0 mapped just 6% of the re-
verse read of each pair, whereas Bowtie2 mapped 85%
of those reads. However, because more relaxed map-
ping parameters produce more erroneously mapped
reads, the number of mapped reads does not correlate
with scaffolding accuracy.
All the scaffolders except SGA and SOAPdenovo2

need the forward and reverse paired reads to be inde-
pendently mapped to contigs and only after mapping is
the fact that each read has a mate used as linking infor-
mation. SGA is an exception because it requires the user
to map the reads as true paired reads. However, Bowtie
does not report reads within a pair that map to different
contigs and so yields no scaffolding information. For this
reason, only Bowtie2 and BWA were used to map reads
when running SGA. Although Bambus2 can take linking
data from any source, it was non-trivial to convert the
linking information from mapped reads into the re-
quired format. For this reason only Bowtie2 and BWA
were used with Bambus2, since a BAM file could be
converted using a script from the ABySS package.

Evaluation metrics
To test the accuracy of each scaffolding algorithm in de-
tail, we generated test contigs that contained no errors
and could be tracked using unique sequence tags (see
Materials and methods, Figure 2 and Additional file 1:
Figure S5), but still resembled real contigs that would be
produced by an assembler. Since the tags were unique
within the dataset they allowed the order, orientation
and distance of the contigs to be determined within the
scaffolds output by each tool.
The quality of each scaffolder was assessed using the

following five key metrics (see Figure 2 and Materials
and methods for a complete explanation).

� Correct joins - a pair of contigs correctly joined with
the tags in the expected orientation and separated
by the correct distance.

� Incorrect joins - where contigs from different loca-
tions, in the wrong orientation or separated by the
incorrect distance were joined together.

� Skipped tags - two contigs were correctly joined, but
separated by a gap that should contain another
contig.

� Lost tags - a tag that was completely absent from
the output of the scaffolder.

� Running time - the total CPU time used, including
any pre-processing stages and read mapping.

Within each dataset, a score between 0 and 1 was cal-
culated for each metric by scaling the scores so that the
best tool scored 1 and the worst scored zero. For ex-
ample, taking correct joins, the tool that produced the
most correct joins scored 1, the tool that made the few-
est correct joins scored 0 and the scores of the other
tools were scaled between those values. Within each
dataset, a single summary score, between 0 and 1, was
calculated for each tool by summing weighted scores
and dividing by the total of the weights. For example,
weighting all five metrics equally with a weight of 1
would mean summing the scores and then dividing by 5.
Note that an overall score of 1 for a particular tool and
dataset does not mean that it produced the ideal answer,
but that it was not outperformed by another tool.
A dynamic Excel spreadsheet is provided in Additional

file 2: Table S2, where summary scores automatically up-
date depending on the choice of weights, allowing differ-
ent weighting schemes to be explored. A distribution of



Reference 
sequences

Scaffolded
contigs

Perfect
read pairs

Reference
sequence

Equally spaced
perfect contigs

Assembly
contig

Reference
sequence

Arti cial
contigs

Nucmer hits

a

b

c

Figure 2 Simulated contigs, artificial contigs and sequence tags. (a) Generation of simulated contigs and reads from the S. aureus reference
sequence. (b) Generation of artificial contigs from assembler output. (c) Tag types. Tags 1 and 2 are a correct join. Tags 2 and 4 demonstrate a
skipped tag because the output scaffold jumps over tag 3. Tag 3 also does not appear in the output and is therefore a lost tag. Tags 4 and 5 are
in the wrong orientation and tags 5 and 6 belong to different sequences in the reference.

Hunt et al. Genome Biology 2014, 15:R42 Page 6 of 15
http://genomebiology.com/2014/15/3/R42
summary scores for each tool on each dataset was obtained
by weighting the metrics with a range of values intended to
emphasise accuracy (see Materials and methods for de-
tails). In addition to considering combinations of weights,
we singled out the weighting of 80, 160, 160, 40 and 1 for
correct joins, incorrect joins, lost tags, skipped tags and
running time, which represents our opinion of the relative
importance of the metrics and heavily penalises errors.

Small test cases
The 11 test cases consisted of simple input and used
simulated perfect Illumina read pairs together with
contigs of random sequence and neutral GC content.
This revealed the different approaches that were taken
by each scaffolder depending on the available choices
(Figure 1, Additional file 1: Figures S1-S3). Each test was
repeated five times, with an independently generated set
of input data, to account for any randomness within the
methods of the tools. We expected that all of the
scaffolders would solve these tests in a sensible way by
using the majority of read pair evidence whenever pos-
sible and would not make any obvious errors. Figure 1,
which is test 11 in Additional file 1, exemplifies these
tests, where most of the joins between contigs are unam-
biguous but a scaffolder must choose between two op-
tions for other joins.
The simplest part of test 11 was to join contigs

A-B-C and E-F-G, where there was high supporting
read coverage and no ambiguities (see also tests 1 and 2
in Additional file 1). All scaffolders except SOPRA
and SOAPdenovo2 successfully made these joins. The
remaining differences in behaviour demonstrated how
the tools dealt with the choice between C-D-E or
C-H-E, with the latter option having nine times more
read pair evidence. First, we note that SCARPA gener-
ated errors by joining either C-D-H-E or C-H-D-E and
this behaviour was consistent throughout all similar
tests (Supplementary tests 6–10). Opera chose either



Hunt et al. Genome Biology 2014, 15:R42 Page 7 of 15
http://genomebiology.com/2014/15/3/R42
C-D-E or C-H-E, demonstrating that it did not make
use of the read coverage to resolve conflicts but instead
chose seemingly at random.
In every test, Bambus2, MIP, SGA and SSPACE all

elected to follow the path of most evidence, when
present, but differed when there was equal support for
two choices. In test 9, which only differs from test 11 by
having equal read pair evidence for C-D-E and C-H-E
(see Additional file 1: Figure S3), SSPACE stopped scaf-
folding at the ambiguity by not placing D or H in a scaf-
fold. MIP chose the same path in all five iterations,
suggesting that it uses some heuristic to make its choice.
SGA appeared to choose its path randomly, outputting
either C-D-E or C-H-E in the five iterations. ABySS
skipped D and H, choosing C-E instead, suggesting that
ABySS knew the scaffolding path, but decided to skip
the nodes because of the heterozygosity.
SOPRA and SSPACE behaved predictably on all the

test cases, with both tools consistently making no joins
whenever there were two options with equal evidence.
Bambus2 behaved similarly to SSPACE, with two excep-
tions (tests 2 and 6). However, SOPRA made fewer joins
than SSPACE and the most likely explanation for this is
that its algorithm involves removing nodes (contigs)
from the graph as well as edges (read pair links). This
means that a contig that could be joined to more than
two other contigs (for example contig C in Figure 1a)
would be removed from the graph and so not placed in
a scaffold.

Simulated datasets
Two sets of simulated contigs and reads were generated
from the S. aureus reference genome that was used in
the GAGE study (Figure 2a), excluding its two plasmid
sequences. Perfect contigs of lengths 3 kb and 10 kb,
separated by gaps of 50 bp and 300 bp, respectively,
were made. Perfect Illumina read pairs were sampled
from the reference sequence with uniform coverage and
mean insert size of 500 bp and 3 kb. The combinations
of perfect reads and contigs gave four datasets for testing
the scaffolders.
Overall, the tools performed well on the simulated data-

sets, with many tools reconstructing the entire sequence
correctly (Table 3, Additional file 2: Table S3, Additional
file 1: Figures S6-S9). However, each dataset had at least
one combination of tool, mapper and mapping parameters
that performed badly. The simplest test was that which
used 10 kb contigs with simulated libraries that contained
500 bp inserts. Every tool produced the correct answer
with at least one read mapper, making every available join
between contigs with no errors. The most notable results
on this dataset were those of Bambus2 and SOPRA, both
of which showed large variations depending on the read
mapper. SOPRA produced a perfect result if Bowtie was
used to map the reads, but missed 26% of the potential
joins if Bowtie2 or BWA was used instead. As can be seen
in Table 2, Bowtie2 and BWA mapped more reads than
Bowtie demonstrating that more mapped reads does not
necessarily lead to better scaffolds. Using the same contigs
but simulated libraries with a 3 kb insert size resulted in
slightly worse output, with most tools making 25 or 26
of the possible 27 joins. This time SOPRA with Bowtie2
was the only scaffolding run that produced a completely
perfect result.
Using the 3 kb contigs there were 940 potential contig

joins that could be made, and this posed more of a chal-
lenge to the scaffolders, particularly using the 3 kb insert
reads (Table 3). Excluding Bambus2 and Opera, on aver-
age, 97% of the possible joins were correctly made by
each tool when using the 500 bp insert data. When the
3 kb insert reads were used instead, this number
dropped to 94%. In contrast, Bambus2 found 62% of
joins using the short insert data, but this number in-
creased to 96% on the long insert reads. Opera only
identified 1% of the joins from the long insert reads.
The effect of read mapping tools and parameters is

already visible in the simulated data. For example, the
percent of perfect joins found by SCARPA on the 3 kb
contigs with 3 kb insert reads ranged from 76% to 96%,
depending on the read mapping parameters (Table 3).
SOPRA’s values ranged from 91% to 98% when using the
500 bp insert reads. Moreover, for both tools the run
that found the most correct joins was also the most ac-
curate, making no incorrect joins.

Genome scale data
The results of scaffolding realistic data are presented
below, broken down by dataset. In each case, real
sequencing read pairs were used to scaffold artificial
contigs generated from real genome assemblies, con-
structed as follows (see Materials and methods and
Figure 2b for complete details). Each real contig from a
genome assembly was aligned to the reference genome
and the sequence of each match in the reference was
used as an artificial contig. Any artificial contigs with
sequence overlap that were generated from the same
assembly contig were merged. It was necessary to use
artificial contigs in order to track their placement in
the output from each scaffolder.
Summary data and plots of the P. falciparum, S. aureus

and human datasets are given in Figure 3 and Table 4 (see
Additional file 2: Table S3 and Additional file 1: Figures
S10-S17 for complete data and plots).

S. aureus
The ‘shortjump’ reads, with a fragment size of approxi-
mately 3.4 kb, were used to scaffold artificial contigs
generated from the Velvet [23] contigs of the GAGE S.



100

700

a

b

c

Correct joins

Correct joins

Correct joins

In
co

rr
ec

t j
oi

ns
In

co
rr

ec
t j

oi
ns

In
co

rr
ec

t j
oi

ns

ABySS
Bambus2.bowtie2
Bambus2.bwa
MIP.bowtie -v0
MIP.bowtie -v3
MIP.bowtie2
MIP.bwa

OPERA.bowtie
OPERA.bwa
SCARPA.bowtie -v0
SCARPA.bowtie -v3
SCARPA.bowtie2
SCARPA.bwa
SGA.bowtie2
SGA.bwa

SOAPdenovo2
SOPRA.bowtie -v0
SOPRA.bowtie -v3
SOPRA.bowtie2
SOPRA.bwa
SSPACE.bowtie -v0
SSPACE.bowtie -v3

A
B

yS
S

B
am

bu
s 2

. b
ow

tie
2

B
am

bu
s2

.b
w

a
M

IP
.b

ow
tie

-v
0

M
IP

.b
ow

tie
-v

3
M

IP
.b

ow
tie

2
M

IP
.b

w
a

O
P

E
R

A
.b

ow
t ie

O
P

E
R

A
.b

w
a

S
C

A
R

P
A

.b
ow

tie
-v

0
S

C
A

R
P

A
.b

ow
tie

-v
3

S
C

A
R

P
A

.b
ow

tie
2

S
C

A
R

P
A

.b
w

a
S

G
A

.b
ow

tie
2

S
G

A
.b

w
a

S
O

A
P

de
no

vo
2

S
O

P
R

A
.b

ow
t ie

-v
0

S
O

P
R

A
.b

ow
t ie

-v
3

S
O

P
R

A
.b

ow
tie

2
S

O
P

R
A

.b
w

a
S

S
P

A
C

E
.b

ow
tie

-v
0

S
S

P
A

C
E

.b
o w

tie
- v

3

N
or

m
al

iz
ed

 s
co

re
N

or
m

al
iz

ed
 s

co
re

N
or

m
al

iz
ed

 s
co

re

0

0

0

1

1

1

Figure 3 Genome-scale data results. (a) S. aureus GAGE data, (b) P. falciparum combined short and long data and (c) human chromosome 14
combined short and long insert data. Scatterplots show the relationship between correct and incorrect joins made by each scaffolder. Boxplots
show the distribution of summary scores when iterating over different score combinations. The white circles in the boxplots denote the score
from our chosen weighting system that focuses on penalising errors (with weights: correct join = 80, incorrect join = 160, lost tag = 160, skipped
tag = 40, running time = 1).

Hunt et al. Genome Biology 2014, 15:R42 Page 8 of 15
http://genomebiology.com/2014/15/3/R42
aureus dataset. There were 167 potential joins from the
input contigs and the proportion of those that were
found correctly ranged from almost no joins up to 78%,
with an average of 51%. This average value excludes MIP
because on this dataset it failed to join almost any con-
tigs, regardless of the mapper used. This flattered its ap-
parent quality when considering different combinations
of scoring weights (Figure 3a) because no joins meant



Table 4 Results summary of genome scale data

Scaffolder Read
mapper

S. aureus P. falciparum Human chromosome 14

% Correct
joins found

% Joins
incorrect

Score % Correct
joins found

% Joins
incorrect

Score % Correct
joins found

% Joins
incorrect

Score

ABySS abyss-map 59.3 2.0 0.87 61.5 1.2 0.85 47.1 0.5 0.83

Bambus2 Bowtie 2 56.9 2.1 0.82 NAa NAa NAa 51.6 1.5 0.72

BWA 57.5 0.0 0.86 NAa NAa NAa 54.0 2.1 0.69

MIP Bowtie -v 0 1.2 0.0 0.82 89.8 4.0 0.75 34.5 4.7 0.43

Bowtie -v 3 0.0 NA 0.82 89.3 4.8 0.68 42.8 7.5 0.10

Bowtie 2 0.0 NA 0.82 86.9 6.0 0.65 NAa NAa NAa

BWA 0.0 NA 0.82 86.0 8.0 0.42 NAa NAa NAa

Opera Bowtie 67.1 8.9 0.65 69.2 2.7 0.74 64.5 0.4 0.88

BWA 64.7 12.2 0.56 69.1 3.0 0.72 63.9 1.1 0.84

SCARPA Bowtie -v 0 50.3 8.7 0.72 79.6 4.7 0.39 52.8 1.4 0.80

Bowtie -v 3 49.1 10.9 0.31 80.8 4.5 0.41 52.6 1.4 0.80

Bowtie 2 46.1 17.2 0.53 78.9 4.8 0.39 53.7 1.5 0.79

BWA 46.7 7.1 0.77 79.7 4.8 0.40 53.6 1.4 0.80

SGA Bowtie 2 49.7 1.2 0.88 52.8 0.9 0.80 49.0 0.0 0.85

BWA 43.1 1.4 0.88 51.1 5.2 0.65 41.1 0.4 0.82

SOAP2 SOAP2 78.4 8.4 0.68 64.3 3.7 0.76 79.0 2.4 0.80

SOPRA Bowtie -v 0 53.3 2.2 0.85 87.5 0.8 0.97 66.1 0.4 0.90

Bowtie -v 3 41.3 4.2 0.80 83.6 0.8 0.95 52.3 2.2 0.74

Bowtie 2 24.0 4.8 0.80 75.4 0.8 0.91 NAa NAa NAa

BWA 25.1 6.7 0.77 81.5 0.6 0.95 NAa NAa NAa

SSPACE Bowtie -v 0 65.9 7.6 0.72 63.0 1.4 0.85 44.0 0.3 0.83

Bowtie -v 3 62.9 11.0 0.62 63.3 2.0 0.83 46.4 0.4 0.84
aData not available because scaffolder required more than 30 GB of memory or did not finish within 12 days.

Hunt et al. Genome Biology 2014, 15:R42 Page 9 of 15
http://genomebiology.com/2014/15/3/R42
that it made no errors. Excluding MIP, the most conser-
vative tools were SGA and Bambus2 (Figure 3a). SGA
found 43% to 50% of the joins depending on the mapper,
with an error rate of 1%. Bambus2 had one run where it
found 57% of the potential joins with no false positives.
At the other extreme, SOAPdenovo2 correctly identified
78% of the joins at the cost of an 8% error rate
(Figure 3a), which was the average across all tools (ex-
cluding MIP). Every scaffolder skipped over some possible
joins, with Opera having the most skipped tags (20).
Overall, using our specific scoring that penalises errors

(Box plot Figure 3a and Additional file 2: Table S3),
SGA, ABySS and Bambus2 generated the best results.
However, the boxplots also show that, depending on the
scoring system, the results do change considerably.
The dependence on the mapping is immediately evi-

dent from Figure 3a. The error rates of SCARPA,
SSPACE and Opera were affected by the mapping, but
they showed relatively little variation in the number
of correct joins. On the other hand, the number of
correct joins made by SOPRA showed more variation
than the error rate. On this dataset Bowtie with no
mismatches (−v 0) performed better than with three
mismatches (−v 3) on the tools where this could be
changed (MIP, SCARPA, SOPRA and SSPACE).

R. sphaeroides
The complete results for this dataset are given in
the Additional file 1: Figure S11 and (Additional file 2:
Tables S2 and S3). However we remark here that simi-
larly to S. aureus, SGA was the most conservative,
SOAPdenovo2 was the most aggressive, with a better
than average error rate, and there was a heavy depend-
ence on the mapping parameters. This is the only data-
set on which SCARPA performed particularly well when
compared with the other scaffolders.

P. falciparum
Contigs were made for input to the scaffolders using de
novo assembly contigs from one set of short fragment
(645 bp) Illumina read pairs. The short fragment read
pairs and a second set of Illumina reads with a fragment
size of 2.7 kb were used for scaffolding. This meant that
we could test the scaffolders in three different ways, by



Hunt et al. Genome Biology 2014, 15:R42 Page 10 of 15
http://genomebiology.com/2014/15/3/R42
using each read set on its own and then a third run
using both sets together.
SSPACE made best use of the short fragment reads

alone, finding 62% of the potential 9,230 joins, but
SOAPdenovo2 and SOPRA were comparable (Additional
file 2: Tables S2 and S3, Additional file 1: Figure S12)
and all three scaffolders had error rates of 1% to
3%. However, SOPRA made the best use of the large
fragment reads (Additional file 2: Tables S2 and S3,
Additional file 1: Figure S13) therefore it was the most
accurate on two read sets combined (Figure 3b) striking
the best balance between making joins and minimising
errors. The most aggressive settings with this tool found
87% of the joins, with an error rate under 1%. This com-
pares with an average of 75% of correct joins and a 3%
error rate. SGA was again the most conservative on this
dataset, finding 53% of the joins and only 44 errors
(<1%) with its best run. However, the most accurate run
using SOPRA made 45 errors and correctly identified
82% of the potential joins and had the highest overall
score of 0.97. This result still comprised over 1,000 scaf-
folds from what should be 16 sequences. Both runs of
Bambus2 failed on this dataset, one due to exceeding
our limit of 12 days run time and the other when its
memory usage reached the machine limit of 30 GB.
The proportion of skipped and lost tags becomes no-

ticeable in this dataset for some of the tools, particularly
when using both sets of reads. SCARPA lost 2% to 3% of
the 9,318 tags and had similar numbers of skipped tags
and MIP lost up to 1% of the tags. Opera had approxi-
mately 1,170 skipped tags, which means that 18% of the
6,430 joins it made jumped over at least one contig. This
explains the high corrected N50 of Opera (Additional
file 2: Table S3), as it ignores smaller contigs. Although
some users might want scaffolds with a large N50, this
metric does not necessarily reflect correctly orientated
contigs in a scaffold.
This dataset demonstrates the effectiveness of using li-

braries of different fragment sizes, as is common prac-
tice in a genome project. The percent of potential joins
correctly made using just the short fragment reads aver-
aged at 53% across all runs, and increased to 59% using
the long fragment reads. When both sets were used to-
gether the average becomes 75%, with MIP achieving
89% albeit with a high error rate of 8% to 10%.
On this dataset the mapping options appeared to be

less significant than on others, with SSPACE, SCARPA
and SOPRA showing little difference between their runs.
This suggests that the different mappers behaved simi-
larly and indeed the number of reads mapped showed
little variation compared to the other real datasets
(Table 2). As was the case for the S. aureus Velvet con-
tigs, the number correct joins made by SOPRA was af-
fected more than its error rate. The opposite was true of
MIP, with mapping settings causing its error rate to vary
but relatively small changes were seen in the number of
correct joins. It is notable that BWA did not map the
short insert reads accurately to the extremely low GC
content genome of P. falciparum and introduced many
errors or prevented scaffolding with Bambus2 and SGA.
Bowtie2 is clearly the better choice on this genome for
these tools.

H. sapiens
The Velvet contigs from human chromosome 14 from
the GAGE data were scaffolded with the ‘short jump’
and ‘long jump’ libraries, of fragment length 3 kb and
35 kb, respectively. Similarly to the P. falciparum data,
this meant that three scaffolding runs could be per-
formed using each read set separately or combined. On
average, 57% of the joins were found when using only
the short jump library and 13% using the long jump li-
brary, showing that the long jump library was difficult to
use successfully possibly because it was of low quality
and relatively low read coverage (Table 2). Some runs of
Bambus2, SOPRA, SSPACE, MIP and SGA produced
worse results on the combined dataset than on just the
short jump reads. The net effect of this was that an aver-
age of 53% of the joins were successfully found using the
combined read set, which was less than that of the short
jump reads.
As was the case for P. falciparum, SOPRA made best

use of combining the short and long fragment reads, suc-
cessfully joining 66% of the potential 19,935 joins with an
error rate of 0.4%. However, it was not such a clear winner
and was comparable to Opera, which had the same error
rate as SOPRA and made 65% of the joins. Again, SGA
was the most conservative, making 49% of the joins cor-
rectly with just three errors, but SSPACE produced scaf-
folds of a similar quality. SOAPdenovo2 was the most
aggressive, identifying 79% of the potential joins with a 2%
error rate. The range of behaviour, from conservative scaf-
folding with a small number of errors to aggressive scaf-
folding, can be seen in the scatterplot in Figure 3c. The
boxplot of Figure 3c shows that our scoring (white circles)
is generally more conservative and the tools are more
error-prone on this dataset.
The use of the 35 kb fragment size data led to a large

number of skipped tags. On average each tool made
10,757 joins using the combined set of reads, but
skipped 2,836 tags. However, considering just the large
fragment reads, there was an average of 2,828 joins and
2,212 skipped tags, which equates to approximately
eight skipped tags for every join made. This is in con-
trast to two skipped tags for every 10 joins with the
short insert reads.
SOPRA showed a marked difference between Bowtie

using -v 0 or -v 3. Although this dataset was the biggest



Hunt et al. Genome Biology 2014, 15:R42 Page 11 of 15
http://genomebiology.com/2014/15/3/R42
in this study, it is only approximately 90 MB but did
seem to push SOPRA to its limits. The SOPRA runs
using BWA and Bowtie2 were left running for 12 days
before being killed and the run using Bowtie with -v 3
took 10 days. However, the best result using SOPRA was
from using Bowtie -v 0, which only took 2 hours to run.
MIP crashed on this dataset when using the combined
sets of reads mapped with Bowtie2 or BWA.

Resource requirements
There were large variations in running time between the
scaffolders on all datasets (Additional file 1: Figures S6-S17,
Additional file 2: Table S3), for which all pre-processing
steps were included in addition to the running time of the
scaffolding. On each dataset, either SOAPdenovo2 or
SSPACE always had the shortest running time and one of
SCARPA, MIP or SOPRA was slowest, usually by several
orders of magnitude.
The most extreme difference was on the human data

using the short and long jump reads combined, where
SSPACE’s fastest run (approximately 10 minutes) was
over 1,400 times faster than SOPRA’s slowest run (ap-
proximately 10 days). However, as noted earlier, SOPRA
did complete in 2 hours using different mapping pa-
rameters and in fact the faster run produced more ac-
curate results.
Similarly, the differences in run time on the P. falciparum

dataset were quite extreme. SOAPdenovo2 and SSPACE
were the fastest, finishing in under 20 minutes, in contrast
to SOPRA which was the slowest to finish successfully,
clocking in at around 18 hours. One run of Bambus2 was
killed after failing to complete within 12 days. To put these
numbers in context, the de novo Velvet assembly of the
short fragment reads took 44 minutes to compute.
Memory usage was not taken into account when

benchmarking the tools because no scaffolder except
Bambus2 used an excessive amount of memory in our
tests. Of the successful runs, the P. falciparum data
using all reads had the highest peak memory usage, aver-
aging less than 5 GB. However, Bambus2 had the highest
memory usage and was killed after exceeding our mem-
ory limit of 30 GB while running on this dataset. SOPRA
had the next highest memory usage (13 GB) over all
datasets, but this was dependent on how the tool was
run. The input reads must be divided into subsets, with
the memory usage determined by the size of each sub-
set, so using smaller subsets could reduce the total
memory used by SOPRA. MIP had the third highest
usage, requiring up to 9 GB on the P. falciparum data-
set. Typically, the memory required by an assembler to
produce contigs for scaffolding is likely to outweigh
that needed by the scaffolding tools assessed in this
paper. See Additional file 1 for more discussion of the
memory usage and running times.
Wrapper and analysis scripts
We encountered a large variation in the ease of use of
the tools in both installation and running. All tools as a
minimum need a set of contigs in FASTA format, reads
or mapped reads, and insert size information. Some
tools require config files, others ask the user to carry out
a number of other tasks in order to run the pipeline. For
example SOPRA required the reads to be split into
chunks, so that it can process the reads one chunk at a
time to save excessive memory use. Notably, SSPACE
was extremely simple to install and run, which almost
certainly contributes to its relatively large number of ci-
tations (Table 1) and hence popularity.
All of our scripts are freely available so that the ana-

lysis is reproducible and can be run on new scaffolding
tools as they appear. In particular, we include wrapper
scripts to run each of the scaffolders tested here so elim-
inating for other users the problems that we encoun-
tered with ease of use.

Lost data
The only scaffolders that lost tags were MIP and
SCARPA. Part of the reason for SCARPA losing data
could be that in addition to scaffolding together con-
tigs, it also breaks contigs where it thinks there are er-
rors. However, the input contigs contained no errors so
it seems unlikely that contig breaking could account for
all the lost tags. Our opinion is that that data loss
should never happen and should be considered a bug in
the software.

Results summary
On the test cases, SCARPA generated results that were
inconsistent with the input data and this trend contin-
ued into the real data, where it lost data and was usually
outperformed by the other tools. Overall, ABySS, Opera
and MIP tended to perform reasonably well on real data,
but usually did not produce the highest quality results.
MIP also lost data. This agreed with the test cases,
where Opera did not follow the majority rule and al-
though MIP did so, it also produced some unpredictable
results when there was no clear solution to the scaffold-
ing problem.
SGA always chose the solution with the most evidence

in the test cases and, although it chose randomly be-
tween equally likely solutions, was still very conservative
on the real data and had a low error rate, suggesting that
choices with equal evidence may actually occur relatively
infrequently. Bambus2 was similar to SSPACE on the
test datasets, but on the real data its accuracy was more
variable. SOPRA and SSPACE generally performed well,
agreeing with their predictable test case output. SOAP-
denovo2 made very few joins in all of the tests, which is
at odds with the real data, where it tended to make more



Hunt et al. Genome Biology 2014, 15:R42 Page 12 of 15
http://genomebiology.com/2014/15/3/R42
joins than any other scaffolder usually with an accept-
able error rate.

Discussion
The ultimate aim of the scaffolding process is to join
assembled contigs into longer sequences. The outcome
depends on the quality of the input contigs, the size
and quality of read pair libraries and the structure of
the genome. To dissect these problems we first gener-
ated an apparently trivial test set (Figure 1, Additional
file 1: Figures S1-S3) and were surprised by some of the
unexpected or incorrect scaffolds that were produced.
In particular, SOAPdenovo2 made few joins, in contrast
to its aggressive behaviour on larger datasets. SCARPA
tended to make either no joins or many errors and
SGA joined more contigs than we expected given its
apparent conservative nature on larger datasets.
We found it necessary to write wrapper scripts for

most of the tools in order to use them in an automated
fashion. These scripts have been made available together
with all our analysis scripts. We would prefer all the
tools to clearly separate off the read mapping stage and
allow the scaffolding step to accept a BAM or SAM file
as input, permitting any mapper to be used. This is
already possible for ABySS, Bambus2, MIP, SCARPA,
SGA and SOPRA. A default mapping stage or a recom-
mended mapper and its parameters could still be in-
cluded for ease of use.
The scaffolding process is critically dependent on

the correct mapping of the reads to contigs. However,
different mappers and parameters can produce vastly
different mapping results, as seen in the human large in-
sert reads where the percentage of reverse reads mapped
ranged from 6% to 85% (Table 2). Mapping low quality
reads becomes a balance between allowing enough mis-
matches so that the reads map, but too many mis-
matches results in false read placement and scaffolding
errors. Accuracy of read mapping is more important
than aiming for as many reads mapped as possible. To
this end, we recommend Bowtie2 as the best mapper for
use with SGA and Bowtie for use with SOPRA. Bowtie
with the option -v 0, which is the default for SSPACE,
should be used for the remaining tools that let the user
control the mapping. Users may wish to tailor their
mapping based on knowledge of their genome of inter-
est, for example BWA was not a good choice for SGA
on P. falciparum.
Generally, the software performed very well on simu-

lated data, with many runs producing perfect scaffolds.
The difficulties arose when real libraries and genomes
were used. Although the effectiveness of the scaffolders
differed depending on the input data, some broad rec-
ommendations can be made. Overall, SGA is the most
conservative tool and should be the one of choice if
minimising errors is most important to the end user.
However, this comes at a cost of making significantly
fewer joins than other tools. SOPRA appears to strike
the best balance between aggressively making joins, with
a reasonably low error rate. It also performed the best
when given two sets of reads from different fragment
size libraries, presumably because it combines the link-
ing information from both libraries into its graph. The
downside is its scalability, with the run times becoming
impractically long on large datasets. It is worth reiterat-
ing that SOPRA was the first stand-alone scaffolder tool
developed for NGS data at a time when datasets were
significantly smaller than they are now, so that scalability
issues should come as no surprise.
SSPACE and SOAPdenovo2 are good choices if a short

running time is important since they were the fastest to
run on all datasets but still performed well with respect to
correct versus incorrect joins. SSPACE tended to be more
conservative than SOAPdenovo2 on most of our datasets.
Interestingly, SSPACE comfortably has the most citations
of any of the scaffolding tools and is also the easiest of the
tools to install and run. We do not recommend using
MIP, OPERA or SCARPA because SGA, SOPRA, SOAP-
denovo2 and SSPACE generally outperformed them.
Further improvements for scaffolding could come

from four approaches: higher quality libraries, improve-
ment of the mapping and the contigs to be scaffolded,
improvement of the scaffolding algorithm itself or the
use of new methods that have recently been developed
that utilise chromatin interactions [24], single cell se-
quencing [25] or optical mapping [26] to orientate and
order contigs. Obviously, if the insert size of the library
is smaller than repetitive elements in the genome or the
sequencing reads do not map uniquely and are prone to
errors, there will be a general limit to what a scaffolder
can achieve. Longer read lengths and also new tech-
niques such as those mentioned above will help to im-
prove results.
To overcome some of these problems, especially noise

generated from incorrect read mapping, the following
steps could be used: (1) correct the reads before map-
ping; (2) correct the reference for errors with REAPR
[27], or base errors that make mapping difficult with
iCORN2 [28]; (3) the contigs ends could be extended by
walking, as possible in SSPACE; (4) if enough coverage
exists, the mapping could be filtered to remove spuri-
ously mapped reads or even reads with at least one mis-
match; (5) mate pairs could have failed pairs (where cir-
culation failed during library construction, resulting in
paired end reads from a short fragment) filtered by re-
moving reads mapped within a short distance of contig
ends; and (6) scaffold iteratively, starting with a high
number read pairs required to join contigs and progres-
sively reduce the stringency.



Hunt et al. Genome Biology 2014, 15:R42 Page 13 of 15
http://genomebiology.com/2014/15/3/R42
Improvements to the tools are difficult, due to the
complexity of the problem, but they could test each
join with assembly accuracy metrics such as those of
REAPR. Also, tools could improve their handling of
heterozygosity, as can be seen from the results of the
test cases. However, handling of polyploid genomes is
an assembly problem that is not restricted to scaffold-
ing and current assemblers generally assume a haploid
genome. The amount of contig skipping, particularly
prevalent from large insert libraries, could be reduced
by removing short contigs before scaffolding, then fill-
ing the gaps in scaffolds with tools such as GapFiller
[29] or IMAGE [30].

Conclusions
The scaffolding problem of joining contigs using read
pairs is simple to understand, but it is computationally
difficult and can only be solved approximately. We rec-
ommend the use of SGA, SOPRA, SOAPdenovo2 or
SSPACE, depending on the requirements of the output
and the size of the genome. No tool identified more
than 90% of the joins across any of the genome-scale
datasets, typically leaving the P. falciparum and human
assemblies in thousands of scaffolds. Although the need
for better quality large insert size libraries is evident,
there is still scope for improvements to existing scaf-
folding algorithms.

Materials and methods
Small test cases
Contigs of random sequence of length 5 kb were gener-
ated, where each of A, C, G and T had an equal prob-
ability of being chosen. The contigs were arranged in a
number of configurations (see Additional file 1: Figures
S1-S3) and corresponding perfect Illumina read pairs
were generated, with fragments sampled uniformly
from the contigs, and fragment lengths sampled from a
normal distribution with mean 500 and standard devi-
ation 30. The reads all had length 76 bp and every base
was given a quality score of 40. We then trimmed 40 bp
off the end of each contig and used these with the simu-
lated reads as input to each scaffolder. Figure 1a shows an
example of this read and contig generation and the corre-
sponding graph is in Figure 1b. Since some scaffolders use
heuristics, each test was generated and run five times.
For consistency, the contigs were always put in alpha-

betical order of their names within the FASTA file
input to the scaffolders. We checked that none of the
contigs had any sequence in common by running
BLAST against themselves (with blastall version 2.2.25
settings -p blastn -e1e-10), which reported no hits
other than each contig to itself. The reads were mapped
with Bowtie2 for SGA, SOAP2 for SOAPdenovo2 and
using Bowtie -v 0 for all other scaffolders.
Generating input data to scaffolders
A set of contigs output from an assembler served as the
starting point when producing input contigs for scaf-
folding. For each of the GAGE datasets, we used con-
tigs from the Velvet assemblies. A de novo assembly of
P. falciparum 3D7 was generated from Illumina paired
end reads with a fragment size of 625 bp (ENA accession
number ERR034295) using Velvet version 1.2.07 with a kmer
of 55 and options -scaffolding no -ins_length 625 -exp_cov
auto -cov_cutoff auto. Two sets of perfect contigs were
made from the S. aureus genome (excluding the plasmid se-
quences), with lengths of 3 kb and 10 kb separated by gaps
of 50 bp and 300 bp, respectively (see Figure 2a).
The following process was used to generate contigs

with no errors and sequence tags for tracking after scaf-
folding (see Additional file 1: Figure S5). The contigs
from an assembler were aligned to the reference genome
with the Nucmer package of MUMmer [31] version
3.23, using the options -l 180 -i 98 -q to delta-filter.
Then for each contig, all overlapping hits in the refer-
ence were merged and the resulting list of positions was
used to make new contigs using the sequence from the
reference (Figure 2b). In this way, each assembly contig
gave rise to one or more artificial contigs. The result was
contigs that are similar to the output of an assembler,
but contain no mis-assemblies.
Next, we looked for a sequence tag within each contig

that could uniquely identify that contig. For a given contig,
we began by mapping its middle 50 bases to all the contigs
and to the reference sequence using Bowtie2 version 2.0.5
with the default settings. If it had exactly one perfect hit to
the contigs (that is, its contig of origin) and to the refer-
ence sequence, then we kept that tag. Otherwise, the
process was repeated with tags of length 100, 200, 400,
600, 1,000, 2,000, and 5,000, stopping when a unique tag
was found. The end result was a set of contigs containing
no errors that could be unambiguously tracked before and
after scaffolding. These were used as input to the scaf-
folders, together with paired reads.
All ‘short jump’ reads for the GAGE datasets were

used, which have insert sizes of approximately 3 kb. We
also used the ‘long jump’ library, with insert length
35 kb, from the human chromosome 14 dataset. For
P. falciparum, the reads that made the assembly and a
second set of Illumina reads (ENA accession numbers
ERR163027-9) with an insert size of 2.7 kb were used.
Perfect read pairs at 30× coverage were generated by sam-
pling fragments uniformly from the S. aureus reference se-
quence, with fragment lengths sampled from a normal
distribution. We used fragment lengths of 500 bp and
3,000 bp, with standard deviations of 30 and 200, respect-
ively, taking the end 76 bases from each fragment to make
read pairs. Every base in the simulated reads was given a
quality score of 40.



Hunt et al. Genome Biology 2014, 15:R42 Page 14 of 15
http://genomebiology.com/2014/15/3/R42
Read mapping
Opera, SOAPdenovo2 and SSPACE take the reads as in-
put and run the mapping for the user. Opera lets the
user choose between Bowtie and BWA, with no option
to change any mapping parameters. It runs BWA with
default settings and Bowtie with -m 1 (only report reads
that have exactly one hit) and -v 3 (allow up to three
mismatches in alignments). SSPACE uses Bowtie with
the option -m 1 -v 0, but does allow the user to change
the value of -v. SOAPdenovo2 uses its own read mapper.
MIP, SCARPA, SOPRA and SGA need the user to map

the reads. SGA requires reads mapped as paired reads,
whereas the others need the mapping performed as if the
reads were not paired. We used BWA v0.7.4, Bowtie
v0.12.8 (always with option -m 1 and the either -v 0 or -v
3 for consistency with Opera and SSPACE) and Bowtie2
v2.0.5 to make input to MIP, SCARPA, SOPRA. For
SGA we only used BWA and Bowtie2 because Bowtie
does not report reads within a pair that map to differ-
ent contigs and so yields no scaffolding information.
Except for the options noted above for Bowtie, the only
mapping settings changed were those that set the max-
imum insert size (-a for BWA, -X for Bowtie and Bow-
tie2, the values are in Additional file 2: Table S4) to
produce BAM files for SGA. The long jump human
reads were found to be of low quality or have large in-
sertions near their start, so before mapping we trimmed
the first 19 bases off each read.

Scaffolding
All scaffolders were run using their default settings ex-
cept for the following exceptions. SSPACE was run using
its default settings and also using -g 3 (which passes -v 3
to the Bowtie mapping call). We changed options to pre-
vent tools from running in multi-threaded mode so that
running times could be compared between scaffolders.
In particular, we changed the source code of Opera so
that the Bowtie call used one thread (Bowtie’s default)
instead of the hard-coded five threads. For SOAPde-
novo2 we set the number of threads to one with -p 1.
The parameters used, such as insert size, for each data-
set are given in Additional file 2: Table S4.
The scaffolders varied in the amount of work needed

to prepare data in a suitable form for input and in the
number of stages required to get from reads and contigs
to a final set of scaffolds. The MIP scaffolder requires a
‘coverage file’ that contains the read depth of each con-
tig. This was generated from a BAM file using a custom
Perl script, which is available together with all the wrap-
per scripts made to make each tool simple to run.
The P. falciparum and human datasets each had two

sets of reads of different insert sizes. We ran each scaf-
folder separately on both sets of reads, and then a third
run of each scaffolder with all reads. Some incorporate
information from both sets into the scaffolding graph sim-
ultaneously, whereas others simply scaffolding using the
libraries sequentially, starting with the smallest insert size.

Evaluation
The output of each scaffolding tool is a set of scaffolds,
which was evaluated by identifying the position of each
unique sequence tag that was generated for each input
contig. The positions were determined by mapping the
tag sequences back to the scaffolds using Bowtie2. There
are several possible cases when analysing the location of
these tags (Figure 2c). A join between two contigs was
classified as correct if the corresponding tags were in the
correct orientation and distance from each other. We
counted the distance as correct if the error in distance
was less than the fragment length. If tags were in the
wrong orientation, from different chromosomes or the
wrong distance apart then the join was counted as incor-
rect. It is possible that a join could be correct, but have
skipped some sequence (see Figure 2c, tags 2 to 4). We
counted these cases separately from incorrect joins, call-
ing them ‘skipped tags’, since the scaffolder could have
done better by recognising that other contigs could have
been inserted between the two joined contigs. A final
possibility is that a tag is not found at all in the output
scaffolds, which we call a ‘lost’ tag and consider being a
serious error because a tool should not lose any data.
In order to summarise the wealth of data produced from

many scaffolding runs over 12 combinations of contigs and
reads, we gave precedence to five key metrics: the number
of correct joins, incorrect joins, skipped tags, lost tags and
total running time. All pre-processing stages were included
in the running time, such as mapping reads before running
a scaffolder (see Additional file 1 for more details).
A distribution of summary scores for each tool on

each dataset was obtained by weighting the metrics with
a range of values, as follows. Correct joins: 10, 20, 40,
80, 160; bad joins: 10, 20, 40, 80, 160; lost tags: 20, 40,
80, 160, skipped tags: 10, 20, 40, 80, 160; total CPU: 1, 2,
3, 4, 5. To emphasise the importance of accuracy, we
only kept combinations of weights where: (1) bad joins ≥
correct joins, (2) bad joins ≥ 2 * skipped tags, (3) lost
tags ≥ correct joins. Redundant combinations were only
counted once, for example doubling all weights produces
the same final score.

Additional files

Additional file 1: Extra details of the methods, results of all test
cases and figures displaying the results of all datasets.

Additional file 2: Supplementary tables.

Competing interests
The authors declare that they have no competing interests.

http://www.biomedcentral.com/content/supplementary/gb-2014-15-3-r42-S1.pdf
http://www.biomedcentral.com/content/supplementary/gb-2014-15-3-r42-S2.xlsx


Hunt et al. Genome Biology 2014, 15:R42 Page 15 of 15
http://genomebiology.com/2014/15/3/R42
Authors’ contributions
All authors conceived the project and wrote the manuscript. MH wrote all
scripts. MH and TDO carried out analysis of output from the scaffolders. All
authors read and approved the final manuscript.

Acknowledgements
Martin Hunt and Thomas Otto were supported by the European Union 7th
framework EVIMalaR, Matthew Berriman by the Wellcome Trust (grant
number: 098051) and Chris Newbold by the Wellcome Trust (grant number:
082130/Z/07/Z).

Software and data availability
The ENA accession numbers of the P. falciparum reads are ERR034295 and
ERR163027-9 and the reference genome can be downloaded from ftp://ftp.
sanger.ac.uk/pub/pathogens/Plasmodium/falciparum/3D7/3D7.latest_version/
version3/Pf3D7_v3.fasta.gz. All wrapper and analysis scripts are freely
available from https://github.com/martinghunt/Scaffolder-evaluation. The
simulated data can be generated using those scripts. The remaining data
were all from the GAGE project and can be downloaded from http://gage.
cbcb.umd.edu/data/index.html.

Author details
1Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust
Genome Campus, Cambridge CB10 1SA, UK. 2Weatherall Institute of
Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3
9DS, UK.

Received: 15 October 2013 Accepted: 3 March 2014
Published: 3 March 2014

References
1. Pagani I, Liolios K, Jansson J, Chen I-M, Smirnova T, Nosrat B, Markowitz VM,

Kyrpides NC: The Genomes OnLine Database (GOLD) v. 4: status of
genomic and metagenomic projects and their associated metadata.
Nucleic Acids Res 2012, 40:D571–D579.

2. Huson DH, Reinert K, Myers EW: The greedy path-merging algorithm for
contig scaffolding. J ACM 2002, 49:603–615.

3. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ,
Schatz MC, Delcher AL, Roberts M, Marçais G, Pop M, Yorke JA: GAGE: a
critical evaluation of genome assemblies and assembly algorithms.
Genome Res 2012, 22:557–567.

4. Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HOK, Buffalo V,
Zerbino DR, Diekhans M, Nguyen N, Ariyaratne PN, Sung W-K, Ning Z,
Haimel M, Simpson JT, Fonseca NA, Birol I, Docking TR, Ho IY, Rokhsar DS,
Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelley DR,
Phillippy AM, Koren S, et al: Assemblathon 1: a competitive assessment of
de novo short read assembly methods. Genome Res 2011, 21:2224–2241.

5. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, Boisvert S,
Chapman JA, Chapuis G, Chikhi R, Chitsaz H, Chou W-C, Corbeil J, Del Fabbro C,
Docking TR, Durbin R, Earl D, Emrich S, Fedotov P, Fonseca NA,
Ganapathy G, Gibbs RA, Gnerre S, Godzaridis E, Goldstein S, Haimel M,
Hall G, Haussler D, Hiatt JB, Ho IY, et al: Assemblathon 2: evaluating
de novo methods of genome assembly in three vertebrate species.
Gigascience 2013, 2:10.

6. Pop M, Kosack DS, Salzberg SL: Hierarchical scaffolding with Bambus.
Genome Res 2004, 14:149–159.

7. Koren S, Treangen TJ, Pop M: Bambus 2: scaffolding metagenomes.
Bioinformatics 2011, 27:2964–2971.

8. Gritsenko A, Nijkamp JF, Reinders MJT, de Ridder D: GRASS: a generic
algorithm for scaffolding next-generation sequencing assemblies.
Bioinformatics 2012, 28:1429–1437.

9. Salmela L, Mäkinen V, Välimäki N, Ylinen J, Ukkonen E: Fast scaffolding
with small independent mixed integer programs. Bioinformatics 2011,
27:3259–3265.

10. Gao S, Sung W-K, Nagarajan N: Opera: reconstructing optimal genomic
scaffolds with high-throughput paired-end sequences. J Comput Biol
2011, 18:1681–1691.

11. Donmez N, Brudno M: SCARPA: scaffolding reads with practical
algorithms. Bioinformatics 2013, 29:428–434.

12. Dayarian A, Michael TP, Sengupta AM: SOPRA: scaffolding algorithm for
paired reads via statistical optimization. BMC Bioinforma 2010, 11:345.
13. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W: Scaffolding
pre-assembled contigs using SSPACE. Bioinformatics 2011, 27:578–579.

14. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: ABySS: a
parallel assembler for short read sequence data. Genome Res 2009,
19:1117–1123.

15. Simpson JT, Durbin R: Efficient de novo assembly of large genomes using
compressed data structures. Genome Res 2012, 22:549–556.

16. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J,
Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu S-M,
Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T-W, Wang J:
SOAPdenovo2: an empirically improved memory-efficient short-read de
novo assembler. Gigascience 2012, 1:18.

17. Fonseca NA, Rung J, Brazma A, Marioni JC: Tools for mapping high-throughput
sequencing data. Bioinformatics 2012, 28:3169–3177.

18. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 2009, 25:1754–1760.

19. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol
2009, 10:R25.

20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics
2078–2079, 2009:25.

21. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM,
Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K,
Salzberg SL, Craig A, Kyes S, Chan M-S, Nene V, Shallom SJ, Suh B, Peterson
J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB,
Martin DMA, et al: Genome sequence of the human malaria parasite
Plasmodium falciparum. Nature 2002, 419:498–511.

22. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2.
Nat Methods 2012, 9:357–359.

23. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res 2008, 18:821–829.

24. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J:
Chromosome-scale scaffolding of de novo genome assemblies based
on chromatin interactions. Nat Biotechnol 2013, 31:1119–1125.

25. Hills M, O’Neill K, Falconer E, Brinkman R, Lansdorp PM: BAIT: Organizing
genomes and mapping rearrangements in single cells. Genome Med
2013, 5:82.

26. Dong Y, Xie M, Jiang Y, Xiao N, Du X, Zhang W, Tosser-Klopp G, Wang J,
Yang S, Liang J, Chen W, Chen J, Zeng P, Hou Y, Bian C, Pan S, Li Y, Liu X,
Wang W, Servin B, Sayre B, Zhu B, Sweeney D, Moore R, Nie W, Shen Y,
Zhao R, Zhang G, Li J, Faraut T, et al: Sequencing and automated
whole-genome optical mapping of the genome of a domestic goat
(Capra hircus). Nat Biotechnol 2013, 31:135–141.

27. Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD: REAPR: a
universal tool for genome assembly evaluation. Genome Biol 2013, 14:R47.

28. Otto TD, Sanders M, Berriman M, Newbold C: Iterative Correction of
Reference Nucleotides (iCORN) using second generation sequencing
technology. Bioinformatics 2010, 26:1704–1707.

29. Boetzer M, Pirovano W: Toward almost closed genomes with GapFiller.
Genome Biol 2012, 13:R56.

30. Tsai IJ, Otto TD, Berriman M: Improving draft assemblies by iterative
mapping and assembly of short reads to eliminate gaps. Genome Biol
2010, 11:R41.

31. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL: Versatile and open software for comparing large genomes.
Genome Biol 2004, 5:R12.

doi:10.1186/gb-2014-15-3-r42
Cite this article as: Hunt et al.: A comprehensive evaluation of assembly
scaffolding tools. Genome Biology 2014 15:R42.

ftp://ftp.sanger.ac.uk/pub/pathogens/Plasmodium/falciparum/3D7/3D7.latest_version/version3/Pf3D7_v3.fasta.gz
ftp://ftp.sanger.ac.uk/pub/pathogens/Plasmodium/falciparum/3D7/3D7.latest_version/version3/Pf3D7_v3.fasta.gz
ftp://ftp.sanger.ac.uk/pub/pathogens/Plasmodium/falciparum/3D7/3D7.latest_version/version3/Pf3D7_v3.fasta.gz
https://github.com/martinghunt/Scaffolder-evaluation
http://gage.cbcb.umd.edu/data/index.html
http://gage.cbcb.umd.edu/data/index.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Read mapping
	Evaluation metrics
	Small test cases
	Simulated datasets
	Genome scale data
	S. aureus
	R. sphaeroides
	P. falciparum
	H. sapiens

	Resource requirements
	Wrapper and analysis scripts
	Lost data
	Results summary

	Discussion
	Conclusions
	Materials and methods
	Small test cases
	Generating input data to scaffolders
	Read mapping
	Scaffolding
	Evaluation

	Additional files
	Competing interests
	Authors’ contributions
	Software and data availability
	Author details
	References

