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We derive eight basic identities of symmetry in three variables related to Euler polynomials and
alternating power sums. These and most of their corollaries are new, since there have been results
only about identities of symmetry in two variables. These abundances of symmetries shed new
light even on the existing identities so as to yield some further interesting ones. The derivations
of identities are based on the p-adic integral expression of the generating function for the Euler
polynomials and the quotient of integrals that can be expressed as the exponential generating
function for the alternating power sums.

1. Introduction and Preliminaries

Let p be a fixed odd prime. Throughout this paper, Zp,Qp,Cp will, respectively, denote
the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the
algebraic closure of Qp. For a continuous function f : Zp → Cp, the p-adic fermionic integral
of f is defined by

∫
Zp

f(z)dμ−1(z) = lim
N→∞

pN−1∑
j=0

f
(
j
)
(−1)j . (1.1)

Then it is easy to see that

∫
Zp

f(z + 1)dμ−1(z) +
∫
Zp

f(z)dμ−1(z) = 2f(0). (1.2)
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Let | |p be the normalized absolute value of Cp, such that |p|p = 1/p, and let

E =
{
t ∈ Cp | |t|p < p−1/(p−1)

}
. (1.3)

Then, for each fixed t ∈ E, the function f(z) = ezt is analytic on Zp, and by applying (1.2) to
this f , we get the p-adic integral expression of the generating function for Euler numbers En:

∫
Zp

eztdμ−1(z) =
2

et + 1
=

∞∑
n=0

En
tn

n!
(t ∈ E). (1.4)

So we have the following p-adic integral expression of the generating function for the Euler
polynomials En(x):

∫
Zp

e(x+z)tdμ−1(z) =
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
(
t ∈ E, x ∈ Zp

)
. (1.5)

Let Tk(n), denote the alternating kth power sum of the first (n + 1) nonnegative integers,
namely,

Tk(n) =
n∑
i=0

(−1)iik = (−1)00k + (−1)11k + (−1)22k + · · · + (−1)nnk. (1.6)

In particular,

T0(n) =

⎧⎨
⎩
1, if n ≡ 0 (mod 2),

0, if n ≡ 1 (mod 2),
Tk(0) =

⎧⎨
⎩
1, for k = 0,

0, for k > 0.
(1.7)

From (1.4) and (1.6), one easily derives the following identities: for any odd positive integer
w,

∫
Zp

extdμ−1(x)∫
Zp

ewytdμ−1
(
y
) =

w−1∑
i=0

(−1)ieit =
∞∑
k=0

Tk(w − 1)
tk

k!
(t ∈ E). (1.8)

In what follows, we will always assume that the p-adic fermionic integrals of the various
exponential functions on Zp are defined for t ∈ E (cf., (1.3)), and therefore it will not be
mentioned.

Many authors have done much work on identities of symmetry involving Bernoulli
polynomials or Euler polynomials or q-Bernoulli polynomials or q-Euler polynomials. We let
the reader refer to the papers in [1–20]. In connection with Bernoulli polynomials and power
sums, these results were generalized in [21] to obtain identities of symmetry involving three
variables in contrast to the previous works involving just two variables.

In this paper, we will produce 8 basic identities of symmetry in three variablesw1,w2,
w3 related to Euler polynomials and alternating power sums (cf., (4.8), (4.9), (4.12), (4.16),
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(4.20), (4.23), (4.25), and (4.26)). These and most of their corollaries seem to be new, since
there have been results only about identities of symmetry in two variables in the literature.
These abundances of symmetries shed new light even on the existing identities. For instance,
it has been known that (1.9) and (1.10) are equal and (1.11) and (1.12) are so (cf., [3, Theorems
5, 7]). In fact, (1.9)–(1.12) are all equal, as they can be derived from one and the same p-
adic integral. Perhaps, this was neglected to mention in [3]. Also, we have a bunch of new
identities in (1.13)–(1.16). All of these were obtained as corollaries (cf., Corollary 4.9, 4.12,
4.15 ) to some of the basic identities by specializing the variable w3 as 1. Those would not be
unearthed if more symmetries had not been available.

Let w1, w2 be any odd positive integers. Then we have

n∑
k=0

(
n

k

)
Ek

(
w1y1

)
Tn−k(w2 − 1)wn−k

1 wk
2 (1.9)

=
n∑

k=0

(
n

k

)
Ek

(
w2y1

)
Tn−k(w1 − 1)wn−k

2 wk
1 (1.10)

= wn
1

w1−1∑
i=0

(−1)iEn

(
w2y1 +

w2

w1
i

)
(1.11)

= wn
2

w2−1∑
i=0

(−1)iEn

(
w1y1 +

w1

w2
i

)
(1.12)

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
y1
)
Tl(w1 − 1)Tm(w2 − 1)wk+m

1 wk+l
2 (1.13)

= wn
1

n∑
k=0

(
n

k

)
w1−1∑
i=0

(−1)iEk

(
y1 +

i

w1

)
Tn−k(w2 − 1)wk

2 (1.14)

= wn
2

n∑
k=0

(
n

k

)
w2−1∑
i=0

(−1)iEk

(
y1 +

i

w2

)
Tn−k(w1 − 1)wk

1 (1.15)

= (w1w2)n
w1−1∑
i=0

w2−1∑
j=0

(−1)i+jEn

(
y1 +

i

w1
+

j

w2

)
. (1.16)

The derivations of identities will be based on the p-adic integral expression of the
generating function for the Euler polynomials in (1.5) and the quotient of integrals in (1.8)
that can be expressed as the exponential generating function for the alternating power sums.
We indebted this idea to the paper in [3].

2. Several Types of Quotients of Fermionic Integrals

Here we will introduce several types of quotients of p-adic fermionic integrals on Zp or Z3
p

from which some interesting identities follow owing to the built-in symmetries in w1, w2,
w3. In the following, w1, w2, w3 are all positive integers and all of the explicit expressions of
integrals in (2.2), (2.4), (2.6), and (2.8) are obtained from the identity in (1.4).
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(a) Type Λi
23 (for i = 0, 1, 2, 3). One has

I
(
Λi

23

)
=

∫
Z
3
p
e(w2w3x1+w1w3x2+w1w2x3+w1w2w3(

∑3−i
j=1 yj ))tdμ−1(x1)dμ−1(x2)dμ−1(x3)(∫

Zp
ew1w2w3x4tdμ−1(x4)

)i
(2.1)

=
23−iew1w2w3(

∑3−i
j=1 yj )t(ew1w2w3t + 1

)i
(ew2w3t + 1)(ew1w3t + 1)(ew1w2t + 1)

(2.2)

(b) Type Λi
13 (for i = 0, 1, 2, 3). One has

I
(
Λi

13

)
=

∫
Z
3
p
e(w1x1+w2x2+w3x3+w1w2w3(

∑3−i
j=1 yj ))tdμ−1(x1)dμ−1(x2)dμ−1(x3)(∫

Zp
ew1w2w3x4tdμ−1(x4)

)i
(2.3)

=
23−iew1w2w3(

∑3−i
j=1 yj )t(ew1w2w3t + 1

)i
(ew1t + 1)(ew2t + 1)(ew3t + 1)

(2.4)

(c-0) Type Λ0
12. One has

I
(
Λ0

12

)
=
∫
Z
3
p

e(w1x1+w2x2+w3x3+w2w3y+w1w3y+w1w2y)tdμ−1(x1)dμ−1(x2)dμ−1(x3) (2.5)

=
8e(w2w3+w1w3+w1w2)yt

(ew1t + 1)(ew2t + 1)(ew3t + 1)
(2.6)

(c-1) Type Λ1
12. One has

I
(
Λ1

12

)
=

∫
Z
3
p
e(w1x1+w2x2+w3x3)tdμ−1(x1)dμ−1(x2)dμ−1(x3)∫

Z
3
p
e(w2w3z1+w1w3z2+w1w2z3)tdμ−1(z1)dμ−1(z2)dμ−1(z3)

(2.7)

=

(
ew2w3t + 1

)(
ew1w3t + 1

)(
ew1w2t + 1

)
(ew1t + 1)(ew2t + 1)(ew3t + 1)

. (2.8)

All of the above p-adic integrals of various types are invariant under all permutations
of w1, w2, w3 as one can see either from p-adic integral representations in (2.1), (2.3), (2.5),
and (2.7) or from their explicit evaluations in (2.2), (2.4), (2.6), and (2.8).

3. Identities for Euler Polynomials

In the followingw1, w2, w3 are all odd positive integers except for (a-0) and (c-0), where they
are any positive integers.
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(a-0) First, let us consider Type Λi
23, for each i = 0, 1, 2, 3. The following results can be

easily obtained from (1.5) and (1.8):

I
(
Λ0

23

)
=
∫
Zp

ew2w3(x1+w1y1)tdμ−1(x1)
∫
Zp

ew1w3(x2+w2y2)tdμ−1(x2)
∫
Zp

ew1w2(x3+w3y3)tdμ−1(x3)

=

( ∞∑
k=0

Ek

(
w1y1

)
k!

(w2w3t)k
)( ∞∑

l=0

El

(
w2y2

)
l!

(w1w3t)l
)( ∞∑

m=0

Em

(
w3y3

)
m!

(w1w2t)m
)

=
∞∑
n=0

( ∑
k+l+m=n

(
n

k, l,m

)
Ek

(
w1y1

)
El

(
w2y2

)
Em

(
w3y3

)
wl+m

1 wk+m
2 wk+l

3

)
tn

n!
,

(3.1)

where the inner sum is over all nonnegative integers k, l,m, with k + l +m = n, and

(
n

k, l,m

)
=

n!
k!l!m!

. (3.2)

(a-1) Here we write I(Λ1
23) in two different ways:

(1) One has

I
(
Λ1

23

)
=
∫
Zp

ew2w3(x1+w1y1)tdμ−1(x1)

×
∫
Zp

ew1w3(x2+w2y2)tdμ−1(x2) ×
∫
Zp

ew1w2x3tdμ−1(x3)∫
Zp

ew1w2w3x4tdμ−1(x4)
(3.3)

=

( ∞∑
k=0

Ek

(
w1y1

) (w2w3t)k

k!

)( ∞∑
l=0

El

(
w2y2

) (w1w3t)l

l!

)( ∞∑
m=0

Tm(w3 − 1)
(w1w2t)m

m!

)

=
∞∑
n=0

( ∑
k+l+m=n

(
n

k, l,m

)
Ek

(
w1y1

)
El

(
w2y2

)
Tm(w3 − 1)wl+m

1 wk+m
2 wk+l

3

)
tn

n!
.

(3.4)

(2) Invoking (1.8), (3.3) can also be written as

I
(
Λ1

23

)
=

w3−1∑
i=0

(−1)i
∫
Zp

ew2w3(x1+w1y1)t dμ−1(x1)
∫
Zp

ew1w3(x2+w2y2+(w2/w3)i)tdμ−1(x2)

=
w3−1∑
i=0

(−1)i
( ∞∑

k=0

Ek

(
w1y1

) (w2w3t)k

k!

)( ∞∑
l=0

El

(
w2y2 +

w2

w3
i

)
(w1w3t)l

l!

)

=
∞∑
n=0

(
wn

3

n∑
k=0

(
n

k

)
Ek

(
w1y1

)w3−1∑
i=0

(−1)iEn−k

(
w2y2 +

w2

w3
i

)
wn−k

1 wk
2

)
tn

n!
.

(3.5)
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(a-2) Here we write I(Λ2
23) in three different ways:

(1) One has

I
(
Λ2

23

)
=
∫
Zp

ew2w3(x1+w1y1)tdμ−1(x1)

×
∫
Zp

ew1w3x2tdμ−1(x2)∫
Zp

ew1w2w3x4tdμ−1(x4)
×

∫
Zp

ew1w2x3tdμ−1(x3)∫
Zp

ew1w2w3x4tdμ−1(x4)
(3.6)

=

( ∞∑
k=0

Ek

(
w1y1

) (w2w3t)k

k!

)( ∞∑
l=0

Tl(w2 − 1)
(w1w3t)l

l!

)( ∞∑
m=0

Tm(w3 − 1)
(w1w2t)m

m!

)

=
∞∑
n=0

⎛
⎝ ∑

k+l+m=n

⎛
⎝ n

k, l,m

⎞
⎠Ek

(
w1y1

)
Tl(w2 − 1)Tm(w3 − 1)wl+m

1 wk+m
2 wk+l

3

⎞
⎠ tn

n!
.

(3.7)

(2) Invoking (1.8), (3.6) can also be written as

I
(
Λ2

23

)
=

w2−1∑
i=0

(−1)i
∫
Zp

ew2w3(x1+w1y1+(w1/w2)i)tdμ−1(x1) ×
∫
Zp

ew1w2x3tdμ−1(x3)∫
Zp

ew1w2w3x4tdμ−1(x4)
(3.8)

=
w2−1∑
i=0

(−1)i
( ∞∑

k=0

Ek

(
w1y1 +

w1

w2
i

)
(w2w3t)k

k!

)( ∞∑
l=0

Tl(w3 − 1)
(w1w2t)l

l!

)

=
∞∑
n=0

⎛
⎝wn

2

n∑
k=0

⎛
⎝n

k

⎞
⎠w2−1∑

i=0
(−1)iEk

(
w1y1 +

w1

w2
i

)
Tn−k(w3 − 1)wn−k

1 wk
3

⎞
⎠ tn

n!
.

(3.9)

(3) Invoking (1.8) once again, (3.8) can be written as

I
(
Λ2

23

)
=

w2−1∑
i=0

w3−1∑
j=0

(−1)i+j
∫
Zp

ew2w3(x1+w1y1+(w1/w2)i+(w1/w3)j)tdμ−1(x1)

=
w2−1∑
i=0

w3−1∑
j=0

(−1)i+j
∞∑
n=0

En

(
w1y1 +

w1

w2
i +

w1

w3
j

)
(w2w3t)n

n!

=
∞∑
n=0

⎛
⎝(w2w3)n

w2−1∑
i=0

w3−1∑
j=0

(−1)i+jEn

(
w1y1 +

w1

w2
i +

w1

w3
j

)⎞
⎠ tn

n!
.

(3.10)
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(a-3) One has

I
(
Λ3

23

)
=

∫
Zp

ew2w3x1tdμ−1(x1)∫
Zp

ew1w2w3x4tdμ−1(x4)
×

∫
Zp

ew1w3x2tdμ−1(x2)∫
Zp

ew1w2w3x4tdμ−1(x4)
×

∫
Zp

ew1w2x3tdμ−1(x3)∫
Zp

ew1w2w3x4tdμ−1(x4)

=

( ∞∑
k=0

Tk(w1 − 1)
(w2w3t)k

k!

)( ∞∑
l=0

Tl(w2 − 1)
(w1w3t)l

l!

)( ∞∑
m=0

Tm(w3 − 1)
(w1w2t)m

m!

)

=
∞∑
n=0

∑
k+l+m=n

⎛
⎝

⎛
⎝ n

k, l,m

⎞
⎠Tk(w1 − 1)Tl(w2 − 1)Tm(w3 − 1)wl+m

1 wk+m
2 wk+l

3

⎞
⎠ tn

n!
.

(3.11)

(b) For Type Λi
13 (i = 0, 1, 2, 3), we may consider the analogous things to the ones in (a-

0), (a-1), (a-2), and (a-3). However, these do not lead us to new identities. Indeed, if
we substitute w2w3, w1w3, w1w2, respectively, for w1, w2, w3 in (2.1), this amounts
to replacing t by w1w2w3t in (2.3). So, upon replacing w1, w2, w3, respectively, by
w2w3, w1w3, w1w2, and then dividing by (w1w2w3)

n, in each of the expressions
of Theorem 4.1 through Corollary 4.15, we will get the corresponding symmetric
identities for Type Λi

13 (i = 0, 1, 2, 3).

(c-0) One has

I
(
Λ0

12

)
=
∫
Zp

ew1(x1+w2y)tdμ−1(x1)
∫
Zp

ew2(x2+w3y)tdμ−1(x2)
∫
Zp

ew3(x3+w1y)tdμ−1(x3)

=

( ∞∑
n=0

Ek

(
w2y

)
k!

(w1t)k
)( ∞∑

l=0

El

(
w3y

)
l!

(w2t)l
)( ∞∑

m=0

Em

(
w1y

)
m!

(w3t)m
)

=
∞∑
n=0

( ∑
k+l+m=n

(
n

k, l,m

)
Ek

(
w2y

)
El

(
w3y

)
Em

(
w1y

)
wk

1w
l
2w

m
3

)
tn

n!
.

(3.12)

(c-1) One has

∫
Zp

ew1x1tdμ−1(x1)∫
Zp

ew1w2z3tdμ−1(z3)
×

∫
Zp

ew2x2tdμ−1(x2)∫
Zp

ew2w3z1tdμ−1(z1)
×

∫
Zp

ew3x3tdμ−1(x3)∫
Zp

ew3w1z2tdμ−1(z2)

=

( ∞∑
k=0

Tk(w2 − 1)
(w1t)k

k!

)( ∞∑
l=0

Tl(w3 − 1)
(w2t)l

l!

)( ∞∑
m=0

Tm(w1 − 1)
(w3t)m

m!

)

=
∞∑
n=0

( ∑
k+l+m=n

(
n

k, l,m

)
Tk(w2 − 1)Tl(w3 − 1)Tm(w1 − 1)wk

1w
l
2w

m
3

)
tn

n!
.

(3.13)
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4. Main Theorems

As we noted earlier in the last paragraph of Section 2, the various types of quotients of p-adic
fermionic integrals are invariant under any permutation of w1, w2, w3. So the corresponding
expressions in Section 3 are also invariant under any permutation of w1, w2, w3. Thus our
results about identities of symmetry will be immediate consequences of this observation.

However, not all permutations of an expression in Section 3 yield distinct ones. In fact,
as these expressions are obtained by permuting w1, w2, w3 in a single one labelled by them,
they can be viewed as a group in a natural manner and hence it is isomorphic to a quotient
of S3. In particular, the numbers of possible distinct expressions are 1, 2, 3, or 6. (a-0), (a-
1(1)), (a-1(2)), and (a-2(2)) give the full six identities of symmetry, (a-2(1)) and (a-2(3)) yield
three identities of symmetry, and (c-0) and (c-1) give two identities of symmetry, while the
expression in (a-3) yields no identities of symmetry.

Here wewill just consider the cases of Theorems 4.8 and 4.17 leaving the others as easy
exercises for the reader. As for the case of Theorem 4.8, in addition to (4.15)–(4.17), we get
the following three ones:

∑
k+l+m=n

(
n

k, l,m

)
Ek

(
w1y1

)
Tl(w3 − 1)Tm(w2 − 1)wl+m

1 wk+m
3 wk+l

2 , (4.1)

∑
k+l+m=n

(
n

k, l,m

)
Ek

(
w2y1

)
Tl(w1 − 1)Tm(w3 − 1)wl+m

2 wk+m
1 wk+l

3 , (4.2)

∑
k+l+m=n

(
n

k, l,m

)
Ek

(
w3y1

)
Tl(w2 − 1)Tm(w1 − 1)wl+m

3 wk+m
2 wk+l

1 . (4.3)

But, by interchanging l and m, we see that (4.1), (4.2), and (4.3) are, respectively, equal to
(4.15), (4.16), and (4.17).

As to Theorem 17, in addition to (4.26) and (4.27), we have

∑
k+l+m=n

(
n

k, l,m

)
Tk(w2 − 1)Tl(w3 − 1)Tm(w1 − 1)wk

1w
l
2w

m
3 , (4.4)

∑
k+l+m=n

(
n

k, l,m

)
Tk(w3 − 1)Tl(w1 − 1)Tm(w2 − 1)wk

2w
l
3w

m
1 , (4.5)

∑
k+l+m=n

(
n

k, l,m

)
Tk(w3 − 1)Tl(w2 − 1)Tm(w1 − 1)wk

1w
l
3w

m
2 , (4.6)

∑
k+l+m=n

(
n

k, l,m

)
Tk(w2 − 1)Tl(w1 − 1)Tm(w3 − 1)wk

3w
l
2w

m
1 . (4.7)

However, (4.4) and (4.5) are equal to (4.26), as we can see by applying the permutations
k → l, l → m, and m → k for (4.4) and k → m, l → k, and m → l for (4.5). Similarly,
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we see that (4.6) and (4.7) are equal to (4.27), by applying permutations k → l, l → m, and
m → k for (4.6) and k → m, l → k, and m → l for (4.7).

Theorem 4.1. Let w1, w2, w3 be any positive integers. Then the following expression is invariant
under any permutation of w1, w2, w3, so that it gives us six symmetries:

∑
k+l+m=n

(
n

k, l,m

)
Ek

(
w1y1

)
El

(
w2y2

)
Em

(
w3y3

)
wl+m

1 wk+m
2 wk+l

3

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w1y1

)
El

(
w3y2

)
Em

(
w2y3

)
wl+m

1 wk+m
3 wk+l

2

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w2y1

)
El

(
w1y2

)
Em

(
w3y3

)
wl+m

2 wk+m
1 wk+l

3

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w2y1

)
El

(
w3y2

)
Em

(
w1y3

)
wl+m

2 wk+m
3 wk+l

1

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w3y1

)
El

(
w1y2

)
Em

(
w2y3

)
wl+m

3 wk+m
1 wk+l

2

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w3y1

)
El

(
w2y2

)
Em

(
w1y3

)
wl+m

3 wk+m
2 wk+l

1 .

(4.8)

Theorem 4.2. Letw1,w2,w3 be any odd positive integers. Then the following expression is invariant
under any permutation of w1, w2, w3, so that it gives us six symmetries:

∑
k+l+m=n

(
n

k, l,m

)
Ek

(
w1y1

)
El

(
w2y2

)
Tm(w3 − 1)wl+m

1 wk+m
2 wk+l

3

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w1y1

)
El

(
w3y2

)
Tm(w2 − 1)wl+m

1 wk+m
3 wk+l

2

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w2y1

)
El

(
w1y2

)
Tm(w3 − 1)wl+m

2 wk+m
1 wk+l

3

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w2y1

)
El

(
w3y2

)
Tm(w1 − 1)wl+m

2 wk+m
3 wk+l

1

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w3y1

)
El

(
w2y2

)
Tm(w1 − 1)wl+m

3 wk+m
2 wk+l

1

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w3y1

)
El

(
w1y2

)
Tm(w2 − 1)wl+m

3 wk+m
1 wk+l

2 .

(4.9)
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Putting w3 = 1 in (4.9), we get the following corollary.

Corollary 4.3. Let w1, w2 be any odd positive integers. Then one has

n∑
k=0

⎛
⎝n

k

⎞
⎠Ek

(
w1y1

)
En−k

(
w2y2

)
wn−k

1 wk
2

=
n∑

k=0

⎛
⎝n

k

⎞
⎠Ek

(
w2y1

)
En−k

(
w1y2

)
wn−k

2 wk
1

=
∑

k+l+m=n

⎛
⎝ n

k, l,m

⎞
⎠Ek

(
y1
)
El

(
w2y2

)
Tm(w1 − 1)wk+m

2 wk+l
1

=
∑

k+l+m=n

⎛
⎝ n

k, l,m

⎞
⎠Ek

(
w2y1

)
El

(
y2
)
Tm(w1 − 1)wl+m

2 wk+l
1

=
∑

k+l+m=n

⎛
⎝ n

k, l,m

⎞
⎠Ek

(
y1
)
El

(
w1y2

)
Tm(w2 − 1)wk+m

1 wk+l
2

=
∑

k+l+m=n

⎛
⎝ n

k, l,m

⎞
⎠Ek

(
w1y1

)
El

(
y2
)
Tm(w2 − 1)wl+m

1 wk+l
2 .

(4.10)

Letting further w2 = 1 in (4.10), we have the following corollary.

Corollary 4.4. Let w1 be any odd positive integer. Then one has

n∑
k=0

⎛
⎝n

k

⎞
⎠Ek

(
w1y1

)
En−k

(
y2
)
wn−k

1

=
n∑

k=0

⎛
⎝n

k

⎞
⎠Ek

(
y1
)
En−k

(
w1y2

)
wk

1

=
∑

k+l+m=n

⎛
⎝ n

k, l,m

⎞
⎠Ek

(
y1
)
El

(
y2
)
Tm(w1 − 1)wk+l

1 .

(4.11)
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Theorem 4.5. Letw1, w2, w3 be any odd positive integers. Then the following expression is invariant
under any permutation of w1, w2, w3, so that it gives us six symmetries:

wn
1

n∑
k=0

(
n

k

)
Ek

(
w3y1

)w1−1∑
i=0

(−1)iEn−k

(
w2y2 +

w2

w1
i

)
wn−k

3 wk
2

= wn
1

n∑
k=0

(
n

k

)
Ek

(
w2y1

)w1−1∑
i=0

(−1)iEn−k

(
w3y2 +

w3

w1
i

)
wn−k

2 wk
3

= wn
2

n∑
k=0

(
n

k

)
Ek

(
w3y1

)w2−1∑
i=0

(−1)iEn−k

(
w1y2 +

w1

w2
i

)
wn−k

3 wk
1

= wn
2

n∑
k=0

(
n

k

)
Ek

(
w1y1

)w2−1∑
i=0

(−1)iEn−k

(
w3y2 +

w3

w2
i

)
wn−k

1 wk
3

= wn
3

n∑
k=0

(
n

k

)
Ek

(
w2y1

)w3−1∑
i=0

(−1)iEn−k

(
w1y2 +

w1

w3
i

)
wn−k

2 wk
1

= wn
3

n∑
k=0

(
n

k

)
Ek

(
w1y1

)w3−1∑
i=0

(−1)iEn−k

(
w2y2 +

w2

w3
i

)
wn−k

1 wk
2 .

(4.12)

Letting w3 = 1 in (4.12), we obtain alternative expressions for the identities in (4.10).

Corollary 4.6. Let w1, w2 be any odd positive integers. Then one has

n∑
k=0

(
n

k

)
Ek

(
w1y1

)
En−k

(
w2y2

)
wn−k

1 wk
2

=
n∑

k=0

(
n

k

)
Ek

(
w2y1

)
En−k

(
w1y2

)
wn−k

2 wk
1

= wn
1

n∑
k=0

(
n

k

)
Ek

(
y1
)w1−1∑

i=0
(−1)iEn−k

(
w2y2 +

w2

w1
i

)
wk

2

= wn
1

n∑
k=0

(
n

k

)
Ek

(
w2y1

)w1−1∑
i=0

(−1)iEn−k

(
y2 +

i

w1

)
wn−k

2

= wn
2

n∑
k=0

(
n

k

)
Ek

(
y1
)w2−1∑

i=0
(−1)iEn−k

(
w1y2 +

w1

w2
i

)
wk

1

= wn
2

n∑
k=0

(
n

k

)
Ek

(
w1y1

)w2−1∑
i=0

(−1)iEn−k

(
y2 +

i

w2

)
wn−k

1 .

(4.13)

Putting further w2 = 1 in (4.13), we have the alternative expressions for the identities
for (4.11).
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Corollary 4.7. Let w1 be any odd positive integer. Then one has

n∑
k=0

(
n

k

)
Ek

(
y1
)
En−k

(
w1y2

)
wk

1

=
n∑

k=0

(
n

k

)
Ek

(
y2
)
En−k

(
w1y1

)
wk

1

= wn
1

n∑
k=0

(
n

k

)
Ek

(
y1
)w1−1∑

i=0
(−1)iEn−k

(
y2 +

i

w1

)
.

(4.14)

Theorem 4.8. Let w1, w2, w3 be any odd positive integers. Then one has the following three
symmetries in w1, w2, w3:

∑
k+l+m=n

(
n

k, l,m

)
Ek

(
w1y1

)
Tl(w2 − 1)Tm(w3 − 1)wl+m

1 wk+m
2 wk+l

3 (4.15)

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w2y1

)
Tl(w3 − 1)Tm(w1 − 1)wl+m

2 wk+m
3 wk+l

1 (4.16)

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w3y1

)
Tl(w1 − 1)Tm(w2 − 1)wl+m

3 wk+m
1 wk+l

2 . (4.17)

Putting w3 = 1 in (4.15)–(4.17), we get the following corollary.

Corollary 4.9. Let w1, w2 be any odd positive integers. Then one has

n∑
k=0

(
n

k

)
Ek

(
w1y1

)
Tn−k(w2 − 1)wn−k

1 wk
2

=
n∑

k=0

(
n

k

)
Ek

(
w2y1

)
Tn−k(w1 − 1)wn−k

2 wk
1

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
y1
)
Tl(w1 − 1)Tm(w2 − 1)wk+m

1 wk+l
2 .

(4.18)

Letting furtherw2 = 1 in (4.18), we get the following corollary. This is also obtained in
[20, Corollary 2] and mentioned in [3].

Corollary 4.10. Let w1 be any odd positive integer. Then one has

En

(
w1y1

)
=

n∑
k=0

(
n

k

)
Ek

(
y1
)
Tn−k(w1 − 1)wk

1 . (4.19)
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Theorem 4.11. Let w1, w2, w3 be any odd positive integers. Then the following expression is
invariant under any permutation of w1, w2, w3, so that it gives us six symmetries:

wn
1

n∑
k=0

(
n

k

)
w1−1∑
i=0

(−1)iEk

(
w2y1 +

w2

w1
i

)
Tn−k(w3 − 1)wn−k

2 wk
3

= wn
1

n∑
k=0

(
n

k

)
w1−1∑
i=0

(−1)iEk

(
w3y1 +

w3

w1
i

)
Tn−k(w2 − 1)wn−k

3 wk
2

= wn
2

n∑
k=0

(
n

k

)
w2−1∑
i=0

(−1)iEk

(
w1y1 +

w1

w2
i

)
Tn−k(w3 − 1)wn−k

1 wk
3

= wn
2

n∑
k=0

(
n

k

)
w2−1∑
i=0

(−1)iEk

(
w3y1 +

w3

w2
i

)
Tn−k(w1 − 1)wn−k

3 wk
1

= wn
3

n∑
k=0

(
n

k

)
w3−1∑
i=0

(−1)iEk

(
w1y1 +

w1

w3
i

)
Tn−k(w2 − 1)wn−k

1 wk
2

= wn
3

n∑
k=0

(
n

k

)
w3−1∑
i=0

(−1)iEk

(
w2y1 +

w2

w3
i

)
Tn−k(w1 − 1)wn−k

2 wk
1 .

(4.20)

Putting w3 = 1 in (4.20), we obtain the following corollary. In Section 1, the identities
in (4.18), (4.21), and (4.24) are combined to give those in (1.9)–(1.16).

Corollary 4.12. Let w1, w2 be any odd positive integers. Then one has

wn
1

w1−1∑
i=0

(−1)iEn

(
w2y1 +

w2

w1
i

)

= wn
2

w2−1∑
i=0

(−1)iEn

(
w1y1 +

w1

w2
i

)

=
n∑

k=0

(
n

k

)
Ek

(
w2y1

)
Tn−k(w1 − 1)wn−k

2 wk
1

=
n∑

k=0

(
n

k

)
Ek

(
w1y1

)
Tn−k(w2 − 1)wn−k

1 wk
2

= wn
1

n∑
k=0

(
n

k

)
w1−1∑
i=0

(−1)iEk

(
y1 +

i

w1

)
Tn−k(w2 − 1)wk

2

= wn
2

n∑
k=0

(
n

k

)
w2−1∑
i=0

(−1)iEk

(
y1 +

i

w2

)
Tn−k(w1 − 1)wk

1 .

(4.21)
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Letting further w2 = 1 in (4.21), we get the following corollary. This is the
multiplication formula for Euler polynomials together with the relatively new identity
mentioned in (4.19).

Corollary 4.13. Let w1 be any odd positive integer. Then one has

En

(
w1y1

)
= wn

1

w1−1∑
i=0

(−1)iEn

(
y1 +

i

w1

)

=
n∑

k=0

(
n

k

)
Ek

(
y1
)
Tn−k(w1 − 1)wk

1 .

(4.22)

Theorem 4.14. Let w1, w2, w3 be any odd positive integers. Then one has the following three
symmetries in w1, w2, w3:

(w1w2)n
w1−1∑
i=0

w2−1∑
j=0

(−1)i+jEn

(
w3y1 +

w3

w1
i +

w3

w2
j

)

= (w2w3)n
w2−1∑
i=0

w3−1∑
j=0

(−1)i+jEn

(
w1y1 +

w1

w2
i +

w1

w3
j

)

= (w3w1)n
w3−1∑
i=0

w1−1∑
j=0

(−1)i+jEn

(
w2y1 +

w2

w3
i +

w2

w1
j

)
.

(4.23)

Letting w3 = 1 in (4.23), we have the following corollary.

Corollary 4.15. Let w1, w2 be any odd positive integers. Then one has

wn
1

w1−1∑
j=0

(−1)jEn

(
w2y1 +

w2

w1
j

)

= wn
2

w2−1∑
i=0

(−1)iEn

(
w1y1 +

w1

w2
i

)

= (w1w2)n
w1−1∑
i=0

w2−1∑
j=0

(−1)i+jEn

(
y1 +

i

w1
+

j

w2

)
.

(4.24)
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Theorem 4.16. Let w1, w2, w3 be any positive integers. Then one has the following two symmetries
in w1, w2, w3:

∑
k+l+m=n

(
n

k, l,m

)
Ek

(
w1y

)
El

(
w2y

)
Em

(
w3y

)
wk

3w
l
1w

m
2

=
∑

k+l+m=n

(
n

k, l,m

)
Ek

(
w1y

)
El

(
w3y

)
Em

(
w2y

)
wk

2w
l
1w

m
3 .

(4.25)

Theorem 4.17. Let w1, w2, w3 be any odd positive integers. Then one has the following two
symmetries in w1, w2, w3:

∑
k+l+m=n

(
n

k, l,m

)
Tk(w1 − 1)Tl(w2 − 1)Tm(w3 − 1)wk

3w
l
1w

m
2 (4.26)

=
∑

k+l+m=n

(
n

k, l,m

)
Tk(w1 − 1)Tl(w3 − 1)Tm(w2 − 1)wk

2w
l
1w

m
3 . (4.27)

Putting w3 = 1 in (4.26) and (4.27), we get the following corollary.

Corollary 4.18. Let w1, w2 be any odd positive integers. Then one has

n∑
k=0

(
n

k

)
Tk(w2 − 1)Tn−k(w1 − 1)wk

1 =
n∑

k=0

(
n

k

)
Tk(w1 − 1)Tn−k(w2 − 1)wk

2 .
(4.28)
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